51
|
X-ray free electron laser: opportunities for drug discovery. Essays Biochem 2017; 61:529-542. [PMID: 29118098 DOI: 10.1042/ebc20170031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/16/2023]
Abstract
Past decades have shown the impact of structural information derived from complexes of drug candidates with their protein targets to facilitate the discovery of safe and effective medicines. Despite recent developments in single particle cryo-electron microscopy, X-ray crystallography has been the main method to derive structural information. The unique properties of X-ray free electron laser (XFEL) with unmet peak brilliance and beam focus allow X-ray diffraction data recording and successful structure determination from smaller and weaker diffracting crystals shortening timelines in crystal optimization. To further capitalize on the XFEL advantage, innovations in crystal sample delivery for the X-ray experiment, data collection and processing methods are required. This development was a key contributor to serial crystallography allowing structure determination at room temperature yielding physiologically more relevant structures. Adding the time resolution provided by the femtosecond X-ray pulse will enable monitoring and capturing of dynamic processes of ligand binding and associated conformational changes with great impact to the design of candidate drug compounds.
Collapse
|
52
|
Jönsson HO, Caleman C, Andreasson J, Tîmneanu N. Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission. IUCRJ 2017; 4:778-784. [PMID: 29123680 PMCID: PMC5668863 DOI: 10.1107/s2052252517014154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/02/2017] [Indexed: 05/31/2023]
Abstract
Serial femtosecond crystallography is an emerging and promising method for determining protein structures, making use of the ultrafast and bright X-ray pulses from X-ray free-electron lasers. The upcoming X-ray laser sources will produce well above 1000 pulses per second and will pose a new challenge: how to quickly determine successful crystal hits and avoid a high-rate data deluge. Proposed here is a hit-finding scheme based on detecting photons from plasma emission after the sample has been intercepted by the X-ray laser. Plasma emission spectra are simulated for systems exposed to high-intensity femtosecond pulses, for both protein crystals and the liquid carrier systems that are used for sample delivery. The thermal radiation from the glowing plasma gives a strong background in the XUV region that depends on the intensity of the pulse, around the emission lines from light elements (carbon, nitrogen, oxygen). Sample hits can be reliably distinguished from the carrier liquid based on the characteristic emission lines from heavier elements present only in the sample, such as sulfur. For buffer systems with sulfur present, selenomethionine substitution is suggested, where the selenium emission lines could be used both as an indication of a hit and as an aid in phasing and structural reconstruction of the protein.
Collapse
Affiliation(s)
- H. Olof Jönsson
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, DE-226 07 Hamburg, Germany
| | - Jakob Andreasson
- ELI Beamlines, Institute of Physics, Czech Academy of Science, Na Slovance 2, CZ-182 21 Prague, Czech Republic
- Condensed Matter Physics, Department of Physics, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Nicuşor Tîmneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
53
|
Nagler B, Aquila A, Boutet S, Galtier EC, Hashim A, S Hunter M, Liang M, Sakdinawat AE, Schroer CG, Schropp A, Seaberg MH, Seiboth F, van Driel T, Xing Z, Liu Y, Lee HJ. Focal Spot and Wavefront Sensing of an X-Ray Free Electron laser using Ronchi shearing interferometry. Sci Rep 2017; 7:13698. [PMID: 29057938 PMCID: PMC5651859 DOI: 10.1038/s41598-017-13710-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/27/2017] [Indexed: 12/02/2022] Open
Abstract
The Linac Coherent Light Source (LCLS) is an X-ray source of unmatched brilliance, that is advancing many scientific fields at a rapid pace. The highest peak intensities that are routinely produced at LCLS take place at the Coherent X-ray Imaging (CXI) instrument, which can produce spotsize at the order of 100 nm, and such spotsizes and intensities are crucial for experiments ranging from coherent diffractive imaging, non-linear x-ray optics and high field physics, and single molecule imaging. Nevertheless, a full characterisation of this beam has up to now not been performed. In this paper we for the first time characterise this nanofocused beam in both phase and intensity using a Ronchi Shearing Interferometric technique. The method is fast, in-situ, uses a straightforward optimization algoritm, and is insensitive to spatial jitter.
Collapse
Affiliation(s)
- Bob Nagler
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| | - Andrew Aquila
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Sébastien Boutet
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Eric C Galtier
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Akel Hashim
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Mark S Hunter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Mengning Liang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Anne E Sakdinawat
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Christian G Schroer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany.,Department Physik, Universität Hamburg, Luruper Chaussee 149, D-22761, Hamburg, Germany
| | - Andreas Schropp
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Matthew H Seaberg
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Frank Seiboth
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.,Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Tim van Driel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Zhou Xing
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Yanwei Liu
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Hae Ja Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| |
Collapse
|
54
|
Teschmit N, Długołęcki K, Gusa D, Rubinsky I, Horke DA, Küpper J. Characterizing and optimizing a laser-desorption molecular beam source. J Chem Phys 2017; 147:144204. [DOI: 10.1063/1.4991639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Nicole Teschmit
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Karol Długołęcki
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Daniel Gusa
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Igor Rubinsky
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Daniel A. Horke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
55
|
Dilanian RA, Streltsov V, Coughlan HD, Quiney HM, Martin AV, Klonis N, Dogovski C, Boutet S, Messerschmidt M, Williams GJ, Williams S, Phillips NW, Nugent KA, Tilley L, Abbey B. Nanocrystallography measurements of early stage synthetic malaria pigment. J Appl Crystallogr 2017; 50:1533-1540. [PMID: 29021736 PMCID: PMC5627683 DOI: 10.1107/s1600576717012663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/04/2017] [Indexed: 11/10/2022] Open
Abstract
The recent availability of extremely intense, femtosecond X-ray free-electron laser (XFEL) sources has spurred the development of serial femtosecond nanocrystallography (SFX). Here, SFX is used to analyze nanoscale crystals of β-hematin, the synthetic form of hemozoin which is a waste by-product of the malaria parasite. This analysis reveals significant differences in β-hematin data collected during SFX and synchrotron crystallography experiments. To interpret these differences two possibilities are considered: structural differences between the nanocrystal and larger crystalline forms of β-hematin, and radiation damage. Simulation studies show that structural inhomogeneity appears at present to provide a better fit to the experimental data. If confirmed, these observations will have implications for designing compounds that inhibit hemozoin formation and suggest that, for some systems at least, additional information may be gained by comparing structures obtained from nanocrystals and macroscopic crystals of the same molecule.
