51
|
Wong MKF, Hei H, Lim SZ, Ng EYK. Applied machine learning for blood pressure estimation using a small, real-world electrocardiogram and photoplethysmogram dataset. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:975-997. [PMID: 36650798 DOI: 10.3934/mbe.2023045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Applying machine learning techniques to electrocardiography and photoplethysmography signals and their multivariate-derived waveforms is an ongoing effort to estimate non-occlusive blood pressure. Unfortunately, real ambulatory electrocardiography and photoplethysmography waveforms are inevitably affected by motion and noise artifacts, so established machine learning architectures perform poorly when trained on data of the Multiparameter Intelligent Monitoring in Intensive Care II type, a publicly available ICU database. Our study addresses this problem by applying four well-established machine learning methods, i.e., random forest regression, support vector regression, Adaboost regression and artificial neural networks, to a small, self-sampled electrocardiography-photoplethysmography dataset (n = 54) to improve the robustness of machine learning to real-world BP estimates. We evaluated the performance using a selection of optimal feature morphologies of waveforms by using pulse arrival time, morphological and frequency photoplethysmography parameters and heart rate variability as characterization data. On the basis of the root mean square error and mean absolute error, our study showed that support vector regression gave the best performance for blood pressure estimation from noisy data, achieving an mean absolute error of 6.97 mmHg, which meets the level C criteria set by the British Hypertension Society. We demonstrate that ambulatory electrocardiography- photoplethysmography signals acquired by mobile discrete devices can be used to estimate blood pressure.
Collapse
Affiliation(s)
- Mark Kei Fong Wong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
| | - Hao Hei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Si Zhou Lim
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
| | - Eddie Yin-Kwee Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
52
|
Weber-Boisvert G, Gosselin B, Sandberg F. Intensive care photoplethysmogram datasets and machine-learning for blood pressure estimation: Generalization not guarantied. Front Physiol 2023; 14:1126957. [PMID: 36935753 PMCID: PMC10017741 DOI: 10.3389/fphys.2023.1126957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The large MIMIC waveform dataset, sourced from intensive care units, has been used extensively for the development of Photoplethysmography (PPG) based blood pressure (BP) estimation algorithms. Yet, because the data comes from patients in severe conditions-often under the effect of drugs-it is regularly noted that the relationship between BP and PPG signal characteristics may be anomalous, a claim that we investigate here. A sample of 12,000 records from the MIMIC waveform dataset was stacked up against the 219 records of the PPG-BP dataset, an alternative public dataset obtained under controlled experimental conditions. The distribution of systolic and diastolic BP data and 31 PPG pulse morphological features was first compared between datasets. Then, the correlation between features and BP, as well as between the features themselves, was analysed. Finally, regression models were trained for each dataset and validated against the other. Statistical analysis showed significant p < 0.001 differences between the datasets in diastolic BP and in 20 out of 31 features when adjusting for heart rate differences. The eight features showing the highest rank correlation ρ > 0.40 to systolic BP in PPG-BP all displayed muted correlation levels ρ < 0.10 in MIMIC. Regression tests showed twice higher baseline predictive power with PPG-BP than with MIMIC. Cross-dataset regression displayed a practically complete loss of predictive power for all models. The differences between the MIMIC and PPG-BP dataset exposed in this study suggest that BP estimation models based on the MIMIC dataset have reduced predictive power on the general population.
Collapse
Affiliation(s)
- Guillaume Weber-Boisvert
- Department of Electrical and Computer Engineering, Université Laval, Quebec, QC, Canada
- Correspondence: Guillaume Weber-Boisvert, ; Frida Sandberg,
| | - Benoit Gosselin
- Department of Electrical and Computer Engineering, Université Laval, Quebec, QC, Canada
| | - Frida Sandberg
- Department of Biomedical Engineering, Lund University, Lund, Sweden
- Correspondence: Guillaume Weber-Boisvert, ; Frida Sandberg,
| |
Collapse
|
53
|
Qin K, Huang W, Zhang T, Tang S. Machine learning and deep learning for blood pressure prediction: a methodological review from multiple perspectives. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
54
|
Khan Mamun MMR, Sherif A. Advancement in the Cuffless and Noninvasive Measurement of Blood Pressure: A Review of the Literature and Open Challenges. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010027. [PMID: 36671599 PMCID: PMC9854981 DOI: 10.3390/bioengineering10010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Hypertension is a chronic condition that is one of the prominent reasons behind cardiovascular disease, brain stroke, and organ failure. Left unnoticed and untreated, the deterioration in a health condition could even result in mortality. If it can be detected early, with proper treatment, undesirable outcomes can be avoided. Until now, the gold standard is the invasive way of measuring blood pressure (BP) using a catheter. Additionally, the cuff-based and noninvasive methods are too cumbersome or inconvenient for frequent measurement of BP. With the advancement of sensor technology, signal processing techniques, and machine learning algorithms, researchers are trying to find the perfect relationships between biomedical signals and changes in BP. This paper is a literature review of the studies conducted on the cuffless noninvasive measurement of BP using biomedical signals. Relevant articles were selected using specific criteria, then traditional techniques for BP measurement were discussed along with a motivation for cuffless measurement use of biomedical signals and machine learning algorithms. The review focused on the progression of different noninvasive cuffless techniques rather than comparing performance among different studies. The literature survey concluded that the use of deep learning proved to be the most accurate among all the cuffless measurement techniques. On the other side, this accuracy has several disadvantages, such as lack of interpretability, computationally extensive, standard validation protocol, and lack of collaboration with health professionals. Additionally, the continuing work by researchers is progressing with a potential solution for these challenges. Finally, future research directions have been provided to encounter the challenges.
