51
|
Schramm G, Ladefoged CN. Metal artifact correction strategies in MRI-based attenuation correction in PET/MRI. BJR Open 2019; 1:20190033. [PMID: 33178954 PMCID: PMC7592486 DOI: 10.1259/bjro.20190033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/27/2019] [Accepted: 10/20/2019] [Indexed: 12/31/2022] Open
Abstract
In hybrid positron emission tomography (PET) and MRI systems, attenuation correction for PET image reconstruction is commonly based on processing of dedicated MR images. The image quality of the latter is strongly affected by metallic objects inside the body, such as e.g. dental implants, endoprostheses, or surgical clips which all lead to substantial artifacts that propagate into MRI-based attenuation images. In this work, we review publications about metal artifact correction strategies in MRI-based attenuation correction in PET/MRI. Moreover, we also give an overview about publications investigating the impact of MRI-based attenuation correction metal artifacts on the reconstructed PET image quality and quantification.
Collapse
Affiliation(s)
- Georg Schramm
- Department of Imaging and Pathology, Division of Nuclear Medicine, KU/UZ Leuven, Leuven, Belgium
| | - Claes Nøhr Ladefoged
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
52
|
Berker Y, Schulz V, Karp JS. Algorithms for joint activity-attenuation estimation from positron emission tomography scatter. EJNMMI Phys 2019; 6:18. [PMID: 31659488 PMCID: PMC6816692 DOI: 10.1186/s40658-019-0254-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
Background Attenuation correction in positron emission tomography remains challenging in the absence of measured transmission data. Scattered emission data may contribute missing information, but quantitative scatter-to-attenuation (S2A) reconstruction needs to input the reconstructed activity image. Here, we study S2A reconstruction as a building block for joint estimation of activity and attenuation. Methods We study two S2A reconstruction algorithms, maximum-likelihood expectation maximization (MLEM) with one-step-late attenuation (MLEM-OSL) and a maximum-likelihood gradient ascent (MLGA). We study theoretical properties of these algorithms with a focus on convergence and convergence speed and compare convergence speeds and the impact of object size in simulations using different spatial scale factors. Then, we propose joint estimation of activity and attenuation from scattered and nonscattered (true) emission data, combining MLEM-OSL or MLGA with scatter-MLEM as well as trues-MLEM and the maximum-likelihood transmission (MLTR) algorithm. Results Shortcomings of MLEM-OSL inhibit convergence to the true solution with high attenuation; these shortcomings are related to the linearization of a nonlinear measurement equation and can be linked to a new numerical criterion allowing geometrical interpretations in terms of low and high attenuation. Comparisons using simulated data confirm that while MLGA converges largely independent of the attenuation scale, MLEM-OSL converges if low-attenuation data dominate, but not with high attenuation. Convergence of MLEM-OSL can be improved by isolating data satisfying the aforementioned low-attenuation criterion. In joint estimation of activity and attenuation, scattered data helps avoid local minima that nonscattered data alone cannot. Combining MLEM-OSL with trues-MLEM may be sufficient for low-attenuation objects, while MLGA, scatter-MLEM, and MLTR may additionally be needed with higher attenuation. Conclusions The performance of S2A algorithms depends on spatial scales. MLGA provides lower computational complexity and convergence in more diverse setups than MLEM-OSL. Finally, scattered data may provide additional information to joint estimation of activity and attenuation through S2A reconstruction.
Collapse
Affiliation(s)
- Yannick Berker
- Division of X-ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany. .,Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstraße 55, Aachen, 52074, Germany. .,Department of Radiology, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, 19104, PA, USA.
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstraße 55, Aachen, 52074, Germany.,III. Physikalisches Institut B, RWTH Aachen University, Otto-Blumenthal-Straße, Aachen, Germany.,Fraunhofer Institute for Digital Medicine MEVIS, Forckenbeckstraße 55, Aachen, 52074, Germany
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, 19104, PA, USA
| |
Collapse
|
53
|
Rezaei A, Schramm G, Willekens SMA, Delso G, Van Laere K, Nuyts J. A Quantitative Evaluation of Joint Activity and Attenuation Reconstruction in TOF PET/MR Brain Imaging. J Nucl Med 2019; 60:1649-1655. [PMID: 30979823 DOI: 10.2967/jnumed.118.220871] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Time-of-flight (TOF) PET data provide an effective means for attenuation correction (AC) when no (or incomplete or inaccurate) attenuation information is available. Since MR scanners provide little information on photon attenuation of different tissue types, AC in hybrid PET/MR scanners has always been challenging. In this contribution, we aim at validating the activity reconstructions of the maximum-likelihood ordered-subsets activity and attenuation (OSAA) reconstruction algorithm on a patient brain data set. We present a quantitative comparison of joint reconstructions with the current clinical gold standard-ordered-subsets expectation maximization-using CT-based AC in PET/CT, as well as the current state of the art in PET/MR, that is, zero time echo (ZTE)-based AC. Methods: The TOF PET emission data were initially used in a preprocessing stage to estimate crystal maps of efficiencies, timing offsets, and timing resolutions. Applying these additional corrections during reconstructions, OSAA, ZTE-based, and the vendor-provided atlas-based AC techniques were analyzed and compared with CT-based AC. In our initial study, we used the CT-based estimate of the expected scatter and later used the ZTE-based and OSAA attenuation estimates to compute the expected scatter contribution of the data during reconstructions. In all reconstructions, a maximum-likelihood scaling of the single-scatter simulation estimate to the emission data was used for scatter correction. The reconstruction results were analyzed in the 86 segmented regions of interest of the Hammers atlas. Results: Our quantitative analysis showed that, in practice, a tracer activity difference of +0.5% (±2.1%) and +0.1% (±2.3%) could be expected for the state-of-the-art ZTE-based and OSAA AC methods, respectively, in PET/MR compared with the clinical gold standard in PET/CT. Conclusion: Joint activity and attenuation estimation methods can provide an effective solution to the challenging AC problem for brain studies in hybrid TOF PET/MR scanners. With an accurate TOF-based (timing offsets and timing resolutions) calibration, and similar to the results of the state-of-the-art method in PET/MR, regional errors of joint TOF PET reconstructions are within a few percentage points.
Collapse
Affiliation(s)
- Ahmadreza Rezaei
- KU Leuven - University of Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine & Molecular Imaging (NMMI), Medical Imaging Research Center (MIRC), B-3000, Leuven, Belgium; and
| | - Georg Schramm
- KU Leuven - University of Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine & Molecular Imaging (NMMI), Medical Imaging Research Center (MIRC), B-3000, Leuven, Belgium; and
| | - Stefanie M A Willekens
- KU Leuven - University of Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine & Molecular Imaging (NMMI), Medical Imaging Research Center (MIRC), B-3000, Leuven, Belgium; and
| | - Gaspar Delso
- MR Applications and Workflow, GE Healthcare, Waukesha, Wisconsin
| | - Koen Van Laere
- KU Leuven - University of Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine & Molecular Imaging (NMMI), Medical Imaging Research Center (MIRC), B-3000, Leuven, Belgium; and
| | - Johan Nuyts
- KU Leuven - University of Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine & Molecular Imaging (NMMI), Medical Imaging Research Center (MIRC), B-3000, Leuven, Belgium; and
| |
Collapse
|
54
|
|
55
|
Lindemann ME, Nensa F, Quick HH. Impact of improved attenuation correction on 18F-FDG PET/MR hybrid imaging of the heart. PLoS One 2019; 14:e0214095. [PMID: 30908507 PMCID: PMC6433217 DOI: 10.1371/journal.pone.0214095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/06/2019] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The aim of this study was to evaluate and quantify the effect of improved attenuation correction (AC) including bone segmentation and truncation correction on 18F-Fluordesoxyglucose cardiac positron emission tomography/magnetic resonance (PET/MR) imaging. METHODS PET data of 32 cardiac PET/MR datasets were reconstructed with three different AC-maps (1. Dixon-VIBE only, 2. HUGE truncation correction and bone segmentation, 3. MLAA). The Dixon-VIBE AC-maps served as reference of reconstructed PET data. 17-segment short-axis polar plots of the left ventricle were analyzed regarding the impact of each of the three AC methods on PET quantification in cardiac PET/MR imaging. Non-AC PET images were segmented to specify the amount of truncation in the Dixon-VIBE AC-map serving as a reference. All AC-maps were evaluated for artifacts. RESULTS Using HUGE + bone AC results in a homogeneous gain of ca. 6% and for MLAA 8% of PET signal distribution across the myocardium of the left ventricle over all patients compared to Dixon-VIBE AC only. Maximal relative differences up to 18% were observed in segment 17 (apex). The body volume truncation of -12.7 ± 7.1% compared to the segmented non-AC PET images using the Dixon-VIBE AC method was reduced to -1.9 ± 3.9% using HUGE and 7.8 ± 8.3% using MLAA. In each patient, a systematic overestimation in AC-map volume was observed when applying MLAA. Quantitative impact of artifacts showed regional differences up to 6% within single segments of the myocardium. CONCLUSIONS Improved AC including bone segmentation and truncation correction in cardiac PET/MR imaging is important to ensure best possible diagnostic quality and PET quantification. The results exhibited an overestimation of AC-map volume using MLAA, while HUGE resulted in a more realistic body contouring. Incorporation of bone segmentation into the Dixon-VIBE AC-map resulted in homogeneous gain in PET signal distribution across the myocardium. The majority of observed AC-map artifacts did not significantly affect the quantitative assessment of the myocardium.
Collapse
Affiliation(s)
- Maike E. Lindemann
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Felix Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Harald H. Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
56
|
Rischpler C, Nekolla SG, Heusch G, Umutlu L, Rassaf T, Heusch P, Herrmann K, Nensa F. Cardiac PET/MRI-an update. Eur J Hybrid Imaging 2019; 3:2. [PMID: 34191143 PMCID: PMC8212244 DOI: 10.1186/s41824-018-0050-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022] Open
Abstract
It is now about 8 years since the first whole-body integrated PET/MRI has been installed. First, reports on technical characteristics and system performance were published. Early after, reports on the first use of PET/MRI in oncological patients were released. Interestingly, the first article on the application in cardiology was a review article, which was published before the first original article was put out. Since then, researchers have gained a lot experience with the PET/MRI in various cardiovascular diseases and an increasing number on auspicious indications is appearing. In this review article, we give an overview on technical updates within these last years with potential impact on cardiac imaging and summarize those scenarios where PET/MRI plays a pivotal role in cardiovascular medicine.