Collapse
Affiliation(s)
- Ruben A. Dilanian
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | - Hannah D. Coughlan
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- CSIRO Manufacturing Flagship, Parkville, Victoria, Australia
| | - Harry M. Quiney
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andrew V. Martin
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Nectarios Klonis
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sébastien Boutet
- LiNAC Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Garth J. Williams
- Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973-5000, USA
| | - Sophie Williams
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Nicholas W. Phillips
- CSIRO, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Keith A. Nugent
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Brian Abbey
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
56
|
|
57
|
Hutchison CDM, Cordon-Preciado V, Morgan RML, Nakane T, Ferreira J, Dorlhiac G, Sanchez-Gonzalez A, Johnson AS, Fitzpatrick A, Fare C, Marangos JP, Yoon CH, Hunter MS, DePonte DP, Boutet S, Owada S, Tanaka R, Tono K, Iwata S, van Thor JJ. X-ray Free Electron Laser Determination of Crystal Structures of Dark and Light States of a Reversibly Photoswitching Fluorescent Protein at Room Temperature. Int J Mol Sci 2017; 18:E1918. [PMID: 28880248 PMCID: PMC5618567 DOI: 10.3390/ijms18091918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 01/03/2023] Open
Abstract
The photochromic fluorescent protein Skylan-NS (Nonlinear Structured illumination variant mEos3.1H62L) is a reversibly photoswitchable fluorescent protein which has an unilluminated/ground state with an anionic and cis chromophore conformation and high fluorescence quantum yield. Photo-conversion with illumination at 515 nm generates a meta-stable intermediate with neutral trans-chromophore structure that has a 4 h lifetime. We present X-ray crystal structures of the cis (on) state at 1.9 Angstrom resolution and the trans (off) state at a limiting resolution of 1.55 Angstrom from serial femtosecond crystallography experiments conducted at SPring-8 Angstrom Compact Free Electron Laser (SACLA) at 7.0 keV and 10.5 keV, and at Linac Coherent Light Source (LCLS) at 9.5 keV. We present a comparison of the data reduction and structure determination statistics for the two facilities which differ in flux, beam characteristics and detector technologies. Furthermore, a comparison of droplet on demand, grease injection and Gas Dynamic Virtual Nozzle (GDVN) injection shows no significant differences in limiting resolution. The photoconversion of the on- to the off-state includes both internal and surface exposed protein structural changes, occurring in regions that lack crystal contacts in the orthorhombic crystal form.
Collapse
Affiliation(s)
- Christopher D. M. Hutchison
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Violeta Cordon-Preciado
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Rhodri M. L. Morgan
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan;
| | - Josie Ferreira
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Gabriel Dorlhiac
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Alvaro Sanchez-Gonzalez
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College, London SW7 2AZ, UK; (A.S.-G.); (A.S.J.); (J.P.M.)
| | - Allan S. Johnson
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College, London SW7 2AZ, UK; (A.S.-G.); (A.S.J.); (J.P.M.)
| | - Ann Fitzpatrick
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK;
| | - Clyde Fare
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Jon P. Marangos
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College, London SW7 2AZ, UK; (A.S.-G.); (A.S.J.); (J.P.M.)
| | - Chun Hong Yoon
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; (C.H.Y.); (M.S.H.); (D.P.D.); (S.B.)
| | - Mark S. Hunter
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; (C.H.Y.); (M.S.H.); (D.P.D.); (S.B.)
| | - Daniel P. DePonte
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; (C.H.Y.); (M.S.H.); (D.P.D.); (S.B.)
| | - Sébastien Boutet
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; (C.H.Y.); (M.S.H.); (D.P.D.); (S.B.)
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; (S.O.); (R.T.); (K.T.); (S.I.)
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; (S.O.); (R.T.); (K.T.); (S.I.)
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; (S.O.); (R.T.); (K.T.); (S.I.)
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5198, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; (S.O.); (R.T.); (K.T.); (S.I.)
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jasper J. van Thor
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| |
Collapse
|
58
|
Kubin M, Kern J, Gul S, Kroll T, Chatterjee R, Löchel H, Fuller FD, Sierra RG, Quevedo W, Weniger C, Rehanek J, Firsov A, Laksmono H, Weninger C, Alonso-Mori R, Nordlund DL, Lassalle-Kaiser B, Glownia JM, Krzywinski J, Moeller S, Turner JJ, Minitti MP, Dakovski GL, Koroidov S, Kawde A, Kanady JS, Tsui EY, Suseno S, Han Z, Hill E, Taguchi T, Borovik AS, Agapie T, Messinger J, Erko A, Föhlisch A, Bergmann U, Mitzner R, Yachandra VK, Yano J, Wernet P. Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:054307. [PMID: 28944255 PMCID: PMC5586166 DOI: 10.1063/1.4986627] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/15/2017] [Indexed: 05/19/2023]
Abstract
X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexes (Mn ∼ 6-15 mmol/l) with no visible effects of radiation damage. We also present the first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions.
Collapse
Affiliation(s)
- Markus Kubin
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | | | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Heike Löchel
- Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Franklin D Fuller
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Wilson Quevedo
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Christian Weniger
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Jens Rehanek
- Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Anatoly Firsov
- Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Hartawan Laksmono
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Dennis L Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jacek Krzywinski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Stefan Moeller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Joshua J Turner
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Michael P Minitti
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Georgi L Dakovski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Anurag Kawde
- Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, SE 90187 Umeå, Sweden
| | - Jacob S Kanady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Emily Y Tsui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Sandy Suseno
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhiji Han
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ethan Hill
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Taketo Taguchi
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Andrew S Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | - Alexei Erko
- Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | | | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Rolf Mitzner
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Philippe Wernet
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| |
Collapse
|
59
|
Ryan RA, Williams S, Martin AV, Dilanian RA, Darmanin C, Putkunz CT, Wood D, Streltsov VA, Jones MWM, Gaffney N, Hofmann F, Williams GJ, Boutet S, Messerschmidt M, Seibert MM, Curwood EK, Balaur E, Peele AG, Nugent KA, Quiney HM, Abbey B. Measurements of Long-range Electronic Correlations During Femtosecond Diffraction Experiments Performed on Nanocrystals of Buckminsterfullerene. J Vis Exp 2017:56296. [PMID: 28872125 PMCID: PMC5614354 DOI: 10.3791/56296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The precise details of the interaction of intense X-ray pulses with matter are a topic of intense interest to researchers attempting to interpret the results of femtosecond X-ray free electron laser (XFEL) experiments. An increasing number of experimental observations have shown that although nuclear motion can be negligible, given a short enough incident pulse duration, electronic motion cannot be ignored. The current and widely accepted models assume that although electrons undergo dynamics driven by interaction with the pulse, their motion could largely be considered 'random'. This would then allow the supposedly incoherent contribution from the electronic motion to be treated as a continuous background signal and thus ignored. The original aim of our experiment was to precisely measure the change in intensity of individual Bragg peaks, due to X-ray induced electronic damage in a model system, crystalline C60. Contrary to this expectation, we observed that at the highest X-ray intensities, the electron dynamics in C60 were in fact highly correlated, and over sufficiently long distances that the positions of the Bragg reflections are significantly altered. This paper describes in detail the methods and protocols used for these experiments, which were conducted both at the Linac Coherent Light Source (LCLS) and the Australian Synchrotron (AS) as well as the crystallographic approaches used to analyse the data.