Collapse
Affiliation(s)
| | - Ahmed Sherif
- School of Computing Sciences and Computer Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
55
|
Blood Pressure Prediction Using Ensemble Rules during Isometric Sustained Weight Test. J Cardiovasc Dev Dis 2022; 9:jcdd9120440. [PMID: 36547437 PMCID: PMC9781478 DOI: 10.3390/jcdd9120440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Predicting beat-to-beat blood pressure has several clinical applications. While most machine learning models focus on accuracy, it is necessary to build models that explain the relationships of hemodynamical parameters with blood pressure without sacrificing accuracy, especially during exercise. OBJECTIVE The aim of this study is to use the RuleFit model to measure the importance, interactions, and relationships among several parameters extracted from photoplethysmography (PPG) and electrocardiography (ECG) signals during a dynamic weight-bearing test (WBT) and to assess the accuracy and interpretability of the model results. METHODS RuleFit was applied to hemodynamical ECG and PPG parameters during rest and WBT in six healthy young subjects. The WBT involves holding a 500 g weight in the left hand for 2 min. Blood pressure is taken in the opposite arm before and during exercise thereof. RESULTS The root mean square error of the model residuals was 4.72 and 2.68 mmHg for systolic blood pressure and diastolic blood pressure, respectively, during rest and 4.59 and 4.01 mmHg, respectively, during the WBT. Furthermore, the blood pressure measurements appeared to be nonlinear, and interaction effects were observed. Moreover, blood pressure predictions based on PPG parameters showed a strong correlation with individual characteristics and responses to exercise. CONCLUSION The RuleFit model is an excellent tool to study interactions among variables for predicting blood pressure. Compared to other models, the RuleFit model showed superior performance. RuleFit can be used for predicting and interpreting relationships among predictors extracted from PPG and ECG signals.
Collapse
|
56
|
Mohammed H, Wang K, Wu H, Wang G. Subject-wise model generalization through pooling and patching for regression: Application on non-invasive systolic blood pressure estimation. Comput Biol Med 2022; 151:106299. [PMID: 36423530 DOI: 10.1016/j.compbiomed.2022.106299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Subject-wise modeling using machine learning is useful in many applications requiring low error and complexity, such as wearable medical devices. However, regression accuracy depends highly on the data available to train the model and the model's generalization ability. Adversely, the prediction error may increase severely if unknown data patterns test the model; such a model is known to be overfitted. In medicine-related applications, such as Non-Invasive Blood Pressure (NIBP) estimation, the high error renders the estimation model useless and dangerous. METHODS This paper presents a novel algorithm to handle overfitting by editing the training data to achieve generalization for subject-wise models. The pooling and patching (PaP) algorithms use a relatively short record segment of a subject as a Key-Segment (KS) to search through a larger dataset for similar subjects. Then samples taken from the matched subjects' pool records are used to patch the original subject's KS. Due to the significance of systolic blood pressure (SBP) and the complexity of its variability, non-invasive estimation of SBP from electrocardiography (ECG) and photoplethysmography (PPG) is introduced as an application to assess the algorithm. The study was performed on 2051 subjects with a wide range of age, height, weight, length, and health status. The subjects' records were taken from a large public dataset, VitalDB, which is acquired from subjects undergoing different surgeries. Finally, all the results are obtained without using other model generalization techniques. RESULTS The generalization effect of the proposed algorithm, PaP, significantly outperformed cross-validation, which is widely used in regression model generalization. Moreover, the testing results show that a KS of 200 to 2000 samples is sufficient for providing high accuracy for much longer testing data of about 12000 to 24000 samples long, which is less than %10 of the record length on average. Furthermore, compared to other works based on the same dataset, PaP provides a significantly lower mean error of -0.75 ± 5.51 mmHg, with a small training data portion of 15% over 2051 subjects.