Collapse
Affiliation(s)
- C Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - S G Nekolla
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany.,DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.) partner site Munich Heart alliance, Munich, Germany
| | - G Heusch
- Institute for Pathophysiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - L Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - T Rassaf
- Department of Cardiology and Vascular Medicine, University Hospital Essen, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| | - P Heusch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - K Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - F Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
57
|
Baran J, Chen Z, Sforazzini F, Ferris N, Jamadar S, Schmitt B, Faul D, Shah NJ, Cholewa M, Egan GF. Accurate hybrid template-based and MR-based attenuation correction using UTE images for simultaneous PET/MR brain imaging applications. BMC Med Imaging 2018; 18:41. [PMID: 30400875 PMCID: PMC6220492 DOI: 10.1186/s12880-018-0283-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/24/2018] [Indexed: 12/29/2022] Open
Abstract
Background Attenuation correction is one of the most crucial correction factors for accurate PET data quantitation in hybrid PET/MR scanners, and computing accurate attenuation coefficient maps from MR brain acquisitions is challenging. Here, we develop a method for accurate bone and air segmentation using MR ultrashort echo time (UTE) images. Methods MR UTE images from simultaneous MR and PET imaging of five healthy volunteers was used to generate a whole head, bone and air template image for inclusion into an improved MR derived attenuation correction map, and applied to PET image data for quantitative analysis. Bone, air and soft tissue were segmented based on Gaussian Mixture Models with probabilistic tissue maps as a priori information. We present results for two approaches for bone attenuation coefficient assignments: one using a constant attenuation correction value; and another using an estimated continuous attenuation value based on a calibration fit. Quantitative comparisons were performed to evaluate the accuracy of the reconstructed PET images, with respect to a reference image reconstructed with manually segmented attenuation maps. Results The DICE coefficient analysis for the air and bone regions in the images demonstrated improvements compared to the UTE approach, and other state-of-the-art techniques. The most accurate whole brain and regional brain analyses were obtained using constant bone attenuation coefficient values. Conclusions A novel attenuation correction method for PET data reconstruction is proposed. Analyses show improvements in the quantitative accuracy of the reconstructed PET images compared to other state-of-the-art AC methods for simultaneous PET/MR scanners. Further evaluation is needed with radiopharmaceuticals other than FDG, and in larger cohorts of participants.
Collapse
Affiliation(s)
- Jakub Baran
- Monash Biomedical Imaging, Monash University, Melbourne, Australia. .,Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszow, Rzeszow, Poland. .,Institute of Nuclear Physics Polish Academy of Science, Krakow, Poland.
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Melbourne, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, Australia
| | | | - Nicholas Ferris
- Monash Biomedical Imaging, Monash University, Melbourne, Australia.,Monash Imaging, Monash Health, Clayton, Australia
| | - Sharna Jamadar
- Monash Biomedical Imaging, Monash University, Melbourne, Australia.,Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Melbourne, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University, Melbourne, Australia
| | - Ben Schmitt
- Siemens Healthcare Pty Ltd, Sydney, Australia
| | - David Faul
- Siemens Healthcare Pty Ltd, New York, USA
| | - Nadim Jon Shah
- Monash Biomedical Imaging, Monash University, Melbourne, Australia.,Institute of Neuroscience and Medicine, Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Marian Cholewa
- Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Australia.,Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Melbourne, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University, Melbourne, Australia
| |
Collapse
|
58
|
Tadesse GF, Geramifar P, Tegaw EM, Ay MR. Techniques for generating attenuation map using cardiac SPECT emission data only: a systematic review. Ann Nucl Med 2018; 33:1-13. [DOI: 10.1007/s12149-018-1311-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
|
59
|
Sousa JM, Appel L, Engström M, Papadimitriou S, Nyholm D, Larsson EM, Ahlström H, Lubberink M. Evaluation of zero-echo-time attenuation correction for integrated PET/MR brain imaging-comparison to head atlas and 68Ge-transmission-based attenuation correction. EJNMMI Phys 2018; 5:20. [PMID: 30345471 PMCID: PMC6196145 DOI: 10.1186/s40658-018-0220-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/05/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND MRI does not offer a direct method to obtain attenuation correction maps as its predecessors (stand-alone PET and PET/CT), and bone visualisation is particularly challenging. Recently, zero-echo-time (ZTE) was suggested for MR-based attenuation correction (AC). The aim of this work was to evaluate ZTE- and atlas-AC by comparison to 68Ge-transmission scan-based AC. Nine patients underwent brain PET/MR and stand-alone PET scanning using the dopamine transporter ligand 11C-PE2I. For each of them, two AC maps were obtained from the MR images: an atlas-based, obtained from T1-weighted LAVA-FLEX imaging with cortical bone inserted using a CT-based atlas, and an AC map generated from proton-density-weighted ZTE images. Stand-alone PET 68Ge-transmission AC map was used as gold standard. PET images were reconstructed using the three AC methods and standardised uptake value (SUV) values for the striatal, limbic and cortical regions, as well as the cerebellum (VOIs) were compared. SUV ratio (SUVR) values normalised for the cerebellum were also assessed. Bias, precision and agreement were calculated; statistical significance was evaluated using Wilcoxon matched-pairs signed-rank test. RESULTS Both ZTE- and atlas-AC showed a similar bias of 6-8% in SUV values across the regions. Correlation coefficients with 68Ge-AC were consistently high for ZTE-AC (r 0.99 for all regions), whereas they were lower for atlas-AC, varying from 0.99 in the striatum to 0.88 in the posterior cortical regions. SUVR showed an overall bias of 2.9 and 0.5% for atlas-AC and ZTE-AC, respectively. Correlations with 68Ge-AC were higher for ZTE-AC, varying from 0.99 in the striatum to 0.96 in the limbic regions, compared to atlas-AC (0.99 striatum to 0.77 posterior cortex). CONCLUSIONS Absolute SUV values showed less variability for ZTE-AC than for atlas-AC when compared to 68Ge-AC, but bias was similar for both methods. This bias is largely caused by higher linear attenuation coefficients in atlas- and ZTE-AC image compared to 68Ge-images. For SUVR, bias was lower when using ZTE-AC than for atlas-AC. ZTE-AC shows to be a more robust technique than atlas-AC in terms of both intra- and inter-patient variability.
Collapse
Affiliation(s)
- João M Sousa
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
- PET Centre, Uppsala University Hospital, 75185, Uppsala, Sweden.
| | - Lieuwe Appel
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | | | - Stergios Papadimitriou
- Department of Neurosciences, Uppsala University, Uppsala, Sweden
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden
| | - Dag Nyholm
- Department of Neurosciences, Uppsala University, Uppsala, Sweden
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
60
|
Bland J, Belzunce MA, Ellis S, McGinnity CJ, Hammers A, Reader AJ. Spatially-Compact MR-Guided Kernel EM for PET Image Reconstruction. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018; 2:470-482. [PMID: 30298139 PMCID: PMC6173308 DOI: 10.1109/trpms.2018.2844559] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Positron emission tomography (PET) is a highly sensitive functional and molecular imaging modality which can measure picomolar concentrations of an injected radionuclide. However, the physical sensitivity of PET is limited, and reducing the injected dose leads to low count data and noisy reconstructed images. A highly effective way of reducing noise is to reparameterise the reconstruction in terms of MR-derived spatial basis functions. Spatial basis functions derived using the kernel method have demonstrated excellent noise reduction properties and maintain shared PET-MR detailed structures. However, as previously shown in the literature, the MR-guided kernel method may lead to excessive smoothing of structures that are only present in the PET data. This work makes two main contributions in order to address this problem: first, we exploit the potential of the MR-guided kernel method to form more spatially-compact basis functions which are able to preserve PET-unique structures, and secondly, we consider reconstruction at the native MR resolution. The former contribution notably improves the recovery of structures which are unique to the PET data. These adaptations of the kernel method were compared to the conventional implementation of the MR-guided kernel method and also to MLEM, in terms of ability to recover PET unique structures for both simulated and real data. The spatially-compact kernel method showed clear visual and quantitative improvements in the reconstruction of the PET unique structures, relative to the conventional kernel method for all sizes of PET unique structures investigated, whilst maintaining to a large extent the impressive noise mitigating and detail preserving properties of the conventional MR-guided kernel method. We therefore conclude that a spatially-compact parameterisation of the MR-guided kernel method, should be the preferred implementation strategy in order to obviate unnecessary losses in PET-unique details.
Collapse
Affiliation(s)
- James Bland
- King's College London, St Thomas' Hospital, London, U.K
| | | | - Sam Ellis
- King's College London, St Thomas' Hospital, London, U.K
| | - Colm J McGinnity
- King's College London & Guy's and St Thomas' PET Centre, St Thomas' Hospital, London, U.K
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, St Thomas' Hospital, London, U.K
| | | |
Collapse
|
61
|
Chen Z, Jamadar SD, Li S, Sforazzini F, Baran J, Ferris N, Shah NJ, Egan GF. From simultaneous to synergistic MR-PET brain imaging: A review of hybrid MR-PET imaging methodologies. Hum Brain Mapp 2018; 39:5126-5144. [PMID: 30076750 DOI: 10.1002/hbm.24314] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Simultaneous Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) scanning is a recent major development in biomedical imaging. The full integration of the PET detector ring and electronics within the MR system has been a technologically challenging design to develop but provides capacity for simultaneous imaging and the potential for new diagnostic and research capability. This article reviews state-of-the-art MR-PET hardware and software, and discusses future developments focusing on neuroimaging methodologies for MR-PET scanning. We particularly focus on the methodologies that lead to an improved synergy between MRI and PET, including optimal data acquisition, PET attenuation and motion correction, and joint image reconstruction and processing methods based on the underlying complementary and mutual information. We further review the current and potential future applications of simultaneous MR-PET in both systems neuroscience and clinical neuroimaging research. We demonstrate a simultaneous data acquisition protocol to highlight new applications of MR-PET neuroimaging research studies.