Collapse
Affiliation(s)
- Rebecca A Ryan
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne
| | - Sophie Williams
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne
| | - Andrew V Martin
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne
| | - Ruben A Dilanian
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne
| | - Connie Darmanin
- Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University
| | - Corey T Putkunz
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne
| | - David Wood
- Department of Physics, Imperial College London
| | | | - Michael W M Jones
- Science and Engineering Faculty, Queensland University of Technology
| | | | - Felix Hofmann
- Department of Engineering Science, University of Oxford
| | | | - Sebastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory
| | | | - M Marvin Seibert
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University
| | - Evan K Curwood
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University
| | - Eugeniu Balaur
- Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University
| | - Andrew G Peele
- Science and Engineering Faculty, Queensland University of Technology
| | - Keith A Nugent
- Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University
| | - Harry M Quiney
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne;
| | - Brian Abbey
- Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University;
| |
Collapse
|
60
|
|
61
|
Andersson R, Safari C, Dods R, Nango E, Tanaka R, Yamashita A, Nakane T, Tono K, Joti Y, Båth P, Dunevall E, Bosman R, Nureki O, Iwata S, Neutze R, Brändén G. Serial femtosecond crystallography structure of cytochrome c oxidase at room temperature. Sci Rep 2017; 7:4518. [PMID: 28674417 PMCID: PMC5495810 DOI: 10.1038/s41598-017-04817-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/19/2017] [Indexed: 11/11/2022] Open
Abstract
Cytochrome c oxidase catalyses the reduction of molecular oxygen to water while the energy released in this process is used to pump protons across a biological membrane. Although an extremely well-studied biological system, the molecular mechanism of proton pumping by cytochrome c oxidase is still not understood. Here we report a method to produce large quantities of highly diffracting microcrystals of ba3-type cytochrome c oxidase from Thermus thermophilus suitable for serial femtosecond crystallography. The room-temperature structure of cytochrome c oxidase is solved to 2.3 Å resolution from data collected at an X-ray Free Electron Laser. We find overall agreement with earlier X-ray structures solved from diffraction data collected at cryogenic temperature. Previous structures solved from synchrotron radiation data, however, have shown conflicting results regarding the identity of the active-site ligand. Our room-temperature structure, which is free from the effects of radiation damage, reveals that a single-oxygen species in the form of a water molecule or hydroxide ion is bound in the active site. Structural differences between the ba3-type and aa3-type cytochrome c oxidases around the proton-loading site are also described.
Collapse
Affiliation(s)
- Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Robert Dods
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Eriko Nango
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Rie Tanaka
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Ayumi Yamashita
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Elin Dunevall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - So Iwata
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden.
| |
Collapse
|
62
|
Moffat K. Small crystals, fast dynamics and noisy data are indeed beautiful. IUCRJ 2017; 4:303-305. [PMID: 28875017 PMCID: PMC5571793 DOI: 10.1107/s2052252517009472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Structural biology at hard X-ray free-electron lasers is evolving rapidly beyond the experimental styles long established at storage ring sources. The comprehensive review by John Spence [IUCrJ (2017), 4, 322-339] provides magisterial oversight of recent developments.
Collapse
Affiliation(s)
- Keith Moffat
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics and Center for Advanced Radiation Sources, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
63
|
Spence JCH. XFELs for structure and dynamics in biology. IUCRJ 2017; 4:322-339. [PMID: 28875020 PMCID: PMC5571796 DOI: 10.1107/s2052252517005760] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/17/2017] [Indexed: 05/20/2023]
Abstract
The development and application of the free-electron X-ray laser (XFEL) to structure and dynamics in biology since its inception in 2009 are reviewed. The research opportunities which result from the ability to outrun most radiation-damage effects are outlined, and some grand challenges are suggested. By avoiding the need to cool samples to minimize damage, the XFEL has permitted atomic resolution imaging of molecular processes on the 100 fs timescale under near-physiological conditions and in the correct thermal bath in which molecular machines operate. Radiation damage, comparisons of XFEL and synchrotron work, single-particle diffraction, fast solution scattering, pump-probe studies on photosensitive proteins, mix-and-inject experiments, caged molecules, pH jump and other reaction-initiation methods, and the study of molecular machines are all discussed. Sample-delivery methods and data-analysis algorithms for the various modes, from serial femtosecond crystallo-graphy to fast solution scattering, fluctuation X-ray scattering, mixing jet experiments and single-particle diffraction, are also reviewed.
Collapse
Affiliation(s)
- J. C. H. Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| |
Collapse
|
64
|
Femtosecond response of polyatomic molecules to ultra-intense hard X-rays. Nature 2017; 546:129-132. [DOI: 10.1038/nature22373] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/03/2017] [Indexed: 11/08/2022]
|
65
|
Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser. Proc Natl Acad Sci U S A 2017; 114:2247-2252. [PMID: 28202732 DOI: 10.1073/pnas.1609243114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 μm3 in volume, whereas the X-ray beam is often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 μm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach.
Collapse
|
66
|
Hutchison CD, van Thor JJ. Populations and coherence in femtosecond time resolved X-ray crystallography of the photoactive yellow protein. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1276726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Jasper J. van Thor
- Molecular Biophysics, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
67
|
Abstract
The intense X-ray pulses from free-electron lasers, of only femtoseconds duration, outrun most of the processes that lead to structural degradation in X-ray exposures of macromolecules. Using these sources it is therefore possible to increase the dose to macromolecular crystals by several orders of magnitude higher than usually tolerable in conventional measurements, allowing crystal size to be decreased dramatically in diffraction measurements and without the need to cool the sample. Such pulses lead to the eventual vaporization of the sample, which has required a measurement approach, called serial crystallography, of consolidating snapshot diffraction patterns of many individual crystals. This in turn has further separated the connection between dose and obtainable diffraction information, with the only requirement from a single pattern being that to give enough information to place it, in three-dimensional reciprocal space, in relation to other patterns. Millions of extremely weak patterns can be collected and combined in this way, requiring methods to rapidly replenish the sample into the beam while generating the lowest possible background . The method is suited to time-resolved measurements over timescales below 1 ps to several seconds, and opens new opportunities for phasing. Some straightforward considerations of achievable signal levels are discussed and compared with a wide variety of recent experiments carried out at XFEL, synchrotron, and even laboratory sources, to discuss the capabilities of these new approaches and give some perspectives on their further development.