Collapse
Affiliation(s)
- Hazem Mohammed
- Department of Micro/Nano Electronics, School of Electrical, Information, and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China; Electrical Engineering Department, Faculty of Engineering, Assuit University, Asyut, Egypt.
| | - Kai Wang
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, Guangdong, China.
| | - Guoxing Wang
- Department of Micro/Nano Electronics, School of Electrical, Information, and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
57
|
Triboelectric nanogenerators for clinical diagnosis and therapy: A report of recent progress. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
58
|
Ibtehaz N, Mahmud S, Chowdhury MEH, Khandakar A, Salman Khan M, Ayari MA, Tahir AM, Rahman MS. PPG2ABP: Translating Photoplethysmogram (PPG) Signals to Arterial Blood Pressure (ABP) Waveforms. Bioengineering (Basel) 2022; 9:692. [PMID: 36421093 PMCID: PMC9687508 DOI: 10.3390/bioengineering9110692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular diseases are one of the most severe causes of mortality, annually taking a heavy toll on lives worldwide. Continuous monitoring of blood pressure seems to be the most viable option, but this demands an invasive process, introducing several layers of complexities and reliability concerns due to non-invasive techniques not being accurate. This motivates us to develop a method to estimate the continuous arterial blood pressure (ABP) waveform through a non-invasive approach using Photoplethysmogram (PPG) signals. We explore the advantage of deep learning, as it would free us from sticking to ideally shaped PPG signals only by making handcrafted feature computation irrelevant, which is a shortcoming of the existing approaches. Thus, we present PPG2ABP, a two-stage cascaded deep learning-based method that manages to estimate the continuous ABP waveform from the input PPG signal with a mean absolute error of 4.604 mmHg, preserving the shape, magnitude, and phase in unison. However, the more astounding success of PPG2ABP turns out to be that the computed values of Diastolic Blood Pressure (DBP), Mean Arterial Pressure (MAP), and Systolic Blood Pressure (SBP) from the estimated ABP waveform outperform the existing works under several metrics (mean absolute error of 3.449 ± 6.147 mmHg, 2.310 ± 4.437 mmHg, and 5.727 ± 9.162 mmHg, respectively), despite that PPG2ABP is not explicitly trained to do so. Notably, both for DBP and MAP, we achieve Grade A in the BHS (British Hypertension Society) Standard and satisfy the AAMI (Association for the Advancement of Medical Instrumentation) standard.
Collapse
Affiliation(s)
- Nabil Ibtehaz
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Sakib Mahmud
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | | | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | | | - Mohamed Arselene Ayari
- Department of Civil and Architectural Engineering, Qatar University, Doha 2713, Qatar
- Technology Innovation and Engineering Education Unit (TIEE), Qatar University, Doha 2713, Qatar
| | - Anas M. Tahir
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - M. Sohel Rahman
- Department of CSE, BUET, ECE Building, West Palashi, Dhaka 1205, Bangladesh
| |
Collapse
|
59
|
Khodabakhshi MB, Eslamyeh N, Sadredini SZ, Ghamari M. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107131. [PMID: 36137326 DOI: 10.1016/j.cmpb.2022.107131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE As a nonlinear framework in dynamical system analysis, chaotic approaches are mainly applied to evolve the complexity of biological systems. Due to the chaotic nature of the cardiovascular systems, the nonlinear features can intuitively provide a reliable framework in blood pressure (BP) estimation. Cuffless BP estimation is usually carried out by establishing deep neural network models estimating the BP values through machine-learned features of photoplethysmogram (PPG) signals. METHODS In this study, a novel parallel deep architecture is proposed to handle the machine-learned and chaotic features of PPG signals in estimating the actual BP values. The chaotic handcrafted features were the signal properties associated with the Poincare sections in the phase space and the recurrence plot-based measures called recurrence quantification analysis (RQA). Moreover, the measures quantifying the nonlinear properties of the temporal sequences such as correlation dimension, fractal dimension, Lyapunov exponent, and entropy-based quantities were also employed. The parallel architecture not only embedded the chaotic nature of PPG signals but also provided a facility to include the pseudo-periodic variations of PPGs by utilizing a concatenating layer. RESULTS Our framework was examined on the public dataset, namely, Multi-Parameter Intelligent in Intensive Care II contained the recording of PPG, ECG and arterial blood pressure. The performance of the employed handcrafted features in distinguishing between the levels of BP values was investigated based on Spearman's statistics. In addition, our proposed scheme is evaluated in terms of Pearson's correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE). The best performance was achieved when the employed handcrafted features accompanied by PPG sequences were applied to the parallel deep network. In particular, the values of R, RMSE, and MAE were obtained 0.9529, 2.76 mmHg, and 1.73 mmHg for diastolic BP, and 0.9444, 6.18 mmHg, and 3.8 mmHg for systolic BP, respectively. Moreover, based on the requirements of the standards set by the British Hypertension Society (BHS), the proposed scheme achieved a grade of A. CONCLUSIONS Our proposed scheme outperformed the state-of-the-art BP estimation methods. In addition, the results confirmed that the concatenation of the PPG-related machine-learned and nonlinear handcrafted features can be properly applied in continuous BP monitoring.