Collapse
Affiliation(s)
- Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria, Australia
| | - Sharna D Jamadar
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Shenpeng Li
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria, Australia
| | | | - Jakub Baran
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszów, Rzeszów, Poland
| | - Nicholas Ferris
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Imaging, Monash Health, Clayton, Victoria, Australia
| | - Nadim Jon Shah
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum, Jülich, Germany
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
62
|
Gjesteby L, Cong W, Yang Q, Qian C, Wang G. Simultaneous Emission-Transmission Tomography in an MRI Hardware Framework. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018; 2:326-336. [PMID: 29998213 PMCID: PMC6037318 DOI: 10.1109/trpms.2018.2835312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Multi-modality imaging is essential for diagnosis and therapy in challenging cases. A Holy Grail of medical imaging is a hybrid imaging system combining computed tomography (CT), nuclear imaging, and magnetic resonance imaging (MRI) to deliver registered morphological, functional, and cellular/molecular information simultaneously and quantitatively for precision medicine. Recently, a unique imaging approach was demonstrated that combines nuclear imaging with polarized radiotracers and MRI-based spatial encoding. The detection scheme exploits the directional preference of γ-rays emitted from the polarized nuclei, and the result is a concentration image with resolution that can outperform standard nuclear imaging at a sensitivity significantly higher than that of MRI. However, the method does not calculate the attenuation image. Here we propose to obtain MRI-modulated γ-ray data for simultaneous image reconstruction of emission and transmission parameters, which could serve as a stepping stone toward simultaneous CT-SPECT-MRI. This method acquires synchronized datasets to provide insight into morphological features and molecular activities with accurate spatiotemporal registration. We present a complete overview of the system design and the formulation for tomographic reconstruction when the distribution of polarized radiotracers is either global or limited to a region of interest (ROI). Numerical results support the feasibility of our approach and suggest further research topics.
Collapse
Affiliation(s)
- Lars Gjesteby
- Biomedical Imaging Center, Department of Biomedical Engineering at Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Wenxiang Cong
- Biomedical Imaging Center, Department of Biomedical Engineering at Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Qingsong Yang
- Biomedical Imaging Center, Department of Biomedical Engineering at Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Chunqi Qian
- Department of Radiology at Michigan State University, East Lansing, MI, USA
| | - Ge Wang
- Biomedical Imaging Center, Department of Biomedical Engineering at Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
63
|
Abstract
OBJECTIVE The purpose of this article is to provide an update on clinical PET/MRI, including current and developing clinical indications and technical developments. CONCLUSION PET/MRI is evolving rapidly, transitioning from a predominant research focus to exciting clinical practice. Key technical obstacles have been overcome, and further technical advances promise to herald significant advancements in image quality. Further optimization of protocols to address challenges posed by this hybrid modality will ensure the long-term success of PET/MRI.
Collapse
|
64
|
Musafargani S, Ghosh KK, Mishra S, Mahalakshmi P, Padmanabhan P, Gulyás B. PET/MRI: a frontier in era of complementary hybrid imaging. Eur J Hybrid Imaging 2018; 2:12. [PMID: 29998214 PMCID: PMC6015803 DOI: 10.1186/s41824-018-0030-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/14/2018] [Indexed: 12/19/2022] Open
Abstract
With primitive approaches, the diagnosis and therapy were operated at the cellular, molecular, or even at the genetic level. As the diagnostic techniques are more concentrated towards molecular level, multi modal imaging becomes specifically essential. Multi-modal imaging has extensive applications in clinical as well as in pre-clinical studies. Positron Emission Tomography (PET) has flourished in the field of nuclear medicine, which has motivated it to fuse with Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) for PET/CT and PET/MRI respectively. However, the challenges in PET/CT are due to the inability of simultaneous acquisition and reduced soft tissue contrast, which has led to the development of PET/MRI. Also, MRI offers the better soft tissue contrast over CT. Hence, fusion of PET and MRI results in combining structural information with functional image from PET. Yet, it has many technical challenges due to the interference between the modalities. Also, it must be resolved with various approaches for addressing the shortcomings of each system and improvise on the image quantification system. This review elaborates on the various challenges in the present PET/MRI system and the future directions of the hybrid modality. Also, the different data acquisition and analysis techniques of PET/MRI system are discussed with enhanced details on the software tools.
Collapse
Affiliation(s)
- Sikkandhar Musafargani
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921 Singapore
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921 Singapore
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921 Singapore
| | | | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921 Singapore
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921 Singapore
| |
Collapse
|
65
|
Reconstruction/segmentation of attenuation map in TOF-PET based on mixture models. Ann Nucl Med 2018; 32:474-484. [PMID: 29931622 DOI: 10.1007/s12149-018-1270-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
Attenuation correction is known as a necessary step in positron emission tomography (PET) system to have accurate and quantitative activity images. Emission-based method is known as a promising approach for attenuation map estimation on TOF-PET scanners. The proposed method in this study imposes additional histogram-based information as a mixture model prior on the emission-based approach using maximum a posteriori (MAP) framework to improve its performance and make such a nearly segmented attenuation map. To eliminate misclassification of histogram modeling, a Median root prior is incorporated on the proposed approach to reduce the noise between neighbor voxels and encourage spatial smoothness in the reconstructed attenuation map. The joint-MAP optimization is carried out as an iterative approach wherein an alteration of the activity and attenuation updates is followed by a mixture decomposition of the attenuation map histogram. Also, the proposed method can segment attenuation map during the reconstruction. The evaluation of the proposed method on the numerical, simulation and real contexts indicate that the presented method has the potential to be used as a stand-alone method or even combined with other methods for attenuation correction on PET/MR systems.
Collapse
|
66
|
Mannheim JG, Schmid AM, Schwenck J, Katiyar P, Herfert K, Pichler BJ, Disselhorst JA. PET/MRI Hybrid Systems. Semin Nucl Med 2018; 48:332-347. [PMID: 29852943 DOI: 10.1053/j.semnuclmed.2018.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decade, the combination of PET and MRI in one system has proven to be highly successful in basic preclinical research, as well as in clinical research. Nowadays, PET/MRI systems are well established in preclinical imaging and are progressing into clinical applications to provide further insights into specific diseases, therapeutic assessments, and biological pathways. Certain challenges in terms of hardware had to be resolved concurrently with the development of new techniques to be able to reach the full potential of both combined techniques. This review provides an overview of these challenges and describes the opportunities that simultaneous PET/MRI systems can exploit in comparison with stand-alone or other combined hybrid systems. New approaches were developed for simultaneous PET/MRI systems to correct for attenuation of 511 keV photons because MRI does not provide direct information on gamma photon attenuation properties. Furthermore, new algorithms to correct for motion were developed, because MRI can accurately detect motion with high temporal resolution. The additional information gained by the MRI can be employed to correct for partial volume effects as well. The development of new detector designs in combination with fast-decaying scintillator crystal materials enabled time-of-flight detection and incorporation in the reconstruction algorithms. Furthermore, this review lists the currently commercially available systems both for preclinical and clinical imaging and provides an overview of applications in both fields. In this regard, special emphasis has been placed on data analysis and the potential for both modalities to evolve with advanced image analysis tools, such as cluster analysis and machine learning.
Collapse
Affiliation(s)
- Julia G Mannheim
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andreas M Schmid
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Schwenck
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany; Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Prateek Katiyar
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| | - Jonathan A Disselhorst
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
67
|
Hwang D, Kim KY, Kang SK, Seo S, Paeng JC, Lee DS, Lee JS. Improving the Accuracy of Simultaneously Reconstructed Activity and Attenuation Maps Using Deep Learning. J Nucl Med 2018; 59:1624-1629. [DOI: 10.2967/jnumed.117.202317] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/25/2018] [Indexed: 12/25/2022] Open
|
68
|
Ahn S, Cheng L, Shanbhag DD, Qian H, Kaushik SS, Jansen FP, Wiesinger F. Joint estimation of activity and attenuation for PET using pragmatic MR-based prior: application to clinical TOF PET/MR whole-body data for FDG and non-FDG tracers. Phys Med Biol 2018; 63:045006. [PMID: 29345242 DOI: 10.1088/1361-6560/aaa8a6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accurate and robust attenuation correction remains challenging in hybrid PET/MR particularly for torsos because it is difficult to segment bones, lungs and internal air in MR images. Additionally, MR suffers from susceptibility artifacts when a metallic implant is present. Recently, joint estimation (JE) of activity and attenuation based on PET data, also known as maximum likelihood reconstruction of activity and attenuation, has gained considerable interest because of (1) its promise to address the challenges in MR-based attenuation correction (MRAC), and (2) recent advances in time-of-flight (TOF) technology, which is known to be the key to the success of JE. In this paper, we implement a JE algorithm using an MR-based prior and evaluate the algorithm using whole-body PET/MR patient data, for both FDG and non-FDG tracers, acquired from GE SIGNA PET/MR scanners with TOF capability. The weight of the MR-based prior is spatially modulated, based on MR signal strength, to control the balance between MRAC and JE. Large prior weights are used in strong MR signal regions such as soft tissue and fat (i.e. MR tissue classification with a high degree of certainty) and small weights are used in low MR signal regions (i.e. MR tissue classification with a low degree of certainty). The MR-based prior is pragmatic in the sense that it is convex and does not require training or population statistics while exploiting synergies between MRAC and JE. We demonstrate the JE algorithm has the potential to improve the robustness and accuracy of MRAC by recovering the attenuation of metallic implants, internal air and some bones and by better delineating lung boundaries, not only for FDG but also for more specific non-FDG tracers such as 68Ga-DOTATOC and 18F-Fluoride.
Collapse
Affiliation(s)
- Sangtae Ahn
- GE Global Research, Niskayuna, NY, United States of America
- Author to whom any correspondence should be addressed
| | - Lishui Cheng
- GE Global Research, Niskayuna, NY, United States of America
| | | | - Hua Qian
- GE Global Research, Niskayuna, NY, United States of America
| | | | | | | |
Collapse
|
69
|
Bailey DL, Pichler BJ, Gückel B, Antoch G, Barthel H, Bhujwalla ZM, Biskup S, Biswal S, Bitzer M, Boellaard R, Braren RF, Brendle C, Brindle K, Chiti A, la Fougère C, Gillies R, Goh V, Goyen M, Hacker M, Heukamp L, Knudsen GM, Krackhardt AM, Law I, Morris JC, Nikolaou K, Nuyts J, Ordonez AA, Pantel K, Quick HH, Riklund K, Sabri O, Sattler B, Troost EGC, Zaiss M, Zender L, Beyer T. Combined PET/MRI: Global Warming-Summary Report of the 6th International Workshop on PET/MRI, March 27-29, 2017, Tübingen, Germany. Mol Imaging Biol 2018; 20:4-20. [PMID: 28971346 PMCID: PMC5775351 DOI: 10.1007/s11307-017-1123-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The 6th annual meeting to address key issues in positron emission tomography (PET)/magnetic resonance imaging (MRI) was held again in Tübingen, Germany, from March 27 to 29, 2017. Over three days of invited plenary lectures, round table discussions and dialogue board deliberations, participants critically assessed the current state of PET/MRI, both clinically and as a research tool, and attempted to chart future directions. The meeting addressed the use of PET/MRI and workflows in oncology, neurosciences, infection, inflammation and chronic pain syndromes, as well as deeper discussions about how best to characterise the tumour microenvironment, optimise the complementary information available from PET and MRI, and how advanced data mining and bioinformatics, as well as information from liquid biomarkers (circulating tumour cells and nucleic acids) and pathology, can be integrated to give a more complete characterisation of disease phenotype. Some issues that have dominated previous meetings, such as the accuracy of MR-based attenuation correction (AC) of the PET scan, were finally put to rest as having been adequately addressed for the majority of clinical situations. Likewise, the ability to standardise PET systems for use in multicentre trials was confirmed, thus removing a perceived barrier to larger clinical imaging trials. The meeting openly questioned whether PET/MRI should, in all cases, be used as a whole-body imaging modality or whether in many circumstances it would best be employed to give an in-depth study of previously identified disease in a single organ or region. The meeting concluded that there is still much work to be done in the integration of data from different fields and in developing a common language for all stakeholders involved. In addition, the participants advocated joint training and education for individuals who engage in routine PET/MRI. It was agreed that PET/MRI can enhance our understanding of normal and disrupted biology, and we are in a position to describe the in vivo nature of disease processes, metabolism, evolution of cancer and the monitoring of response to pharmacological interventions and therapies. As such, PET/MRI is a key to advancing medicine and patient care.