Collapse
Affiliation(s)
- Henry N Chapman
- Center for Free-Electron Laser Science, DESY, Hamburg, 22607, Germany.
- Department of Physics, University of Hamburg, Hamburg, 22607, Germany.
- The Centre for Ultrafast Imaging, University of Hamburg, Hamburg, 22607, Germany.
| |
Collapse
|
68
|
Garman EF, Weik M. X-ray radiation damage to biological macromolecules: further insights. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:1-6. [PMID: 28009541 DOI: 10.1107/s160057751602018x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Despite significant progress made over more than 15 years of research, structural biologists are still grappling with the issue of radiation damage suffered by macromolecular crystals which is induced by the resultant radiation chemistry occurring during X-ray diffraction experiments. Further insights into these effects and the possible mitigation strategies for use in both diffraction and SAXS experiments are given in eight papers in this volume. In particular, damage during experimental phasing is addressed, scavengers for SAXS experiments are investigated, microcrystals are imaged, data collection strategies are optimized, specific damage to tyrosine residues is reexamined, and room temperature conformational heterogeneity as a function of dose is explored. The brief summary below puts these papers into perspective relative to other ongoing radiation damage research on macromolecules.
Collapse
Affiliation(s)
- Elspeth F Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Martin Weik
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, F-38044 Grenoble, France
| |
Collapse
|
69
|
Abstract
Radiation damage inflicted on macromolecular crystals during X-ray diffraction experiments remains a limiting factor for structure solution, even when samples are cooled to cryotemperatures (~100 K). Efforts to establish mitigation strategies are ongoing and various approaches, summarized below, have been investigated over the last 15 years, resulting in a deeper understanding of the physical and chemical factors affecting damage rates. The recent advent of X-ray free electron lasers permits "diffraction-before-destruction" by providing highly brilliant and short (a few tens of fs) X-ray pulses. New fourth generation synchrotron sources now coming on line with higher X-ray flux densities than those available from third generation synchrotrons will bring the issue of radiation damage once more to the fore for structural biologists.
Collapse
Affiliation(s)
- Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Martin Weik
- Institut de Biologie Structurale, University of Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38044, Grenoble, France.
| |
Collapse
|
70
|
|
71
|
Nango E, Royant A, Kubo M, Nakane T, Wickstrand C, Kimura T, Tanaka T, Tono K, Song C, Tanaka R, Arima T, Yamashita A, Kobayashi J, Hosaka T, Mizohata E, Nogly P, Sugahara M, Nam D, Nomura T, Shimamura T, Im D, Fujiwara T, Yamanaka Y, Jeon B, Nishizawa T, Oda K, Fukuda M, Andersson R, Båth P, Dods R, Davidsson J, Matsuoka S, Kawatake S, Murata M, Nureki O, Owada S, Kameshima T, Hatsui T, Joti Y, Schertler G, Yabashi M, Bondar AN, Standfuss J, Neutze R, Iwata S. A three-dimensional movie of structural changes in bacteriorhodopsin. Science 2016; 354:1552-1557. [DOI: 10.1126/science.aah3497] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/21/2016] [Indexed: 01/24/2023]
|
72
|
Alonso-Mori R, Asa K, Bergmann U, Brewster AS, Chatterjee R, Cooper JK, Frei HM, Fuller FD, Goggins E, Gul S, Fukuzawa H, Iablonskyi D, Ibrahim M, Katayama T, Kroll T, Kumagai Y, McClure BA, Messinger J, Motomura K, Nagaya K, Nishiyama T, Saracini C, Sato Y, Sauter NK, Sokaras D, Takanashi T, Togashi T, Ueda K, Weare WW, Weng TC, Yabashi M, Yachandra VK, Young ID, Zouni A, Kern JF, Yano J. Towards characterization of photo-excited electron transfer and catalysis in natural and artificial systems using XFELs. Faraday Discuss 2016; 194:621-638. [PMID: 27711803 PMCID: PMC5177497 DOI: 10.1039/c6fd00084c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ultra-bright femtosecond X-ray pulses provided by X-ray Free Electron Lasers (XFELs) open capabilities for studying the structure and dynamics of a wide variety of biological and inorganic systems beyond what is possible at synchrotron sources. Although the structure and chemistry at the catalytic sites have been studied intensively in both biological and inorganic systems, a full understanding of the atomic-scale chemistry requires new approaches beyond the steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure at ambient conditions, while overcoming X-ray damage to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by using the intense and ultra-short femtosecond X-ray pulses from an XFEL, where sample is probed before it is damaged. We have developed methodology for simultaneously collecting X-ray diffraction data and X-ray emission spectra, using an energy dispersive spectrometer, at ambient conditions, and used this approach to study the room temperature structure and intermediate states of the photosynthetic water oxidizing metallo-protein, photosystem II. Moreover, we have also used this setup to simultaneously collect the X-ray emission spectra from multiple metals to follow the ultrafast dynamics of light-induced charge transfer between multiple metal sites. A Mn-Ti containing system was studied at an XFEL to demonstrate the efficacy and potential of this method.
Collapse
Affiliation(s)
- R Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - K Asa
- Department of Physics, Graduate School of Science, Kyoto U., Kyoto, 606-8502, Japan
| | - U Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - A S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA.
| | - R Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA.
| | - J K Cooper
- Joint Center for Artificial Photosynthesis (JCAP), Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - H M Frei
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA.
| | - F D Fuller
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA.
| | - E Goggins
- Dept. of Chemistry, North Carolina State University, 2620 Yarborough Rd., Raleigh, NC 27695-8204, USA
| | - S Gul
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA.
| | - H Fukuzawa
- IMRAM, Tohoku U., Sendai 980-8577, Japan and RIKEN SPring-8 Center, Kouto, Sayo, Hyogo 679-5148, Japan
| | | | - M Ibrahim
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
| | - T Katayama
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8/SACLA, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - T Kroll
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Y Kumagai
- IMRAM, Tohoku U., Sendai 980-8577, Japan
| | - B A McClure
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA.
| | - J Messinger
- Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, Umeå, Sweden
| | - K Motomura
- IMRAM, Tohoku U., Sendai 980-8577, Japan and RIKEN SPring-8 Center, Kouto, Sayo, Hyogo 679-5148, Japan
| | - K Nagaya
- Department of Physics, Graduate School of Science, Kyoto U., Kyoto, 606-8502, Japan and RIKEN SPring-8 Center, Kouto, Sayo, Hyogo 679-5148, Japan
| | - T Nishiyama
- Department of Physics, Graduate School of Science, Kyoto U., Kyoto, 606-8502, Japan
| | - C Saracini
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA.