Collapse
Affiliation(s)
- Mohammad Bagher Khodabakhshi
- Department of Biomedical Engineering, Hamedan University of Technology, Mardom St, Shahid Fahmideh Blvd, Hamedan 6516913733, Iran.
| | - Naeem Eslamyeh
- Department of Biomedical Engineering, Hamedan University of Technology, Mardom St, Shahid Fahmideh Blvd, Hamedan 6516913733, Iran
| | - Seyede Zohreh Sadredini
- Department of Biomedical Engineering, Hamedan University of Technology, Mardom St, Shahid Fahmideh Blvd, Hamedan 6516913733, Iran
| | - Mohammad Ghamari
- Department of Computer Engineering, Hamedan University of Technology, Hamedan 6516913733, Iran
| |
Collapse
|
60
|
Man PK, Cheung KL, Sangsiri N, Shek WJ, Wong KL, Chin JW, Chan TT, So RHY. Blood Pressure Measurement: From Cuff-Based to Contactless Monitoring. Healthcare (Basel) 2022; 10:2113. [PMID: 36292560 PMCID: PMC9601911 DOI: 10.3390/healthcare10102113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 11/04/2022] Open
Abstract
Blood pressure (BP) determines whether a person has hypertension and offers implications as to whether he or she could be affected by cardiovascular disease. Cuff-based sphygmomanometers have traditionally provided both accuracy and reliability, but they require bulky equipment and relevant skills to obtain precise measurements. BP measurement from photoplethysmography (PPG) signals has become a promising alternative for convenient and unobtrusive BP monitoring. Moreover, the recent developments in remote photoplethysmography (rPPG) algorithms have enabled new innovations for contactless BP measurement. This paper illustrates the evolution of BP measurement techniques from the biophysical theory, through the development of contact-based BP measurement from PPG signals, and to the modern innovations of contactless BP measurement from rPPG signals. We consolidate knowledge from a diverse background of academic research to highlight the importance of multi-feature analysis for improving measurement accuracy. We conclude with the ongoing challenges, opportunities, and possible future directions in this emerging field of research.
Collapse
Affiliation(s)
- Ping-Kwan Man
- PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
| | - Kit-Leong Cheung
- PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Nawapon Sangsiri
- PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wilfred Jin Shek
- PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
- Department of Biomedical Sciences, King’s College London, London WC2R 2LS, UK
| | - Kwan-Long Wong
- PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jing-Wei Chin
- PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tsz-Tai Chan
- PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Richard Hau-Yue So
- PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
61
|
Cuffless Blood Pressure Estimation Using Calibrated Cardiovascular Dynamics in the Photoplethysmogram. Bioengineering (Basel) 2022; 9:bioengineering9090446. [PMID: 36134991 PMCID: PMC9495658 DOI: 10.3390/bioengineering9090446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/19/2022] Open
Abstract
An important means for preventing and managing cardiovascular disease is the non-invasive estimation of blood pressure. There is particular interest in developing approaches that provide accurate cuffless and continuous estimation of this important vital sign. This paper proposes a method that uses dynamic changes of the pulse waveform over short time intervals and calibrates the system based on a mathematical model that relates reflective PTT (R-PTT) to blood pressure. An advantage of the method is that it only requires collecting the photoplethysmogram (PPG) using one optical sensor, in addition to initial non-invasive measurements of blood pressure that are used for calibration. This method was applied to data from 30 patients, resulting in a mean error (ME) of 0.59 mmHg, a standard deviation of error (SDE) of 7.07 mmHg, and a mean absolute error (MAE) of 4.92 mmHg for diastolic blood pressure (DBP) and an ME of 2.52 mmHg, an SDE of 12.15 mmHg, and an MAE of 8.89 mmHg for systolic blood pressure (SBP). These results demonstrate the possibility of using the PPG signal for the cuffless continuous estimation of blood pressure based on the analysis of calibrated changes in cardiovascular dynamics, possibly in conjunction with other methods that are currently being researched.
Collapse
|
62
|
Hu Q, Wang D, Yang C. PPG-based blood pressure estimation can benefit from scalable multi-scale fusion neural networks and multi-task learning. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
63
|
Zabihi S, Rahimian E, Marefat F, Asif A, Mohseni P, Mohammadi A. BP-Net: Cuff-less and non-invasive blood pressure estimation via a generic deep convolutional architecture. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
64
|
Ismail SNA, Nayan NA, Jaafar R, May Z. Recent Advances in Non-Invasive Blood Pressure Monitoring and Prediction Using a Machine Learning Approach. SENSORS (BASEL, SWITZERLAND) 2022; 22:6195. [PMID: 36015956 PMCID: PMC9412312 DOI: 10.3390/s22166195] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Blood pressure (BP) monitoring can be performed either invasively via arterial catheterization or non-invasively through a cuff sphygmomanometer. However, for conscious individuals, traditional cuff-based BP monitoring devices are often uncomfortable, intermittent, and impractical for frequent measurements. Continuous and non-invasive BP (NIBP) monitoring is currently gaining attention in the human health monitoring area due to its promising potentials in assessing the health status of an individual, enabled by machine learning (ML), for various purposes such as early prediction of disease and intervention treatment. This review presents the development of a non-invasive BP measuring tool called sphygmomanometer in brief, summarizes state-of-the-art NIBP sensors, and identifies extended works on continuous NIBP monitoring using commercial devices. Moreover, the NIBP predictive techniques including pulse arrival time, pulse transit time, pulse wave velocity, and ML are elaborated on the basis of bio-signals acquisition from these sensors. Additionally, the different BP values (systolic BP, diastolic BP, mean arterial pressure) of the various ML models adopted in several reported studies are compared in terms of the international validation standards developed by the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) for clinically-approved BP monitors. Finally, several challenges and possible solutions for the implementation and realization of continuous NIBP technology are addressed.