Collapse
Affiliation(s)
- D L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, and Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - B J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls-Universität, Tübingen, Germany
| | - B Gückel
- Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - G Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225, Dusseldorf, Germany
| | - H Barthel
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Z M Bhujwalla
- Division of Cancer Imaging Research, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - S Biskup
- Praxis für Humangenetik Tübingen, Paul-Ehrlich-Str. 23, 72076, Tübingen, Germany
| | - S Biswal
- Molecular Imaging Program at Stanford (MIPS) and Bio-X, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - M Bitzer
- Department of Internal Medicine I, Eberhard-Karls University, Tübingen, Germany
| | - R Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R F Braren
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - C Brendle
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - K Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - A Chiti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Nuclear Medicine, Humanitas Research Hospital, Milan, Italy
| | - C la Fougère
- Department of Radiology, Nuclear Medicine and Clinical Molecular Imaging, Eberhard-Karls-Universität, Tübingen, Germany
| | - R Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33621, USA
| | - V Goh
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Radiology, Guy's & St Thomas' Hospitals London, London, UK
| | - M Goyen
- GE Healthcare GmbH, Beethovenstrasse 239, Solingen, Germany
| | - M Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - G M Knudsen
- Neurobiology Research Unit, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A M Krackhardt
- III. Medical Department, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - I Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - J C Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | - K Nikolaou
- Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - J Nuyts
- Nuclear Medicine & Molecular Imaging, KU Leuven, Leuven, Belgium
| | - A A Ordonez
- Department of Pediatrics, Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - K Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - H H Quick
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - K Riklund
- Department of Radiation Sciences, Umea University, Umea, Sweden
| | - O Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - B Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - E G C Troost
- OncoRay-National Center for Radiation Research in Oncology, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - M Zaiss
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - L Zender
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Beyer
- QIMP Group, Center for Medical Physics and Biomedical Engineering General Hospital Vienna, Medical University Vienna, 4L, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
70
|
Abstract
Combined PET/MR imaging scanners capable of acquiring simultaneously the complementary information provided by the 2 imaging modalities are now available for human use. After addressing the hardware challenges for integrating the 2 imaging modalities, most of the efforts in the field have focused on developing MR-based attenuation correction methods for neurologic and whole-body applications, implementing approaches for improving one modality by using the data provided by the other and exploring research and clinical applications that could benefit from the synergistic use of the multimodal data.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Room 2.301, Charlestown, MA 02129, USA.
| |
Collapse
|
71
|
Beijst C, Kunnen B, Lam MGEH, de Jong HWAM. Technical Advances in Image Guidance of Radionuclide Therapy. J Nucl Med Technol 2017; 45:272-279. [PMID: 29042472 DOI: 10.2967/jnmt.117.190991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/05/2017] [Indexed: 11/16/2022] Open
Abstract
Internal radiation therapy with radionuclides (i.e., radionuclide therapy) owes its success to the many advantages over other, more conventional, treatment options. One distinct advantage of radionuclide therapies is the potential to use (part of) the emitted radiation for imaging of the radionuclide distribution. The combination of diagnostic and therapeutic properties in a set of matched radiopharmaceuticals (sometimes combined in a single radiopharmaceutical) is often referred to as theranostics and allows accurate diagnostic imaging before therapy. The use of imaging benefits treatment planning, dosimetry, and assessment of treatment response. This paper focuses on a selection of advances in imaging technology relevant for image guidance of radionuclide therapy. This involves developments in nuclear imaging modalities, as well as other anatomic and functional imaging modalities. The quality and quantitative accuracy of images used for guidance of radionuclide therapy is continuously being improved, which in turn may improve the therapeutic outcome and efficiency of radionuclide therapies.
Collapse
Affiliation(s)
- Casper Beijst
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and .,Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | - Britt Kunnen
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and.,Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | - Marnix G E H Lam
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
| | - Hugo W A M de Jong
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
| |
Collapse
|
72
|
Salvo K, Defrise M. sMLACF: a generalized expectation-maximization algorithm for TOF-PET to reconstruct the activity and attenuation simultaneously. ACTA ACUST UNITED AC 2017; 62:8283-8313. [DOI: 10.1088/1361-6560/aa82ea] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
73
|
Hemmati H, Kamali-Asl A, Ay M, Ghafarian P. Compton scatter tomography in TOF-PET. ACTA ACUST UNITED AC 2017; 62:7641-7658. [DOI: 10.1088/1361-6560/aa82ab] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
74
|
Berker Y, Karp JS, Schulz V. Numerical algorithms for scatter-to-attenuation reconstruction in PET: empirical comparison of convergence, acceleration, and the effect of subsets. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2017; 1:426-434. [PMID: 29527588 PMCID: PMC5842955 DOI: 10.1109/tns.2017.2713521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The use of scattered coincidences for attenuation correction of positron emission tomography (PET) data has recently been proposed. For practical applications, convergence speeds require further improvement, yet there exists a trade-off between convergence speed and the risk of non-convergence. In this respect, a maximum-likelihood gradient-ascent (MLGA) algorithm and a two-branch back-projection (2BP), which was previously proposed, were evaluated. METHODS MLGA was combined with the Armijo step size rule; and accelerated using conjugate gradients, Nesterov's momentum method, and data subsets of different sizes. In 2BP, we varied the subset size, an important determinant of convergence speed and computational burden. We used three sets of simulation data to evaluate the impact of a spatial scale factor. RESULTS AND DISCUSSION The Armijo step size allowed 10-fold increased step sizes compared to native MLGA. Conjugate gradients and Nesterov momentum lead to slightly faster, yet non-uniform convergence; improvements were mostly confined to later iterations, possibly due to the non-linearity of the problem. MLGA with data subsets achieved faster, uniform, and predictable convergence, with a speed-up factor equivalent to the number of subsets and no increase in computational burden. By contrast, 2BP computational burden increased linearly with the number of subsets due to repeated evaluation of the objective function, and convergence was limited to the case of many (and therefore small) subsets, which resulted in high computational burden. CONCLUSION Possibilities of improving 2BP appear limited. While general-purpose acceleration methods appear insufficient for MLGA, results suggest that data subsets are a promising way of improving MLGA performance.
Collapse
Affiliation(s)
- Yannick Berker
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA, and the Department of Physics of Molecular Imaging Systems, RWTH Aachen University, 52074 Aachen, Germany
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
75
|
Lindemann ME, Oehmigen M, Blumhagen JO, Gratz M, Quick HH. MR-based truncation and attenuation correction in integrated PET/MR hybrid imaging using HUGE with continuous table motion. Med Phys 2017; 44:4559-4572. [DOI: 10.1002/mp.12449] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/08/2017] [Accepted: 06/27/2017] [Indexed: 01/19/2023] Open
Affiliation(s)
- Maike E. Lindemann
- High Field and Hybrid MR Imaging; University Hospital Essen; University Duisburg-Essen; Essen Germany
| | - Mark Oehmigen
- High Field and Hybrid MR Imaging; University Hospital Essen; University Duisburg-Essen; Essen Germany
| | | | - Marcel Gratz
- High Field and Hybrid MR Imaging; University Hospital Essen; University Duisburg-Essen; Essen Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
| | - Harald H. Quick
- High Field and Hybrid MR Imaging; University Hospital Essen; University Duisburg-Essen; Essen Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
| |
Collapse
|
76
|
Aide N, Lasnon C, Veit-Haibach P, Sera T, Sattler B, Boellaard R. EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging 2017; 44:17-31. [PMID: 28623376 PMCID: PMC5541084 DOI: 10.1007/s00259-017-3740-2] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 01/18/2023]
Abstract
Quantitative positron emission tomography/computed tomography (PET/CT) can be used as diagnostic or prognostic tools (i.e. single measurement) or for therapy monitoring (i.e. longitudinal studies) in multicentre studies. Use of quantitative parameters, such as standardized uptake values (SUVs), metabolic active tumor volumes (MATVs) or total lesion glycolysis (TLG), in a multicenter setting requires that these parameters be comparable among patients and sites, regardless of the PET/CT system used. This review describes the motivations and the methodologies for quantitative PET/CT performance harmonization with emphasis on the EANM Research Ltd. (EARL) Fluorodeoxyglucose (FDG) PET/CT accreditation program, one of the international harmonization programs aiming at using FDG PET as a quantitative imaging biomarker. In addition, future accreditation initiatives will be discussed. The validation of the EARL accreditation program to harmonize SUVs and MATVs is described in a wide range of tumor types, with focus on therapy assessment using either the European Organization for Research and Treatment of Cancer (EORTC) criteria or PET Evaluation Response Criteria in Solid Tumors (PERCIST), as well as liver-based scales such as the Deauville score. Finally, also presented in this paper are the results from a survey across 51 EARL-accredited centers reporting how the program was implemented and its impact on daily routine and in clinical trials, harmonization of new metrics such as MATV and heterogeneity features.
Collapse
Affiliation(s)
- Nicolas Aide
- Nuclear Medicine Department, University Hospital, Caen, France.