| | - Y Sato
- Department of Physics, Graduate School of Science, Kyoto U., Kyoto, 606-8502, Japan
| | - N K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA.
| | - D Sokaras
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - T Togashi
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8/SACLA, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - K Ueda
- IMRAM, Tohoku U., Sendai 980-8577, Japan and RIKEN SPring-8 Center, Kouto, Sayo, Hyogo 679-5148, Japan
| | - W W Weare
- Dept. of Chemistry, North Carolina State University, 2620 Yarborough Rd., Raleigh, NC 27695-8204, USA
| | - T-C Weng
- Center for High Pressure Science & Technology Advanced Research, Shanghai, China
| | - M Yabashi
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8/SACLA, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - V K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA.
| | - I D Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA.
| | - A Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
| | - J F Kern
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA and Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA.
| | - J Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA. and Joint Center for Artificial Photosynthesis (JCAP), Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA and IMRAM, Tohoku U., Sendai 980-8577, Japan
| |
Collapse
|
73
|
Single molecule imaging using X-ray free electron lasers. Curr Opin Struct Biol 2016; 40:186-194. [DOI: 10.1016/j.sbi.2016.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 02/02/2023]
|
74
|
Abbey B, Dilanian RA, Darmanin C, Ryan RA, Putkunz CT, Martin AV, Wood D, Streltsov V, Jones MWM, Gaffney N, Hofmann F, Williams GJ, Boutet S, Messerschmidt M, Seibert MM, Williams S, Curwood E, Balaur E, Peele AG, Nugent KA, Quiney HM. X-ray laser-induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene. SCIENCE ADVANCES 2016; 2:e1601186. [PMID: 27626076 PMCID: PMC5017826 DOI: 10.1126/sciadv.1601186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration.
Collapse
Affiliation(s)
- Brian Abbey
- Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Ruben A. Dilanian
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Connie Darmanin
- Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Rebecca A. Ryan
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Corey T. Putkunz
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew V. Martin
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David Wood
- Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Victor Streltsov
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Michael W. M. Jones
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Naylyn Gaffney
- Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Felix Hofmann
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Garth J. Williams
- Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973–5000, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Marc Messerschmidt
- BioXFEL Science and Technology Center, 700 Ellicott Street, Buffalo, NY 1420, USA
| | - M. Marvin Seibert
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Sophie Williams
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Evan Curwood
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria 3084, Australia
| | - Eugeniu Balaur
- Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Andrew G. Peele
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Keith A. Nugent
- Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Harry M. Quiney
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
75
|
Nogly P, Panneels V, Nelson G, Gati C, Kimura T, Milne C, Milathianaki D, Kubo M, Wu W, Conrad C, Coe J, Bean R, Zhao Y, Båth P, Dods R, Harimoorthy R, Beyerlein KR, Rheinberger J, James D, DePonte D, Li C, Sala L, Williams GJ, Hunter MS, Koglin JE, Berntsen P, Nango E, Iwata S, Chapman HN, Fromme P, Frank M, Abela R, Boutet S, Barty A, White TA, Weierstall U, Spence J, Neutze R, Schertler G, Standfuss J. Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nat Commun 2016; 7:12314. [PMID: 27545823 PMCID: PMC4996941 DOI: 10.1038/ncomms12314] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/22/2016] [Indexed: 01/12/2023] Open
Abstract
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.
Collapse
Affiliation(s)
- Przemyslaw Nogly
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Valerie Panneels
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Cornelius Gati
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Tetsunari Kimura
- Biometal Science Laboratory, RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | | | - Despina Milathianaki
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Minoru Kubo
- Biometal Science Laboratory, RIKEN SPring-8 Center, Hyogo 679-5148, Japan.,PRESTO, JST, Saitama 332-0012, Japan
| | - Wenting Wu
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Chelsie Conrad
- Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Jesse Coe
- Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Richard Bean
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Yun Zhao
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Robert Dods
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Rajiv Harimoorthy
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Kenneth R Beyerlein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Jan Rheinberger
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Daniel James
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Daniel DePonte
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Chufeng Li
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Leonardo Sala
- SwissFEL, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Garth J Williams
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jason E Koglin
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Peter Berntsen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Eriko Nango
- SACLA Science Research Group, RIKEN/SPring-8 Center, Hyogo 679-5148, Japan
| | - So Iwata
- SACLA Science Research Group, RIKEN/SPring-8 Center, Hyogo 679-5148, Japan.,Department of Cell Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Henry N Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.,Department of Physics, University of Hamburg, 22761 Hamburg, Germany.,Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| | - Petra Fromme
- Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Matthias Frank
- Lawrence Livermore National Laboratory, Livermore 94550, USA
| | - Rafael Abela
- SwissFEL, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Sébastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Thomas A White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - John Spence
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Gebhard Schertler
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland.,Department of Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Jörg Standfuss
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
| |
Collapse
|
76
|
Liu S, Hattne J, Reyes FE, Sanchez-Martinez S, Jason de la Cruz M, Shi D, Gonen T. Atomic resolution structure determination by the cryo-EM method MicroED. Protein Sci 2016; 26:8-15. [PMID: 27452773 DOI: 10.1002/pro.2989] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
The electron cryo-microscopy (cryoEM) method MicroED has been rapidly developing. In this review we highlight some of the key steps in MicroED from crystal analysis to structure determination. We compare and contrast MicroED and the latest X-ray based diffraction method the X-ray free-electron laser (XFEL). Strengths and shortcomings of both MicroED and XFEL are discussed. Finally, all current MicroED structures are tabulated with a view to the future.
Collapse
Affiliation(s)
- Shian Liu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20148
| | - Johan Hattne
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20148
| | - Francis E Reyes
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20148
| | - Silvia Sanchez-Martinez
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20148
| | - M Jason de la Cruz
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20148
| | - Dan Shi
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20148
| | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20148
| |
Collapse
|
77
|
Foucar L. CFEL-ASG Software Suite ( CASS): usage for free-electron laser experiments with biological focus. J Appl Crystallogr 2016; 49:1336-1346. [PMID: 27504079 PMCID: PMC4970498 DOI: 10.1107/s1600576716009201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/07/2016] [Indexed: 11/29/2022] Open
Abstract
CASS [Foucar et al. (2012). Comput. Phys. Commun.183, 2207-2213] is a well established software suite for experiments performed at any sort of light source. It is based on a modular design and can easily be adapted for use at free-electron laser (FEL) experiments that have a biological focus. This article will list all the additional functionality and enhancements of CASS for use with FEL experiments that have been introduced since the first publication. The article will also highlight some advanced experiments with biological aspects that have been performed.