Collapse
Affiliation(s)
- Siti Nor Ashikin Ismail
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia
| | - Nazrul Anuar Nayan
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia
- Institute Islam Hadhari, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia
| | - Rosmina Jaafar
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia
| | - Zazilah May
- Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia
- Electrical and Electronic Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
65
|
Chen Y, Zhang D, Karimi HR, Deng C, Yin W. A new deep learning framework based on blood pressure range constraint for continuous cuffless BP estimation. Neural Netw 2022; 152:181-190. [DOI: 10.1016/j.neunet.2022.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
|
66
|
A computationally efficient CNN-LSTM neural network for estimation of blood pressure from features of electrocardiogram and photoplethysmogram waveforms. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
67
|
Cuffless Blood Pressure Monitoring: Academic Insights and Perspectives Analysis. MICROMACHINES 2022; 13:mi13081225. [PMID: 36014147 PMCID: PMC9415520 DOI: 10.3390/mi13081225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
In recent decades, cuffless blood pressure monitoring technology has been a point of research in the field of health monitoring and public media. Based on the web of science database, this paper evaluated the publications in the field from 1990 to 2020 using bibliometric analysis, described the developments in recent years, and presented future research prospects in the field. Through the comparative analysis of keywords, citations, H-index, journals, research institutions, national authors and reviews, this paper identified research hotspots and future research trends in the field of cuffless blood pressure monitoring. From the results of the bibliometric analysis, innovative methods such as machine learning technologies related to pulse transmit time and pulse wave analysis have been widely applied in blood pressure monitoring. The 2091 articles related to cuffless blood pressure monitoring technology were published in 1131 journals. In the future, improving the accuracy of monitoring to meet the international medical blood pressure standards, and achieving portability and miniaturization will remain the development goals of cuffless blood pressure measurement technology. The application of flexible electronics and machine learning strategy in the field will be two major development directions to guide the practical applications of cuffless blood pressure monitoring technology.
Collapse
|
68
|
Nandi P, Rao M. A Novel CNN-LSTM Model Based Non-Invasive Cuff-Less Blood Pressure Estimation System. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:832-836. [PMID: 36086017 DOI: 10.1109/embc48229.2022.9871777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PPG (Photoplethysmography) and ECG (Electro-cardiogram) physiological signals have been known to have certain indicators for establishing blood pressure (BP) levels. Continuous monitoring of blood pressure (BP) is highly valuable for cardiovascular patients; however the existing non-invasive cuff-based blood pressure monitoring system is discreet and applies artificial pressure on patients' arms that is uncomfortable. The other invasive method is highly interventional in nature and is highly disturbing when the patient is recuperating in the hospital wards or elsewhere. A non-invasive cuff-less, non-disturbing, and continuous BP measurement system targeted toward surgical, clinical, and domestic usage are proposed in this work. A convolutional neural network (CNN) followed by a long short-term memory layer (LSTM) was designed and applied to ECG and PPG signals to present accurate systolic blood pressure (SBP), and diastolic blood pressure (DBP). For developing the CNN-LSTM layers, a novel and open-source dataset was compiled that consisted of PPG and ECG signals from 30 healthy participants and is made publicly available for further usage to the research community. The novel CNN-LSTM based cuff-less blood pressure evaluation system presented a mean absolute error (MAE) of 2.57 mmHg and 3.44 mmHg for SBP and DBP respectively with similar standard-deviation (SD) metrics. The characterized error metrics of the proposed system are the lowest to date when compared to other prior work. Clinical Relevance- A cuff-less BP estimation system allows patients to have easy access to blood pressure evaluation as well as aid in determining unsafe health ailments like hypertension. Ready access to such system will not only allow practitioners to continuously monitor BP in hospitals but also help patients to regularly monitor BP more frequently at their convenience.
Collapse
|
69
|
Osman D, Jankovic M, Sel K, Pettigrew RI, Jafari R. Blood Pressure Estimation using a Single Channel Bio-Impedance Ring Sensor. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4286-4290. [PMID: 36086457 DOI: 10.1109/embc48229.2022.9871653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The demand for non-obtrusive, accurate, and continuous blood pressure (BP) monitoring systems is becoming more prevalent with the realization of its significance in preventable cardiovascular disease (CVD) globally. Current cuff-based standards are bulky, uncomfortable, and are limited to discrete recording periods. Wearable sensor technologies such as those using optical photoplethysmography (PPG) have been used to develop blood pressure estimation models through a variety of methods. However, this technology falls short as optical based systems have bias favoring lighter skin tones and lower body fat compositions. Bioimpedance (Bio-Z) is a capable modality of sensing arterial blood flow without implicit inadvertent bias towards individuals. In this paper we propose a ring-based bioimpedance system to capture arterial blood flow from the digital artery of the finger. The ring design provides a more compact wearable device utilizing only a single Bio-Z channel, making it a familiar fit to individuals. Post-processing the acquired Bio-Z signals, we extracted 9 frequency domain features from windowed beat cycles to train subject specific regression models. Results indicate the average mean absolute errors for systolic/diastolic BP to be 4.38/3.63mmHg, consistent with AAMI standards.