- Inserm U1086 ANTICIPE, Caen University, Caen, France.
| | - Charline Lasnon
- Inserm U1086 ANTICIPE, Caen University, Caen, France
- Nuclear Medicine Department, François Baclesse Cancer Centre, Caen, France
| | - Patrick Veit-Haibach
- Department of Nuclear Medicine and Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
- Joint Department Medical Imaging, University Health Network, University of Toronto, Toronto, Canada
| | - Terez Sera
- Nuclear Medicine Department, University of Szeged, Szeged, Hungary
| | - Bernhard Sattler
- Department of Nuclear Medicine, University Hospital of Leipzig, 04103, Leipzig, Germany
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
77
|
Di ZW, Chen S, Hong YP, Jacobsen C, Leyffer S, Wild SM. Joint reconstruction of x-ray fluorescence and transmission tomography. OPTICS EXPRESS 2017; 25:13107-13124. [PMID: 28788848 PMCID: PMC5499635 DOI: 10.1364/oe.25.013107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 05/26/2023]
Abstract
X-ray fluorescence tomography is based on the detection of fluorescence x-ray photons produced following x-ray absorption while a specimen is rotated; it provides information on the 3D distribution of selected elements within a sample. One limitation in the quality of sample recovery is the separation of elemental signals due to the finite energy resolution of the detector. Another limitation is the effect of self-absorption, which can lead to inaccurate results with dense samples. To recover a higher quality elemental map, we combine x-ray fluorescence detection with a second data modality: conventional x-ray transmission tomography using absorption. By using these combined signals in a nonlinear optimization-based approach, we demonstrate the benefit of our algorithm on real experimental data and obtain an improved quantitative reconstruction of the spatial distribution of dominant elements in the sample. Compared with single-modality inversion based on x-ray fluorescence alone, this joint inversion approach reduces ill-posedness and should result in improved elemental quantification and better correction of self-absorption.
Collapse
Affiliation(s)
- Zichao Wendy Di
- Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439,
USA
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439,
USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439,
USA
| | - Young Pyo Hong
- Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208,
USA
| | - Chris Jacobsen
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439,
USA
- Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208,
USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208,
USA
| | - Sven Leyffer
- Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439,
USA
| | - Stefan M. Wild
- Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439,
USA
| |
Collapse
|
78
|
Bousse A, Manber R, Holman BF, Atkinson D, Arridge S, Ourselin S, Hutton BF, Thielemans K. Evaluation of a direct motion estimation/correction method in respiratory-gated PET/MRI with motion-adjusted attenuation. Med Phys 2017; 44:2379-2390. [DOI: 10.1002/mp.12253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/01/2017] [Accepted: 03/21/2017] [Indexed: 11/10/2022] Open
Affiliation(s)
- Alexandre Bousse
- Institute of Nuclear Medicine; University College London; London NW1 2BU UK
| | - Richard Manber
- Institute of Nuclear Medicine; University College London; London NW1 2BU UK
| | - Beverley F. Holman
- Institute of Nuclear Medicine; University College London; London NW1 2BU UK
| | - David Atkinson
- Centre for Medical Imaging; University College London; London NW1 2PG UK
| | - Simon Arridge
- Centre for Medical Image Computing; University College London; London WC1E 7JE UK
| | - Sébastien Ourselin
- Centre for Medical Image Computing; University College London; London WC1E 7JE UK
| | - Brian F. Hutton
- Institute of Nuclear Medicine; University College London; London NW1 2BU UK
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2522 Australia
| | - Kris Thielemans
- Institute of Nuclear Medicine; University College London; London NW1 2BU UK
| |
Collapse
|
79
|
Li Y, Matej S, Karp JS, Metzler SD. Model-Based Normalization of a Fractional-Crystal Collimator for Small-Animal PET Imaging. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2017; 1:262-267. [DOI: 10.1109/trpms.2017.2682562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
80
|
Li Q, Li H, Kim K, El Fakhri G. Joint estimation of activity image and attenuation sinogram using time-of-flight positron emission tomography data consistency condition filtering. J Med Imaging (Bellingham) 2017; 4:023502. [PMID: 28466027 DOI: 10.1117/1.jmi.4.2.023502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 04/05/2017] [Indexed: 11/14/2022] Open
Abstract
Attenuation correction is essential for quantitative reliability of positron emission tomography (PET) imaging. In time-of-flight (TOF) PET, attenuation sinogram can be determined up to a global constant from noiseless emission data due to the TOF PET data consistency condition. This provides the theoretical basis for jointly estimating both activity image and attenuation sinogram/image directly from TOF PET emission data. Multiple joint estimation methods, such as maximum likelihood activity and attenuation (MLAA) and maximum likelihood attenuation correction factor (MLACF), have already been shown that can produce improved reconstruction results in TOF cases. However, due to the nonconcavity of the joint log-likelihood function and Poisson noise presented in PET data, the iterative method still requires proper initialization and well-designed regularization to prevent convergence to local maxima. To address this issue, we propose a joint estimation of activity image and attenuation sinogram using the TOF PET data consistency condition as an attenuation sinogram filter, and then evaluate the performance of the proposed method using computer simulations.
Collapse
Affiliation(s)
- Quanzheng Li
- Harvard Medical School, Massachusetts General Hospital, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, Massachusetts, United States
| | - Hao Li
- Harvard Medical School, Massachusetts General Hospital, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, Massachusetts, United States.,Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Kyungsang Kim
- Harvard Medical School, Massachusetts General Hospital, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, Massachusetts, United States
| | - Georges El Fakhri
- Harvard Medical School, Massachusetts General Hospital, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, Massachusetts, United States
| |
Collapse
|
81
|
Systems, Physics, and Instrumentation of PET/MRI for Cardiovascular Studies. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9414-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
82
|
Rausch I, Quick HH, Cal-Gonzalez J, Sattler B, Boellaard R, Beyer T. Technical and instrumentational foundations of PET/MRI. Eur J Radiol 2017; 94:A3-A13. [PMID: 28431784 DOI: 10.1016/j.ejrad.2017.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/07/2017] [Indexed: 12/23/2022]
Abstract
This paper highlights the origins of combined positron emission tomography (PET) and magnetic resonance imaging (MRI) whole-body systems that were first introduced for applications in humans in 2010. This text first covers basic aspects of each imaging modality before describing the technical and methodological challenges of combining PET and MRI within a single system. After several years of development, combined and even fully-integrated PET/MRI systems have become available and made their way into the clinic. This multi-modality imaging system lends itself to the advanced exploration of diseases to support personalized medicine in a long run. To that extent, this paper provides an introduction to PET/MRI methodology and important technical solutions.
Collapse
Affiliation(s)
- Ivo Rausch
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria.
| | - Harald H Quick
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany; Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Jacobo Cal-Gonzalez
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, Academisch Ziekenhuis Groningen, Groningen, The Netherlands
| | - Thomas Beyer
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| |
Collapse
|
83
|
Mérida I, Reilhac A, Redouté J, Heckemann RA, Costes N, Hammers A. Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR. Phys Med Biol 2017; 62:2834-2858. [PMID: 28181479 DOI: 10.1088/1361-6560/aa5f6c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
84
|
Heußer T, Rank CM, Berker Y, Freitag MT, Kachelrieß M. MLAA-based attenuation correction of flexible hardware components in hybrid PET/MR imaging. EJNMMI Phys 2017; 4:12. [PMID: 28251575 PMCID: PMC5332322 DOI: 10.1186/s40658-017-0177-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/01/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Accurate PET quantification demands attenuation correction (AC) for both patient and hardware attenuation of the 511 keV annihilation photons. In hybrid PET/MR imaging, AC for stationary hardware components such as patient table and MR head coil is straightforward, employing CT-derived attenuation templates. AC for flexible hardware components such as MR-safe headphones and MR radiofrequency (RF) surface coils is more challenging. Registration-based approaches, aligning CT-based attenuation templates with the current patient position, have been proposed but are not used in clinical routine. Ignoring headphone or RF coil attenuation has been shown to result in regional activity underestimation values of up to 18%. We propose to employ the maximum-likelihood reconstruction of attenuation and activity (MLAA) algorithm to estimate the attenuation of flexible hardware components. Starting with an initial attenuation map not including flexible hardware components, the attenuation update of MLAA is applied outside the body outline only, allowing to estimate hardware attenuation without modifying the patient attenuation map. Appropriate prior expectations on the attenuation coefficients are incorporated into MLAA. The proposed method is investigated for non-TOF PET phantom and 18F-FDG patient data acquired with a clinical PET/MR device, using headphones or RF surface coils as flexible hardware components. RESULTS Although MLAA cannot recover the exact physical shape of the hardware attenuation maps, the overall attenuation of the hardware components is accurately estimated. Therefore, the proposed algorithm significantly improves PET quantification. Using the phantom data, local activity underestimation when neglecting hardware attenuation was reduced from up to 25% to less than 3% under- or overestimation as compared to reference scans without hardware present or to CT-derived AC. For the patient data, we found an average activity underestimation of 7.9% evaluated in the full brain and of 6.1% for the abdominal region comparing the uncorrected case with MLAA. CONCLUSIONS MLAA is able to provide accurate estimations of the attenuation of flexible hardware components and can therefore be used to significantly improve PET quantification. The proposed approach can be readily incorporated into clinical workflow.
Collapse
Affiliation(s)
- Thorsten Heußer
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
| | - Christopher M Rank
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Yannick Berker
- Department of Radiology, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, 19104, PA, USA.,Physics of Molecular Imaging Systems, RWTH Aachen University, Pauwelsstraße 19, Aachen, 52074, Germany
| | - Martin T Freitag
- Department of Radiology, German Cancer Research Center (DKFZ), Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Marc Kachelrieß
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| |
Collapse
|
85
|
Bal H, Panin VY, Platsch G, Defrise M, Hayden C, Hutton C, Serrano B, Paulmier B, Casey ME. Evaluation of MLACF based calculated attenuation brain PET imaging for FDG patient studies. Phys Med Biol 2017; 62:2542-2558. [DOI: 10.1088/1361-6560/aa5e99] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
86
|
Kalantari F, Wang J. Attenuation correction in 4D-PET using a single-phase attenuation map and rigidity-adaptive deformable registration. Med Phys 2017; 44:522-532. [PMID: 27987223 DOI: 10.1002/mp.12063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Four-dimensional positron emission tomography (4D-PET) imaging is a potential solution to the respiratory motion effect in the thoracic region. Computed tomography (CT)-based attenuation correction (AC) is an essential step toward quantitative imaging for PET. However, due to the temporal difference between 4D-PET and a single attenuation map from CT, typically available in routine clinical scanning, motion artifacts are observed in the attenuation-corrected PET images, leading to errors in tumor shape and uptake. We introduced a practical method to align single-phase CT with all other 4D-PET phases for AC. METHODS A penalized non-rigid Demons registration between individual 4D-PET frames without AC provides the motion vectors to be used for warping single-phase attenuation map. The non-rigid Demons registration was used to derive deformation vector fields (DVFs) between PET matched with the CT phase and other 4D-PET images. While attenuated PET images provide useful data for organ borders such as those of the lung and the liver, tumors cannot be distinguished from the background due to loss of contrast. To preserve the tumor shape in different phases, an ROI-covering tumor was excluded from nonrigid transformation. Instead the mean DVF of the central region of the tumor was assigned to all voxels in the ROI. This process mimics a rigid transformation of the tumor along with a nonrigid transformation of other organs. A 4D-XCAT phantom with spherical lung tumors, with diameters ranging from 10 to 40 mm, was used to evaluate the algorithm. The performance of the proposed hybrid method for attenuation map estimation was compared to (a) the Demons nonrigid registration only and (b) a single attenuation map based on quantitative parameters in individual PET frames. RESULTS Motion-related artifacts were significantly reduced in the attenuation-corrected 4D-PET images. When a single attenuation map was used for all individual PET frames, the normalized root-mean-square error (NRMSE) values in tumor region were 49.3% (STD: 8.3%), 50.5% (STD: 9.3%), 51.8% (STD: 10.8%) and 51.5% (STD: 12.1%) for 10-mm, 20-mm, 30-mm, and 40-mm tumors, respectively. These errors were reduced to 11.9% (STD: 2.9%), 13.6% (STD: 3.9%), 13.8% (STD: 4.8%), and 16.7% (STD: 9.3%) by our proposed method for deforming the attenuation map. The relative errors in total lesion glycolysis (TLG) values were -0.25% (STD: 2.87%) and 3.19% (STD: 2.35%) for 30-mm and 40-mm tumors, respectively, in proposed method. The corresponding values for Demons method were 25.22% (STD: 14.79%) and 18.42% (STD: 7.06%). Our proposed hybrid method outperforms the Demons method especially for larger tumors. For tumors smaller than 20 mm, nonrigid transformation could also provide quantitative results. CONCLUSION Although non-AC 4D-PET frames include insignificant anatomical information, they are still useful to estimate the DVFs to align the attenuation map for accurate AC. The proposed hybrid method can recover the AC-related artifacts and provide quantitative AC-PET images.