Collapse
Affiliation(s)
- Lutz Foucar
- Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg, 69120, Germany
| |
Collapse
|
78
|
Zaharieva I, Chernev P, Berggren G, Anderlund M, Styring S, Dau H, Haumann M. Room-Temperature Energy-Sampling Kβ X-ray Emission Spectroscopy of the Mn4Ca Complex of Photosynthesis Reveals Three Manganese-Centered Oxidation Steps and Suggests a Coordination Change Prior to O2 Formation. Biochemistry 2016; 55:4197-211. [PMID: 27377097 DOI: 10.1021/acs.biochem.6b00491] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In oxygenic photosynthesis, water is oxidized and dioxygen is produced at a Mn4Ca complex bound to the proteins of photosystem II (PSII). Valence and coordination changes in its catalytic S-state cycle are of great interest. In room-temperature (in situ) experiments, time-resolved energy-sampling X-ray emission spectroscopy of the Mn Kβ1,3 line after laser-flash excitation of PSII membrane particles was applied to characterize the redox transitions in the S-state cycle. The Kβ1,3 line energies suggest a high-valence configuration of the Mn4Ca complex with Mn(III)3Mn(IV) in S0, Mn(III)2Mn(IV)2 in S1, Mn(III)Mn(IV)3 in S2, and Mn(IV)4 in S3 and, thus, manganese oxidation in each of the three accessible oxidizing transitions of the water-oxidizing complex. There are no indications of formation of a ligand radical, thus rendering partial water oxidation before reaching the S4 state unlikely. The difference spectra of both manganese Kβ1,3 emission and K-edge X-ray absorption display different shapes for Mn(III) oxidation in the S2 → S3 transition when compared to Mn(III) oxidation in the S1 → S2 transition. Comparison to spectra of manganese compounds with known structures and oxidation states and varying metal coordination environments suggests a change in the manganese ligand environment in the S2 → S3 transition, which could be oxidation of five-coordinated Mn(III) to six-coordinated Mn(IV). Conceivable options for the rearrangement of (substrate) water species and metal-ligand bonding patterns at the Mn4Ca complex in the S2 → S3 transition are discussed.
Collapse
Affiliation(s)
- Ivelina Zaharieva
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Petko Chernev
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Gustav Berggren
- Uppsala University , Department of Chemistry, Ångström Laboratory, 75120 Uppsala, Sweden
| | - Magnus Anderlund
- Uppsala University , Department of Chemistry, Ångström Laboratory, 75120 Uppsala, Sweden
| | - Stenbjörn Styring
- Uppsala University , Department of Chemistry, Ångström Laboratory, 75120 Uppsala, Sweden
| | - Holger Dau
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Michael Haumann
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| |
Collapse
|
79
|
Picón A, Lehmann CS, Bostedt C, Rudenko A, Marinelli A, Osipov T, Rolles D, Berrah N, Bomme C, Bucher M, Doumy G, Erk B, Ferguson KR, Gorkhover T, Ho PJ, Kanter EP, Krässig B, Krzywinski J, Lutman AA, March AM, Moonshiram D, Ray D, Young L, Pratt ST, Southworth SH. Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics. Nat Commun 2016; 7:11652. [PMID: 27212390 PMCID: PMC4879250 DOI: 10.1038/ncomms11652] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/18/2016] [Indexed: 11/09/2022] Open
Abstract
New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site.
Collapse
Affiliation(s)
- A. Picón
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - C. S. Lehmann
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - C. Bostedt
- Argonne National Laboratory, Argonne, Illinois 60439, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | - A. Rudenko
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - A. Marinelli
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T. Osipov
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - D. Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
- Deutsches Elektronen-Synchrotron (DESY), Hamburg 22607, Germany
| | - N. Berrah
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - C. Bomme
- Deutsches Elektronen-Synchrotron (DESY), Hamburg 22607, Germany
| | - M. Bucher
- Argonne National Laboratory, Argonne, Illinois 60439, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - G. Doumy
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - B. Erk
- Deutsches Elektronen-Synchrotron (DESY), Hamburg 22607, Germany
| | - K. R. Ferguson
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T. Gorkhover
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - P. J. Ho
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - E. P. Kanter
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - B. Krässig
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - J. Krzywinski
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A. A. Lutman
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A. M. March
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - D. Moonshiram
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - D. Ray
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - L. Young
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - S. T. Pratt
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | |
Collapse
|
80
|
Roessler CG, Agarwal R, Allaire M, Alonso-Mori R, Andi B, Bachega JFR, Bommer M, Brewster AS, Browne MC, Chatterjee R, Cho E, Cohen AE, Cowan M, Datwani S, Davidson VL, Defever J, Eaton B, Ellson R, Feng Y, Ghislain LP, Glownia JM, Han G, Hattne J, Hellmich J, Héroux A, Ibrahim M, Kern J, Kuczewski A, Lemke HT, Liu P, Majlof L, McClintock WM, Myers S, Nelsen S, Olechno J, Orville AM, Sauter NK, Soares AS, Soltis SM, Song H, Stearns RG, Tran R, Tsai Y, Uervirojnangkoorn M, Wilmot CM, Yachandra V, Yano J, Yukl ET, Zhu D, Zouni A. Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography. Structure 2016; 24:631-640. [PMID: 26996959 DOI: 10.1016/j.str.2016.02.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/25/2015] [Accepted: 02/17/2016] [Indexed: 02/01/2023]
Abstract
X-ray free-electron lasers (XFELs) provide very intense X-ray pulses suitable for macromolecular crystallography. Each X-ray pulse typically lasts for tens of femtoseconds and the interval between pulses is many orders of magnitude longer. Here we describe two novel acoustic injection systems that use focused sound waves to eject picoliter to nanoliter crystal-containing droplets out of microplates and into the X-ray pulse from which diffraction data are collected. The on-demand droplet delivery is synchronized to the XFEL pulse scheme, resulting in X-ray pulses intersecting up to 88% of the droplets. We tested several types of samples in a range of crystallization conditions, wherein the overall crystal hit ratio (e.g., fraction of images with observable diffraction patterns) is a function of the microcrystal slurry concentration. We report crystal structures from lysozyme, thermolysin, and stachydrine demethylase (Stc2). Additional samples were screened to demonstrate that these methods can be applied to rare samples.