Collapse
|
70
|
Cuffless blood pressure measuring devices: review and statement by the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens 2022; 40:1449-1460. [PMID: 35708294 DOI: 10.1097/hjh.0000000000003224] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Many cuffless blood pressure (BP) measuring devices are currently on the market claiming that they provide accurate BP measurements. These technologies have considerable potential to improve the awareness, treatment, and management of hypertension. However, recent guidelines by the European Society of Hypertension do not recommend cuffless devices for the diagnosis and management of hypertension. OBJECTIVE This statement by the European Society of Hypertension Working Group on BP Monitoring and Cardiovascular Variability presents the types of cuffless BP technologies, issues in their validation, and recommendations for clinical practice. STATEMENTS Cuffless BP monitors constitute a wide and heterogeneous group of novel technologies and devices with different intended uses. Cuffless BP devices have specific accuracy issues, which render the established validation protocols for cuff BP devices inadequate for their validation. In 2014, the Institute of Electrical and Electronics Engineers published a standard for the validation of cuffless BP devices, and the International Organization for Standardization is currently developing another standard. The validation of cuffless devices should address issues related to the need of individual cuff calibration, the stability of measurements post calibration, the ability to track BP changes, and the implementation of machine learning technology. Clinical field investigations may also be considered and issues regarding the clinical implementation of cuffless BP readings should be investigated. CONCLUSION Cuffless BP devices have considerable potential for changing the diagnosis and management of hypertension. However, fundamental questions regarding their accuracy, performance, and implementation need to be carefully addressed before they can be recommended for clinical use.
Collapse
|
71
|
Lu Y, Yu Z, Liu J, An Q, Chen C, Li Y, Wang Y. Assessing systemic vascular resistance using arteriolar pulse transit time based on multi-wavelength photoplethysmography. Physiol Meas 2022; 43. [PMID: 35697023 DOI: 10.1088/1361-6579/ac7841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/13/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Sympathetic nerve activity affects blood pressure by contracting the arteriole, which can increase systemic vascular resistance (SVR). Consequently, SVR is a key factor affecting blood pressure. However, a method for measuring SVR continuously is lacking. This paper formulated and experimentally validated a method that uses the arteriolar pulse transmit time (aPTT) to track changes in SVR. APPROACH multi-wavelength photoplethysmogram (PPG), electrocardiogram (ECG), and galvanic skin response (GSR) data were simultaneously gathered using a measurement system designed by this study. Blood perfusion was monitored by Laser Doppler. Least mean square (LMS) is an adaptive filtering algorithm. Our LMS-based algorithm formulated in this study was used to calculate the aPTT from the multi-wavelength PPGs. A cold stimulation experiment was conducted to verify the relationship between aPTT determined by algorithm and arteriole vasodilation. An emotinal stimulation experiment conducted, in which GSR was employed to further verify the relationship between aPTT and SVR. Twenty healthy young participants were asked to watch movie clips, which excited their sympathetic nerves. The dynamic time warping (DTW) distance is applied to evaluate between correlation of GSR and aPTT. MAIN RESULTS The changes in aPTT was extracted using our LMS-based method. During the recovery period after cold stimulation, aPTT decreased with the average slope of -0.19, while blood perfusion increased with the average slope of 0.72. Meanwhile, 70% participants' DTW distance's median between aPTT and GSR were significantly smaller than that between PTT and GSR during emotion stimulation. SIGNIFICANCE Our method uses aPTT, a continuous measurable parameter, to closely reflect SVR, as verified through experiments.