Collapse
Affiliation(s)
- Faraz Kalantari
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, 75235-8808, USA
| | - Jing Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, 75235-8808, USA
| |
Collapse
|
87
|
Fuin N, Pedemonte S, Catalano OA, Izquierdo-Garcia D, Soricelli A, Salvatore M, Heberlein K, Hooker JM, Van Leemput K, Catana C. PET/MRI in the Presence of Metal Implants: Completion of the Attenuation Map from PET Emission Data. J Nucl Med 2017; 58:840-845. [PMID: 28126884 DOI: 10.2967/jnumed.116.183343] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/26/2016] [Indexed: 12/27/2022] Open
Abstract
We present a novel technique for accurate whole-body attenuation correction in the presence of metallic endoprosthesis, on integrated non-time-of-flight (non-TOF) PET/MRI scanners. The proposed implant PET-based attenuation map completion (IPAC) method performs a joint reconstruction of radioactivity and attenuation from the emission data to determine the position, shape, and linear attenuation coefficient (LAC) of metallic implants. Methods: The initial estimate of the attenuation map was obtained using the MR Dixon method currently available on the Siemens Biograph mMR scanner. The attenuation coefficients in the area of the MR image subjected to metal susceptibility artifacts are then reconstructed from the PET emission data using the IPAC algorithm. The method was tested on 11 subjects presenting 13 different metallic implants, who underwent CT and PET/MR scans. Relative mean LACs and Dice similarity coefficients were calculated to determine the accuracy of the reconstructed attenuation values and the shape of the metal implant, respectively. The reconstructed PET images were compared with those obtained using the reference CT-based approach and the Dixon-based method. Absolute relative change (aRC) images were generated in each case, and voxel-based analyses were performed. Results: The error in implant LAC estimation, using the proposed IPAC algorithm, was 15.7% ± 7.8%, which was significantly smaller than the Dixon- (100%) and CT- (39%) derived values. A mean Dice similarity coefficient of 73% ± 9% was obtained when comparing the IPAC- with the CT-derived implant shape. The voxel-based analysis of the reconstructed PET images revealed quantification errors (aRC) of 13.2% ± 22.1% for the IPAC- with respect to CT-corrected images. The Dixon-based method performed substantially worse, with a mean aRC of 23.1% ± 38.4%. Conclusion: We have presented a non-TOF emission-based approach for estimating the attenuation map in the presence of metallic implants, to be used for whole-body attenuation correction in integrated PET/MR scanners. The Graphics Processing Unit implementation of the algorithm will be included in the open-source reconstruction toolbox Occiput.io.
Collapse
Affiliation(s)
- Niccolo Fuin
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Stefano Pedemonte
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Onofrio A Catalano
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - David Izquierdo-Garcia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Andrea Soricelli
- SDN-Istituto di Ricerca Diagnostica e Nucleare, IRCCS, Naples, Italy.,University of Naples Parthenope, Department of Motor Sciences and Healthiness, Naples, Italy
| | - Marco Salvatore
- SDN-Istituto di Ricerca Diagnostica e Nucleare, IRCCS, Naples, Italy
| | - Keith Heberlein
- Siemens Medical Solutions USA, MR RD Collaborations, Charlestown, Massachusetts; and
| | - Jacob M Hooker
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Koen Van Leemput
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Ciprian Catana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
88
|
Ter Voert EEGW, Veit-Haibach P, Ahn S, Wiesinger F, Khalighi MM, Levin CS, Iagaru AH, Zaharchuk G, Huellner M, Delso G. Clinical evaluation of TOF versus non-TOF on PET artifacts in simultaneous PET/MR: a dual centre experience. Eur J Nucl Med Mol Imaging 2017; 44:1223-1233. [PMID: 28124091 DOI: 10.1007/s00259-017-3619-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Our objective was to determine clinically the value of time-of-flight (TOF) information in reducing PET artifacts and improving PET image quality and accuracy in simultaneous TOF PET/MR scanning. METHODS A total 65 patients who underwent a comparative scan in a simultaneous TOF PET/MR scanner were included. TOF and non-TOF PET images were reconstructed, clinically examined, compared and scored. PET imaging artifacts were categorized as large or small implant-related artifacts, as dental implant-related artifacts, and as implant-unrelated artifacts. Differences in image quality, especially those related to (implant) artifacts, were assessed using a scale ranging from 0 (no artifact) to 4 (severe artifact). RESULTS A total of 87 image artifacts were found and evaluated. Four patients had large and eight patients small implant-related artifacts, 27 patients had dental implants/fillings, and 48 patients had implant-unrelated artifacts. The average score was 1.14 ± 0.82 for non-TOF PET images and 0.53 ± 0.66 for TOF images (p < 0.01) indicating that artifacts were less noticeable when TOF information was included. CONCLUSION Our study indicates that PET image artifacts are significantly mitigated with integration of TOF information in simultaneous PET/MR. The impact is predominantly seen in patients with significant artifacts due to metal implants.
Collapse
Affiliation(s)
- Edwin E G W Ter Voert
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| | - Patrick Veit-Haibach
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | - Craig S Levin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Andrei H Iagaru
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, CA, USA
| | - Greg Zaharchuk
- Department of Radiology, Neuroradiology, Stanford University, Stanford, CA, USA
| | - Martin Huellner
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
89
|
Abstract
PET/MR is a promising multimodality imaging approach. Attenuation is by far the largest correction required for quantitative PET imaging. MR-based attenuation correction have been extensively pursued, especially for brain imaging, in the past several years. In this article, we review atlas and direct imaging MR-based PET attenuation correction methods. The technical principles behind these methods are detailed and the advantages and disadvantages of these methods are discussed.
Collapse
Affiliation(s)
- Yasheng Chen
- Department of Neurology, BJC Institute of Health - WUSM 09205, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 510 South Kingshighway, WPAV CCIR, CB 8131, St Louis, MO 63110, USA.
| |
Collapse
|
90
|
Svirydenka H, Delso G, De Galiza Barbosa F, Huellner M, Davison H, Fanti S, Veit-Haibach P, Ter Voert EEGW. The Effect of Susceptibility Artifacts Related to Metallic Implants on Adjacent-Lesion Assessment in Simultaneous TOF PET/MR. J Nucl Med 2017; 58:1167-1173. [PMID: 28062597 DOI: 10.2967/jnumed.116.180802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/30/2016] [Indexed: 12/30/2022] Open
Abstract
Metalic implants may affect attenuation correction (AC) in PET/MR imaging. The purpose of this study was to evaluate the effect of susceptibility artifacts related to metallic implants on adjacent metabolically active lesions in clinical simultaneous PET/MR scanning for both time-of-flight (TOF) and non-TOF reconstructed PET images. Methods: We included 27 patients without implants but with confirmed 18F-FDG-avid lesions adjacent to common implant locations. In all patients, a clinically indicated whole-body 18F-FDG PET/MR scan was acquired. Baseline non-TOF and TOF PET images were reconstructed. Reconstruction was repeated after the introduction of artificial signal voids in the AC map to simulate metallic implants in standard anatomic areas. All reconstructed images were qualitatively and quantitatively assessed and compared with the baseline images. Results: In total, 51 lesions were assessed. In 40 and 50 of these cases (non-TOF and TOF, respectively), the detectability of the lesions did not change; in 9 and 1 cases, the detectability changed; and in 2 non-TOF cases, the lesions were no longer visible after the introduction of metallic artifacts. The inclusion of TOF information significantly reduced artifacts due to simulated implants in the femoral head, sternum, and spine (P = 0.01, 0.01, and 0.03, respectively). It also improved image quality in these locations (P = 0.02, 0.01, and 0.01, respectively). The mean percentage error was -3.5% for TOF and -4.8% for non-TOF reconstructions, meaning that the inclusion of TOF information reduced the percentage error in SUVmax by 28.5% (P < 0.01). Conclusion: Qualitatively, there was a significant reduction of artifacts in the femoral head, sternum, and spine. There was also a significant qualitative improvement in image quality in these locations. Furthermore, our study indicated that simulated susceptibility artifacts related to metallic implants have a significant effect on small, moderately 18F-FDG-avid lesions near the implant site that possibly may go unnoticed without TOF information. On larger, highly 18F-FDG-avid lesions, the metallic implants had only a limited effect. The largest significant quantitative difference was found in artifacts of the sternum. There was only a weak inverse correlation between lesions affected by artifacts and distance from the implant.