Collapse
Affiliation(s)
- Christian G Roessler
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Rakhi Agarwal
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Marc Allaire
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Babak Andi
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - José F R Bachega
- Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, CEP: 13560-970, Brazil
| | - Martin Bommer
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
| | - Aaron S Brewster
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA
| | - Michael C Browne
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ruchira Chatterjee
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA
| | - Eunsun Cho
- Department of Chemistry, Boston University, Boston, MA 02215-2521, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Matthew Cowan
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | | | - Victor L Davidson
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816-2364, USA
| | - Jim Defever
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | | | - Yiping Feng
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Guangye Han
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA
| | - Johan Hattne
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA
| | - Julia Hellmich
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität, D-10623 Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
| | - Annie Héroux
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Mohamed Ibrahim
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
| | - Jan Kern
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Anthony Kuczewski
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Henrik T Lemke
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215-2521, USA
| | | | | | - Stuart Myers
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Silke Nelsen
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Allen M Orville
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA; Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| | - Nicholas K Sauter
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA
| | - Alexei S Soares
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| | - S Michael Soltis
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Heng Song
- Department of Chemistry, Boston University, Boston, MA 02215-2521, USA
| | | | - Rosalie Tran
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA
| | - Yingssu Tsai
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA; Department of Chemistry, Stanford University, Stanford, CA 94305-4401, USA
| | | | - Carrie M Wilmot
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vittal Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA
| | - Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8177, USA
| | - Erik T Yukl
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Diling Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
| |
Collapse
|
81
|
Fukuda Y, Tse KM, Suzuki M, Diederichs K, Hirata K, Nakane T, Sugahara M, Nango E, Tono K, Joti Y, Kameshima T, Song C, Hatsui T, Yabashi M, Nureki O, Matsumura H, Inoue T, Iwata S, Mizohata E. Redox-coupled structural changes in nitrite reductase revealed by serial femtosecond and microfocus crystallography. J Biochem 2016; 159:527-38. [PMID: 26769972 PMCID: PMC4846774 DOI: 10.1093/jb/mvv133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/19/2015] [Indexed: 11/17/2022] Open
Abstract
Serial femtosecond crystallography (SFX) has enabled the damage-free structural determination of metalloenzymes and filled the gaps of our knowledge between crystallographic and spectroscopic data. Crystallographers, however, scarcely know whether the rising technique provides truly new structural insights into mechanisms of metalloenzymes partly because of limited resolutions. Copper nitrite reductase (CuNiR), which converts nitrite to nitric oxide in denitrification, has been extensively studied by synchrotron radiation crystallography (SRX). Although catalytic Cu (Type 2 copper (T2Cu)) of CuNiR had been suspected to tolerate X-ray photoreduction, we here showed that T2Cu in the form free of nitrite is reduced and changes its coordination structure in SRX. Moreover, we determined the completely oxidized CuNiR structure at 1.43 Å resolution with SFX. Comparison between the high-resolution SFX and SRX data revealed the subtle structural change of a catalytic His residue by X-ray photoreduction. This finding, which SRX has failed to uncover, provides new insight into the reaction mechanism of CuNiR.
Collapse
Affiliation(s)
- Yohta Fukuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ka Man Tse
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Mamoru Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Kay Diederichs
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany;
| | - Kunio Hirata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan;
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan;
| | - Takashi Kameshima
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan;
| | - Changyong Song
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea; and
| | - Takaki Hatsui
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Hiroyoshi Matsumura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| |
Collapse
|
82
|
Jaeger K, Dworkowski F, Nogly P, Milne C, Wang M, Standfuss J. Serial Millisecond Crystallography of Membrane Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 922:137-149. [DOI: 10.1007/978-3-319-35072-1_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
83
|
Affiliation(s)
- Elspeth F. Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Martin Weik
- University Grenoble Alpes, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| |
Collapse
|
84
|
Kern J, Yachandra VK, Yano J. Metalloprotein structures at ambient conditions and in real-time: biological crystallography and spectroscopy using X-ray free electron lasers. Curr Opin Struct Biol 2015; 34:87-98. [PMID: 26342144 DOI: 10.1016/j.sbi.2015.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
Although the structure of enzymes and the chemistry at the catalytic sites have been studied intensively, an understanding of the atomic-scale chemistry requires a new approach beyond steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure of metallo-enzymes at ambient conditions, while overcoming the severe X-ray-induced changes to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by the intense and ultra-short femtosecond (fs) X-ray pulses from an X-ray free electron laser (XFEL) by acquiring a signal before the sample is destroyed. This review describes the recent and pioneering uses of XFELs to study the protein structure and dynamics of metallo-enzymes using crystallography and scattering, as well as the chemical structure and dynamics of the catalytic complexes (charge, spin, and covalency) using spectroscopy during the reaction to understand the electron-transfer processes and elucidate the mechanism.
Collapse
Affiliation(s)
- Jan Kern
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Vittal K Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
85
|
Membrane protein structural biology using X-ray free electron lasers. Curr Opin Struct Biol 2015; 33:115-25. [DOI: 10.1016/j.sbi.2015.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 11/20/2022]
|
86
|
Galli L, Son SK, Klinge M, Bajt S, Barty A, Bean R, Betzel C, Beyerlein KR, Caleman C, Doak RB, Duszenko M, Fleckenstein H, Gati C, Hunt B, Kirian RA, Liang M, Nanao MH, Nass K, Oberthür D, Redecke L, Shoeman R, Stellato F, Yoon CH, White TA, Yefanov O, Spence J, Chapman HN. Electronic damage in S atoms in a native protein crystal induced by an intense X-ray free-electron laser pulse. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2015; 2:041703. [PMID: 26798803 PMCID: PMC4711609 DOI: 10.1063/1.4919398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/17/2015] [Indexed: 05/07/2023]
Abstract
Current hard X-ray free-electron laser (XFEL) sources can deliver doses to biological macromolecules well exceeding 1 GGy, in timescales of a few tens of femtoseconds. During the pulse, photoionization can reach the point of saturation in which certain atomic species in the sample lose most of their electrons. This electronic radiation damage causes the atomic scattering factors to change, affecting, in particular, the heavy atoms, due to their higher photoabsorption cross sections. Here, it is shown that experimental serial femtosecond crystallography data collected with an extremely bright XFEL source exhibit a reduction of the effective scattering power of the sulfur atoms in a native protein. Quantitative methods are developed to retrieve information on the effective ionization of the damaged atomic species from experimental data, and the implications of utilizing new phasing methods which can take advantage of this localized radiation damage are discussed.