Collapse
Affiliation(s)
- Yiqian Lu
- SIAT, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P.R.China, Shenzhen, 518055, CHINA
| | - Zengjie Yu
- SIAT, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P.R.China, Shenzhen, Guangdong, 518055, CHINA
| | - Jikui Liu
- SIAT, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P.R.China, Shenzhen, 518055, CHINA
| | - Qi An
- SIAT, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P.R.China, Shenzhen, 518055, CHINA
| | - Cong Chen
- SIAT, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P.R.China, Shenzhen, 518055, CHINA
| | - Ye Li
- SIAT, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P.R.China, Shenzhen, Guangdong, 518055, CHINA
| | - Yishan Wang
- SIAT, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P.R.China, Shenzhen, Guangdong, 518055, CHINA
| |
Collapse
|
72
|
Malmberg S, Khan T, Gunnarsson R, Jacobsson G, Sundvall PD. Remote investigation and assessment of vital signs (RIA-VS)-proof of concept for contactless estimation of blood pressure, pulse, respiratory rate, and oxygen saturation in patients with suspicion of COVID-19. Infect Dis (Lond) 2022; 54:677-686. [PMID: 35651319 DOI: 10.1080/23744235.2022.2080249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Vital signs are critical in assessing the severity and prognosis of infections, for example, COVID-19, influenza, sepsis, and pneumonia. This study aimed to evaluate a new method for rapid camera-based non-contact measurement of heart rate, blood oxygen saturation, respiratory rate, and blood pressure. METHODS Consecutive adult patients attending a hospital emergency department for suspected COVID-19 infection were invited to participate. Vital signs measured with a new camera-based method were compared to the corresponding standard reference methods. The camera device observed the patient's face for 30 s from ∼1 m. RESULTS Between 1 April and 1 October 2020, 214 subjects were included in the trial, 131 female (61%) and 83 male (39%). The mean age was 44 years (range 18-81 years). The new camera-based device's vital signs measurements were, on average, very close to the gold standard but the random variation was larger than the reference methods. CONCLUSIONS The principle of contactless measurement of blood pressure, pulse, respiratory rate, and oxygen saturation works, which is very promising. However, technical improvements to the equipment used in this study to reduce its random variability is required before clinical implementation. This will likely be a game changer once this is sorted out. CLINICAL TRIAL REGISTRATION Universal Trial Number (UTN) U1111-1251-4114 and the ClinicalTrials.gov Identifier NCT04383457.
Collapse
Affiliation(s)
- Stefan Malmberg
- General Practice/Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Hälsobrunnen Primary Health Care Clinic, Ulricehamn, Sweden.,Detectivio AB, Gothenburg, Sweden
| | | | - Ronny Gunnarsson
- General Practice/Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Research, Development, Education and Innovation, Primary Health Care, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Närhälsan Primary Health Care Clinic for Homeless People, Närhälsan, Region Västra Götaland, Gothenburg, Sweden
| | - Gunnar Jacobsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Skaraborg Hospital, Västra Götaland Region, Skövde, Sweden
| | - Pär-Daniel Sundvall
- General Practice/Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Research, Development, Education and Innovation, Primary Health Care, Gothenburg, Sweden.,Närhälsan Sandared Primary Health Care Clinic, Västra Götaland Region, Sandared, Sweden
| |
Collapse
|
73
|
Landry C, Peterson SD, Arami A. A fusion approach to improve accuracy and estimate uncertainty in cuffless blood pressure monitoring. Sci Rep 2022; 12:7948. [PMID: 35562410 PMCID: PMC9106676 DOI: 10.1038/s41598-022-12087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
A substantial barrier to the clinical adoption of cuffless blood pressure (BP) monitoring techniques is the lack of unified error standards and methods of estimating measurement uncertainty. This study proposes a fusion approach to improve accuracy and estimate prediction interval (PI) as a proxy for uncertainty for cuffless blood BP monitoring. BP was estimated during activities of daily living using three model architectures: nonlinear autoregressive models with exogenous inputs, feedforward neural network models, and pulse arrival time models. Multiple one-class support vector machine (OCSVM) models were trained to cluster data in terms of the percentage of outliers. New BP estimates were then assigned to a cluster using the OCSVMs hyperplanes, and the PIs were estimated using the BP error standard deviation associated with different clusters. The OCSVM was used to estimate the PI for the three BP models. The three BP estimations from the models were fused using the covariance intersection fusion algorithm, which improved BP and PI estimates in comparison with individual model precision by up to 24%. The employed model fusion shows promise in estimating BP and PI for potential clinical uses. The PI indicates that about 71%, 64%, and 29% of the data collected from sitting, standing, and walking can result in high-quality BP estimates. Our PI estimator offers an effective uncertainty metric to quantify the quality of BP estimates and can minimize the risk of false diagnosis.
Collapse
Affiliation(s)
- Cederick Landry
- Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, ON, Canada
| | - Sean D Peterson
- Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, ON, Canada
| | - Arash Arami
- Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, ON, Canada.
- Toronto Rehabilitation Institute (KITE), University Health Network, Toronto, ON, Canada.
| |
Collapse
|
74
|
Jiang H, Zou L, Huang D, Feng Q. Continuous Blood Pressure Estimation Based on Multi-Scale Feature Extraction by the Neural Network With Multi-Task Learning. Front Neurosci 2022; 16:883693. [PMID: 35600611 PMCID: PMC9120547 DOI: 10.3389/fnins.2022.883693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/15/2022] [Indexed: 11/15/2022] Open
Abstract
In this article, a novel method for continuous blood pressure (BP) estimation based on multi-scale feature extraction by the neural network with multi-task learning (MST-net) has been proposed and evaluated. First, we preprocess the target (Electrocardiograph; Photoplethysmography) and label signals (arterial blood pressure), especially using peak-to-peak time limits of signals to eliminate the interference of the false peak. Then, we design a MST-net to extract multi-scale features related to BP, fully excavate and learn the relationship between multi-scale features and BP, and then estimate three BP values simultaneously. Finally, the performance of the developed neural network is verified by using a public multi-parameter intelligent monitoring waveform database. The results show that the mean absolute error ± standard deviation for systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) with the proposed method against reference are 4.04 ± 5.81, 2.29 ± 3.55, and 2.46 ± 3.58 mmHg, respectively; the correlation coefficients of SBP, DBP, and MAP are 0.96, 0.92, and 0.94, respectively, which meet the Association for the Advancement of Medical Instrumentation standard and reach A level of the British Hypertension Society standard. This study provides insights into the improvement of accuracy and efficiency of a continuous BP estimation method with a simple structure and without calibration. The proposed algorithm for BP estimation could potentially enable continuous BP monitoring by mobile health devices.