Collapse
Affiliation(s)
- Hanna Svirydenka
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,Department of Nuclear Medicine, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | | | | | - Martin Huellner
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Helen Davison
- Department of Medical Physics, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Stefano Fanti
- Department of Nuclear Medicine, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Patrick Veit-Haibach
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland; and.,University of Zurich, Zurich, Switzerland
| | - Edwin E G W Ter Voert
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland .,University of Zurich, Zurich, Switzerland
| |
Collapse
|
91
|
Mihlin A, Levin CS. An Expectation Maximization Method for Joint Estimation of Emission Activity Distribution and Photon Attenuation Map in PET. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:214-224. [PMID: 27576244 DOI: 10.1109/tmi.2016.2602339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A maximum likelihood expectation maximization (MLEM) method is proposed for joint estimation of emission activity distribution and photon attenuation map from positron emission tomography (PET) emission data alone. The method is appealing since: (i) it guarantees monotonic likelihood increase to a local extremum, (ii) does not require arbitrary parameters, and (iii) guarantees the positivity of the estimated distributions. Moreover, we propose a discrete Poisson data acquisition model and numerical algorithm for: (i) efficient graphics processing unit (GPU) based formulation, and (ii) a closed form exact solution for the MLEM update equations, which is essential for accurate and robust estimation. Numerical experiments indicate that in the presence of noise, joint EMAA estimation converges to the true emission activity distribution with root mean square errors of 4% and 0.5% respectively in estimation of lung- and myocardial emission activity distributions for a computational XCAT thorax phantom.
Collapse
|
92
|
Ladefoged CN, Law I, Anazodo U, St Lawrence K, Izquierdo-Garcia D, Catana C, Burgos N, Cardoso MJ, Ourselin S, Hutton B, Mérida I, Costes N, Hammers A, Benoit D, Holm S, Juttukonda M, An H, Cabello J, Lukas M, Nekolla S, Ziegler S, Fenchel M, Jakoby B, Casey ME, Benzinger T, Højgaard L, Hansen AE, Andersen FL. A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. Neuroimage 2016; 147:346-359. [PMID: 27988322 PMCID: PMC6818242 DOI: 10.1016/j.neuroimage.2016.12.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/14/2016] [Accepted: 12/05/2016] [Indexed: 01/27/2023] Open
Abstract
AIM To accurately quantify the radioactivity concentration measured by PET, emission data need to be corrected for photon attenuation; however, the MRI signal cannot easily be converted into attenuation values, making attenuation correction (AC) in PET/MRI challenging. In order to further improve the current vendor-implemented MR-AC methods for absolute quantification, a number of prototype methods have been proposed in the literature. These can be categorized into three types: template/atlas-based, segmentation-based, and reconstruction-based. These proposed methods in general demonstrated improvements compared to vendor-implemented AC, and many studies report deviations in PET uptake after AC of only a few percent from a gold standard CT-AC. Using a unified quantitative evaluation with identical metrics, subject cohort, and common CT-based reference, the aims of this study were to evaluate a selection of novel methods proposed in the literature, and identify the ones suitable for clinical use. METHODS In total, 11 AC methods were evaluated: two vendor-implemented (MR-ACDIXON and MR-ACUTE), five based on template/atlas information (MR-ACSEGBONE (Koesters et al., 2016), MR-ACONTARIO (Anazodo et al., 2014), MR-ACBOSTON (Izquierdo-Garcia et al., 2014), MR-ACUCL (Burgos et al., 2014), and MR-ACMAXPROB (Merida et al., 2015)), one based on simultaneous reconstruction of attenuation and emission (MR-ACMLAA (Benoit et al., 2015)), and three based on image-segmentation (MR-ACMUNICH (Cabello et al., 2015), MR-ACCAR-RiDR (Juttukonda et al., 2015), and MR-ACRESOLUTE (Ladefoged et al., 2015)). We selected 359 subjects who were scanned using one of the following radiotracers: [18F]FDG (210), [11C]PiB (51), and [18F]florbetapir (98). The comparison to AC with a gold standard CT was performed both globally and regionally, with a special focus on robustness and outlier analysis. RESULTS The average performance in PET tracer uptake was within ±5% of CT for all of the proposed methods, with the average±SD global percentage bias in PET FDG uptake for each method being: MR-ACDIXON (-11.3±3.5)%, MR-ACUTE (-5.7±2.0)%, MR-ACONTARIO (-4.3±3.6)%, MR-ACMUNICH (3.7±2.1)%, MR-ACMLAA (-1.9±2.6)%, MR-ACSEGBONE (-1.7±3.6)%, MR-ACUCL (0.8±1.2)%, MR-ACCAR-RiDR (-0.4±1.9)%, MR-ACMAXPROB (-0.4±1.6)%, MR-ACBOSTON (-0.3±1.8)%, and MR-ACRESOLUTE (0.3±1.7)%, ordered by average bias. The overall best performing methods (MR-ACBOSTON, MR-ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically) showed regional average errors within ±3% of PET with CT-AC in all regions of the brain with FDG, and the same four methods, as well as MR-ACCAR-RiDR, showed that for 95% of the patients, 95% of brain voxels had an uptake that deviated by less than 15% from the reference. Comparable performance was obtained with PiB and florbetapir. CONCLUSIONS All of the proposed novel methods have an average global performance within likely acceptable limits (±5% of CT-based reference), and the main difference among the methods was found in the robustness, outlier analysis, and clinical feasibility. Overall, the best performing methods were MR-ACBOSTON, MR-ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically. These methods all minimized the number of outliers, standard deviation, and average global and local error. The methods MR-ACMUNICH and MR-ACCAR-RiDR were both within acceptable quantitative limits, so these methods should be considered if processing time is a factor. The method MR-ACSEGBONE also demonstrates promising results, and performs well within the likely acceptable quantitative limits. For clinical routine scans where processing time can be a key factor, this vendor-provided solution currently outperforms most methods. With the performance of the methods presented here, it may be concluded that the challenge of improving the accuracy of MR-AC in adult brains with normal anatomy has been solved to a quantitatively acceptable degree, which is smaller than the quantification reproducibility in PET imaging.
Collapse
Affiliation(s)
- Claes N Ladefoged
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Copenhagen, Denmark
| | | | | | - David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ninon Burgos
- Translational Imaging Group, Centre for Medical Image Computing, University College London, NW1 2HE, London, UK
| | - M Jorge Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, NW1 2HE, London, UK; Dementia Research Centre, Institute of Neurology, University College London, WC1N 3AR, London, UK
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, NW1 2HE, London, UK; Dementia Research Centre, Institute of Neurology, University College London, WC1N 3AR, London, UK
| | - Brian Hutton
- Institute of Nuclear Medicine, University College London, London, UK
| | - Inés Mérida
- LILI-EQUIPEX - Lyon Integrated Life Imaging: hybrid MR-PET, CERMEP Imaging Centre, Lyon, France; Siemens Healthcare France SAS, Saint-Denis, France
| | - Nicolas Costes
- LILI-EQUIPEX - Lyon Integrated Life Imaging: hybrid MR-PET, CERMEP Imaging Centre, Lyon, France
| | - Alexander Hammers
- LILI-EQUIPEX - Lyon Integrated Life Imaging: hybrid MR-PET, CERMEP Imaging Centre, Lyon, France; King's College London & Guy's and St Thomas' PET Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Didier Benoit
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Copenhagen, Denmark
| | - Søren Holm
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Copenhagen, Denmark
| | - Meher Juttukonda
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Hongyu An
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Jorge Cabello
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Mathias Lukas
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Stephan Nekolla
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Sibylle Ziegler
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | | | - Bjoern Jakoby
- Siemens Healthcare GmbH, Erlangen, Germany; University of Surrey, Guildford, Surrey, UK
| | | | - Tammie Benzinger
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63130, USA
| | - Liselotte Højgaard
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Copenhagen, Denmark
| | - Adam E Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Copenhagen, Denmark
| | - Flemming L Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Copenhagen, Denmark.
| |
Collapse
|
93
|
Mehranian A, Arabi H, Zaidi H. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities. Med Phys 2016; 43:1130-55. [PMID: 26936700 DOI: 10.1118/1.4941014] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.
Collapse
Affiliation(s)
- Abolfazl Mehranian
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211, Switzerland
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211, Switzerland; Geneva Neuroscience Centre, University of Geneva, Geneva CH-1205, Switzerland; and Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen 9700 RB, Netherlands
| |
Collapse
|
94
|
Benoit D, Ladefoged CN, Rezaei A, Keller SH, Andersen FL, Højgaard L, Hansen AE, Holm S, Nuyts J. Optimized MLAA for quantitative non-TOF PET/MR of the brain. Phys Med Biol 2016; 61:8854-8874. [PMID: 27910823 DOI: 10.1088/1361-6560/61/24/8854] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For quantitative tracer distribution in positron emission tomography, attenuation correction is essential. In a hybrid PET/CT system the CT images serve as a basis for generation of the attenuation map, but in PET/MR, the MR images do not have a similarly simple relationship with the attenuation map. Hence attenuation correction in PET/MR systems is more challenging. Typically either of two MR sequences are used: the Dixon or the ultra-short time echo (UTE) techniques. However these sequences have some well-known limitations. In this study, a reconstruction technique based on a modified and optimized non-TOF MLAA is proposed for PET/MR brain imaging. The idea is to tune the parameters of the MLTR applying some information from an attenuation image computed from the UTE sequences and a T1w MR image. In this MLTR algorithm, an [Formula: see text] parameter is introduced and optimized in order to drive the algorithm to a final attenuation map most consistent with the emission data. Because the non-TOF MLAA is used, a technique to reduce the cross-talk effect is proposed. In this study, the proposed algorithm is compared to the common reconstruction methods such as OSEM using a CT attenuation map, considered as the reference, and OSEM using the Dixon and UTE attenuation maps. To show the robustness and the reproducibility of the proposed algorithm, a set of 204 [18F]FDG patients, 35 [11C]PiB patients and 1 [18F]FET patient are used. The results show that by choosing an optimized value of [Formula: see text] in MLTR, the proposed algorithm improves the results compared to the standard MR-based attenuation correction methods (i.e. OSEM using the Dixon or the UTE attenuation maps), and the cross-talk and the scale problem are limited.