Collapse
Affiliation(s)
| | | | - M Klinge
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg and Institute of Biochemistry, University of Luebeck at DESY, 22607 Hamburg, Germany
| | - S Bajt
- Photon Science, Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - A Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - R Bean
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - C Betzel
- Department of Chemistry, Institute of Biochemistry and Molecular Biology, University of Hamburg at DESY, 22607 Hamburg, Germany
| | - K R Beyerlein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | | | - R B Doak
- Department of Biomolecular Mechanisms, Max Planck-Institute for Medical Research , Jahnstrasse 29, 69120 Heidelberg, Germany
| | - M Duszenko
- Interfaculty Institute of Biochemistry, University of Tübingen , 72076 Tübingen, Germany
| | - H Fleckenstein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - C Gati
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - B Hunt
- Department of Physics and Astronomy, Brigham Young University , Provo, Utah 84602, USA
| | - R A Kirian
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - M Liang
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - M H Nanao
- EMBL , Grenoble Outstation, Rue Jules Horowitz 6, Grenoble 38042, France
| | - K Nass
- Department of Biomolecular Mechanisms, Max Planck-Institute for Medical Research , Jahnstrasse 29, 69120 Heidelberg, Germany
| | - D Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - L Redecke
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg and Institute of Biochemistry, University of Luebeck at DESY, 22607 Hamburg, Germany
| | - R Shoeman
- Department of Biomolecular Mechanisms, Max Planck-Institute for Medical Research , Jahnstrasse 29, 69120 Heidelberg, Germany
| | - F Stellato
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | | | - T A White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - O Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85, 22607 Hamburg, Germany
| | - J Spence
- Department of Physics, Arizona State University , Tempe, Arizona 85287-1504, USA
| | | |
Collapse
|
87
|
Hattne J, Reyes FE, Nannenga BL, Shi D, de la Cruz MJ, Leslie AGW, Gonen T. MicroED data collection and processing. Acta Crystallogr A Found Adv 2015; 71:353-60. [PMID: 26131894 PMCID: PMC4487423 DOI: 10.1107/s2053273315010669] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/02/2015] [Indexed: 11/30/2022] Open
Abstract
MicroED, a method at the intersection of X-ray crystallography and electron cryo-microscopy, has rapidly progressed by exploiting advances in both fields and has already been successfully employed to determine the atomic structures of several proteins from sub-micron-sized, three-dimensional crystals. A major limiting factor in X-ray crystallography is the requirement for large and well ordered crystals. By permitting electron diffraction patterns to be collected from much smaller crystals, or even single well ordered domains of large crystals composed of several small mosaic blocks, MicroED has the potential to overcome the limiting size requirement and enable structural studies on difficult-to-crystallize samples. This communication details the steps for sample preparation, data collection and reduction necessary to obtain refined, high-resolution, three-dimensional models by MicroED, and presents some of its unique challenges.
Collapse
Affiliation(s)
- Johan Hattne
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Francis E. Reyes
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Brent L. Nannenga
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Dan Shi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - M. Jason de la Cruz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Andrew G. W. Leslie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England
| | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|
88
|
Blakeley MP, Hasnain SS, Antonyuk SV. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential. IUCRJ 2015; 2:464-74. [PMID: 26175905 PMCID: PMC4491318 DOI: 10.1107/s2052252515011239] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/09/2015] [Indexed: 05/20/2023]
Abstract
The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm(3) crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H(+)) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron crystallography therefore remains the only approach where diffraction data can be collected at room temperature without radiation damage issues and the only approach to locate mobile or highly polarized H atoms and protons. Here a review of the current status of sub-atomic X-ray and neutron macromolecular crystallography is given and future prospects for combined approaches are outlined. New results from two metalloproteins, copper nitrite reductase and cytochrome c', are also included, which illustrate the type of information that can be obtained from sub-atomic-resolution (∼0.8 Å) X-ray structures, while also highlighting the need for complementary neutron studies that can provide details of H atoms not provided by X-ray crystallography.
Collapse
Affiliation(s)
- Matthew P. Blakeley
- Large-Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Samar S. Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, UK
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, UK
| |
Collapse
|
89
|
Garman EF, Weik M. Radiation damage to macromolecules: kill or cure? JOURNAL OF SYNCHROTRON RADIATION 2015; 22:195-200. [PMID: 25723921 DOI: 10.1107/s160057751500380x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 05/07/2023]
Abstract
Radiation damage induced by X-ray beams during macromolecular diffraction experiments remains an issue of concern in structural biology. While advances in our understanding of this phenomenon, driven in part by a series of workshops in this area, undoubtedly have been and are still being made, there are still questions to be answered. Eight papers in this volume give a flavour of ongoing investigations, addressing various issues. These range over: a proposed new metric derived from atomic B-factors for identifying potentially damaged amino acid residues, a study of the relative damage susceptibility of protein and DNA in a DNA/protein complex, a report of an indication of specific radiation damage to a protein determined from data collected using an X-ray free-electron laser (FEL), an account of the challenges in FEL raw diffraction data analysis, an exploration of the possibilities of using radiation damage induced phasing to solve structures using FELs, simulations of radiation damage as a function of FEL temporal pulse profiles, results on the influence of radiation damage during scanning X-ray diffraction measurements and, lastly, consideration of strategies for minimizing radiation damage during SAXS experiments. In this short introduction, these contributions are briefly placed in the context of other current work on radiation damage in the field.
Collapse
Affiliation(s)
- Elspeth F Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Martin Weik
- Université Grenoble Alpes, IBS, F-38044 Grenoble, France
| |
Collapse
|
90
|
Jönsson HO, Tîmneanu N, Östlin C, Scott HA, Caleman C. Simulations of radiation damage as a function of the temporal pulse profile in femtosecond X-ray protein crystallography. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:256-66. [PMID: 25723927 DOI: 10.1107/s1600577515002878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/10/2015] [Indexed: 05/07/2023]
Abstract
Serial femtosecond X-ray crystallography of protein nanocrystals using ultrashort and intense pulses from an X-ray free-electron laser has proved to be a successful method for structural determination. However, due to significant variations in diffraction pattern quality from pulse to pulse only a fraction of the collected frames can be used. Experimentally, the X-ray temporal pulse profile is not known and can vary with every shot. This simulation study describes how the pulse shape affects the damage dynamics, which ultimately affects the biological interpretation of electron density. The instantaneously detected signal varies during the pulse exposure due to the pulse properties, as well as the structural and electronic changes in the sample. Here ionization and atomic motion are simulated using a radiation transfer plasma code. Pulses with parameters typical for X-ray free-electron lasers are considered: pulse energies ranging from 10(4) to 10(7) J cm(-2) with photon energies from 2 to 12 keV, up to 100 fs long. Radiation damage in the form of sample heating that will lead to a loss of crystalline periodicity and changes in scattering factor due to electronic reconfigurations of ionized atoms are considered here. The simulations show differences in the dynamics of the radiation damage processes for different temporal pulse profiles and intensities, where ionization or atomic motion could be predominant. The different dynamics influence the recorded diffracted signal in any given resolution and will affect the subsequent structure determination.
Collapse
Affiliation(s)
- H Olof Jönsson
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Nicuşor Tîmneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Christofer Östlin
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Howard A Scott
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| |
Collapse
|