Collapse
Affiliation(s)
- Didier Benoit
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Vandenberghe S, Mikhaylova E, D'Hoe E, Mollet P, Karp JS. Recent developments in time-of-flight PET. EJNMMI Phys 2016; 3:3. [PMID: 26879863 PMCID: PMC4754240 DOI: 10.1186/s40658-016-0138-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/15/2016] [Indexed: 01/04/2023] Open
Abstract
While the first time-of-flight (TOF)-positron emission tomography (PET) systems were already built in the early 1980s, limited clinical studies were acquired on these scanners. PET was still a research tool, and the available TOF-PET systems were experimental. Due to a combination of low stopping power and limited spatial resolution (caused by limited light output of the scintillators), these systems could not compete with bismuth germanate (BGO)-based PET scanners. Developments on TOF system were limited for about a decade but started again around 2000. The combination of fast photomultipliers, scintillators with high density, modern electronics, and faster computing power for image reconstruction have made it possible to introduce this principle in clinical TOF-PET systems. This paper reviews recent developments in system design, image reconstruction, corrections, and the potential in new applications for TOF-PET. After explaining the basic principles of time-of-flight, the difficulties in detector technology and electronics to obtain a good and stable timing resolution are shortly explained. The available clinical systems and prototypes under development are described in detail. The development of this type of PET scanner also requires modified image reconstruction with accurate modeling and correction methods. The additional dimension introduced by the time difference motivates a shift from sinogram- to listmode-based reconstruction. This reconstruction is however rather slow and therefore rebinning techniques specific for TOF data have been proposed. The main motivation for TOF-PET remains the large potential for image quality improvement and more accurate quantification for a given number of counts. The gain is related to the ratio of object size and spatial extent of the TOF kernel and is therefore particularly relevant for heavy patients, where image quality degrades significantly due to increased attenuation (low counts) and high scatter fractions. The original calculations for the gain were based on analytical methods. Recent publications for iterative reconstruction have shown that it is difficult to quantify TOF gain into one factor. The gain depends on the measured distribution, the location within the object, and the count rate. In a clinical situation, the gain can be used to either increase the standardized uptake value (SUV) or reduce the image acquisition time or administered dose. The localized nature of the TOF kernel makes it possible to utilize local tomography reconstruction or to separate emission from transmission data. The introduction of TOF also improves the joint estimation of transmission and emission images from emission data only. TOF is also interesting for new applications of PET-like isotopes with low branching ratio for positron fraction. The local nature also reduces the need for fine angular sampling, which makes TOF interesting for limited angle situations like breast PET and online dose imaging in proton or hadron therapy. The aim of this review is to introduce the reader in an educational way into the topic of TOF-PET and to give an overview of the benefits and new opportunities in using this additional information.
Collapse
Affiliation(s)
- S Vandenberghe
- ELIS-IMINDS-Medical IT-IBITECH Ghent University, De Pintelaan 185, Blok B, Gent, 9000, Belgium.
| | - E Mikhaylova
- ELIS-IMINDS-Medical IT-IBITECH Ghent University, De Pintelaan 185, Blok B, Gent, 9000, Belgium
| | - E D'Hoe
- ELIS-IMINDS-Medical IT-IBITECH Ghent University, De Pintelaan 185, Blok B, Gent, 9000, Belgium
| | - P Mollet
- ELIS-IMINDS-Medical IT-IBITECH Ghent University, De Pintelaan 185, Blok B, Gent, 9000, Belgium
| | - J S Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
96
|
Shi K, Fürst S, Sun L, Lukas M, Navab N, Förster S, Ziegler SI. Individual refinement of attenuation correction maps for hybrid PET/MR based on multi-resolution regional learning. Comput Med Imaging Graph 2016; 60:50-57. [PMID: 27914956 DOI: 10.1016/j.compmedimag.2016.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/09/2016] [Accepted: 11/11/2016] [Indexed: 12/01/2022]
Abstract
PET/MR is an emerging hybrid imaging modality. However, attenuation correction (AC) remains challenging for hybrid PET/MR in generating accurate PET images. Segmentation-based methods on special MR sequences are most widely recommended by vendors. However, their accuracy is usually not high. Individual refinement of available certified attenuation maps may be helpful for further clinical applications. In this study, we proposed a multi-resolution regional learning (MRRL) scheme to utilize the internal consistency of the patient data. The anatomical and AC MR sequences of the same subject were employed to guide the refinement of the provided AC maps. The developed algorithm was tested on 9 patients scanned consecutively with PET/MR and PET/CT (7 [18F]FDG and 2 [18F]FET). The preliminary results showed that MRRL can improve the accuracy of segmented attenuation maps and consequently the accuracy of PET reconstructions.
Collapse
Affiliation(s)
- Kuangyu Shi
- Dept. Nuclear Medicine, Technische Universität München, Munich, Germany.
| | - Sebastian Fürst
- Dept. Nuclear Medicine, Technische Universität München, Munich, Germany
| | - Liang Sun
- Microsoft Corporation, Seattle, WA, USA
| | - Mathias Lukas
- Dept. Nuclear Medicine, Technische Universität München, Munich, Germany
| | - Nassir Navab
- Chair of Computer-aided Medical Procedure, Dept. Computer Science, Technische Universität München, Munich, Germany
| | - Stefan Förster
- Dept. Nuclear Medicine, Technische Universität München, Munich, Germany
| | - Sibylle I Ziegler
- Dept. Nuclear Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
97
|
Presotto L, Busnardo E, Perani D, Gianolli L, Gilardi MC, Bettinardi V. Simultaneous reconstruction of attenuation and activity in cardiac PET can remove CT misalignment artifacts. J Nucl Cardiol 2016; 23:1086-1097. [PMID: 26275447 DOI: 10.1007/s12350-015-0239-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Misalignment between positron emission tomography (PET) and computed tomography (CT) data is known to generate artifactual defects in cardiac PET images due to imprecise attenuation correction (AC). In this work, the use of a maximum likelihood attenuation and activity (MLAA) algorithm is proposed to avoid such artifacts in time-of-flight (TOF) PET. METHODS MLAA was implemented and tested using a thorax/heart phantom and retrospectively on fourteen (13)N-ammonia PET/CT perfusion studies. Global and local misalignments between PET and CT data were generated by shifting matched CT images or using CT data representative of the end-inspiration phase. PET images were reconstructed with MLAA and a 3D-ordered-subsets-expectation-maximization (OSEM)-TOF algorithm. Images obtained with 3D-OSEM-TOF and matched CT were used as references. These images were compared (qualitatively and semi-quantitatively) with those reconstructed with 3D-OSEM-TOF and MLAA for which a misaligned CT was used, respectively, for AC and initialization. RESULTS Phantom experiment proved the capability of MLAA to converge toward the correct emission and attenuation distributions using, as input, only PET emission data, but convergence was very slow. Initializing MLAA with phantom CT images markedly improved convergence speed. In patient studies, when shifted or end-inspiration CT images were used for AC, 3D-OSEM-TOF reconstructions showed artifacts of increasing severity, size, and frequency with increasing mismatch. Such artifacts were absent in the corresponding MLAA images. CONCLUSION The proposed implementation of the MLAA algorithm is a feasible and robust technique to avoid AC mismatch artifacts in cardiac PET studies provided that a CT of the source is available, even if poorly aligned.
Collapse
Affiliation(s)
- L Presotto
- Università Vita-Salute San Raffaele, Milan, Italy.
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS, San Raffaele Scientific Institute, Milan, Italy.
| | - E Busnardo
- Nuclear Medicine Department, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - D Perani
- Università Vita-Salute San Raffaele, Milan, Italy
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Nuclear Medicine Department, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - L Gianolli
- Nuclear Medicine Department, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - M C Gilardi
- IBFM-CNR, Institute for Molecular Bioimaging and Physiology, Segrate, Italy
| | - V Bettinardi
- Nuclear Medicine Department, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
98
|
Delso G, ter Voert E, de Galiza Barbosa F, Veit-Haibach P. Pitfalls and Limitations in Simultaneous PET/MRI. Semin Nucl Med 2016; 45:552-9. [PMID: 26522396 DOI: 10.1053/j.semnuclmed.2015.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Simultaneous PET/MRI was introduced into the commercial market only a few years ago, and its availability is currently gaining momentum with the introduction of a second-generation PET/MRI system from an additional vendor. Furthermore, there is still an increasing interest in its potential in clinical and research applications. Despite very early technical infancy problems, which meanwhile have been solved, there are still different limitations that have to be worked around in daily routine responsibly by the physicists and physicians. This article gives an overview over the most common technical, logistical, and clinical limitations; artifacts; and pitfalls, without any claim for completeness. The readers will not only learn the background of the limitation but also partly learn about possible solutions. At the end of each paragraph, the readers will find a short summary for an easier overview of the topics discussed.
Collapse
Affiliation(s)
- Gaspar Delso
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; GE Healthcare, Waukesha, WI
| | - Edwin ter Voert
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | | | - Patrick Veit-Haibach
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland.
| |
Collapse
|
99
|
Mansor S, Boellaard R, Huisman MC, van Berckel BNM, Schuit RC, Windhorst AD, Lammertsma AA, van Velden FHP. Impact of New Scatter Correction Strategies on High-Resolution Research Tomograph Brain PET Studies. Mol Imaging Biol 2016; 18:627-35. [PMID: 26728160 PMCID: PMC4927607 DOI: 10.1007/s11307-015-0921-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE The aim of this study is to evaluate the impact of different scatter correction strategies on quantification of high-resolution research tomograph (HRRT) data for three tracers covering a wide range in kinetic profiles. PROCEDURES Healthy subjects received dynamic HRRT scans using either (R)-[(11)C]verapamil (n = 5), [(11)C]raclopride (n = 5) or [(11)C]flumazenil (n = 5). To reduce the effects of patient motion on scatter scaling factors, a margin in the attenuation correction factor (ACF) sinogram was applied prior to 2D or 3D single scatter simulation (SSS). RESULTS Some (R)-[(11)C]verapamil studies showed prominent artefacts that disappeared with an ACF-margin of 10 mm or more. Use of 3D SSS for (R)-[(11)C]verapamil showed a statistically significant increase in volume of distribution compared with 2D SSS (p < 0.05), but not for [(11)C]raclopride and [(11)C]flumazenil studies (p > 0.05). CONCLUSIONS When there is a patient motion-induced mismatch between transmission and emission scans, applying an ACF-margin resulted in more reliable scatter scaling factors but did not change (and/or deteriorate) quantification.
Collapse
Affiliation(s)
- Syahir Mansor
- Department of Radiology and Nuclear Medicine, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands.
| | - Marc C Huisman
- Department of Radiology and Nuclear Medicine, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Robert C Schuit
- Department of Radiology and Nuclear Medicine, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Floris H P van Velden
- Department of Radiology and Nuclear Medicine, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
100
|
Abstract
Hybrid PET/MR imaging is a complex imaging modality that has raised high expectations not only for oncological and neurologic imaging applications, but also for cardiac imaging applications. Initially, physicians and physicists had to become accustomed to technical challenges including attenuation correction, gating, and more complex workflow and more elaborate image analysis as compared with PET/CT or standalone MR imaging. PET/MR imaging seems to be particularly valuable to assess inflammatory myocardial diseases (such as sarcoidosis), to cross-validate PET versus MR imaging data (eg, myocardial perfusion imaging), and to help validate novel biomarkers of various disease states (eg, postinfarction inflammation).
Collapse
|