Collapse
Affiliation(s)
- Hengbing Jiang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou, China
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
| | - Lili Zou
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou, China
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- *Correspondence: Lili Zou,
| | - Dequn Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou, China
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Qianjin Feng,
| |
Collapse
|
75
|
Kim DK, Kim YT, Kim H, Kim DJ. DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure Monitoring Using Photoplethysmography. IEEE J Biomed Health Inform 2022; 26:3697-3707. [PMID: 35511844 DOI: 10.1109/jbhi.2022.3172514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Arterial blood pressure (ABP) monitoring may permit the early diagnosis and management of cardiovascular disease (CVD); however, existing methods for measuring ABP outside the clinic use inconvenient cuff sphygmomanometry, or do not estimate continuous ABP waveforms. This study proposes a novel deep learning model DeepCNAP for estimating continuous BP waveform from a noninvasively measured photoplethysmography (PPG) signal in real time. DeepCNAP was designed through the combination of deep convolutional networks and self-attention. The proposed method was constructed via 10-fold cross-validation based on the MIMIC database (the number of subjects = 942, recording time = 374.43 hours). The performance of DeepCNAP was evaluated from two perspectives: estimating ABP from PPG and classifying hemodynamically unstable events (i.e., hypertension, prehypertension, hypotension, and the normal state). The mean absolute errors of the BP estimates were 3.40 4.36 mmHg for systolic BP, 1.75 2.25 mmHg for diastolic BP, and 3.23 2.21 mmHg for the BP waveform, indicating that DeepCNAP satisfies the standards of both the British Hypertension Society (BHS) and the Association for the Advancement of Medical Instrumentation (AAMI). From the estimated BP, hypertension, prehypertension, hypotension, and the normal state were classified with 99.44, 97.58, 92.23, and 94.64% accuracy, respectively. DeepCNAP enables feasible real-time estimation of invasively measured ABP from noninvasive PPG. With its noninvasive nature, high accuracy, and clinical relevance, the proposed model could be valuable in general wards at hospitals and for wearable devices in daily life.
Collapse
|
76
|
He J, Ou J, He A, Shu L, Liu T, Qu R, Xu X, Chen Z, Yan Y. A new approach for daily life Blood-Pressure estimation using smart watch. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
77
|
Malayeri AB, Khodabakhshi MB. Concatenated convolutional neural network model for cuffless blood pressure estimation using fuzzy recurrence properties of photoplethysmogram signals. Sci Rep 2022; 12:6633. [PMID: 35459260 PMCID: PMC9033848 DOI: 10.1038/s41598-022-10244-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
Due to the importance of continuous monitoring of blood pressure (BP) in controlling hypertension, the topic of cuffless BP estimation has been widely studied in recent years. A most important approach is to explore the nonlinear mapping between the recorded peripheral signals and the BP values which is usually conducted by deep neural networks. Because of the sequence-based pseudo periodic nature of peripheral signals such as photoplethysmogram (PPG), a proper estimation model needed to be equipped with the 1-dimensional (1-D) and recurrent layers. This, in turn, limits the usage of 2-dimensional (2-D) layers adopted in convolutional neural networks (CNN) for embedding spatial information in the model. In this study, considering the advantage of chaotic approaches, the recurrence characterization of peripheral signals was taken into account by a visual 2-D representation of PPG in phase space through fuzzy recurrence plot (FRP). FRP not only provides a beneficial framework for capturing the spatial properties of input signals but also creates a reliable approach for embedding the pseudo periodic properties to the neural models without using recurrent layers. Moreover, this study proposes a novel deep neural network architecture that combines the morphological features extracted simultaneously from two upgraded 1-D and 2-D CNNs capturing the temporal and spatial dependencies of PPGs in systolic and diastolic BP estimation. The model has been fed with the 1-D PPG sequences and the corresponding 2-D FRPs from two separate routes. The performance of the proposed framework was examined on the well-known public dataset, namely, multi-parameter intelligent in Intensive Care II. Our scheme is analyzed and compared with the literature in terms of the requirements of the standards set by the British Hypertension Society (BHS) and the Association for the Advancement of Medical Instrumentation (AAMI). The proposed model met the AAMI requirements, and it achieved a grade of A as stated by the BHS standard. In addition, its mean absolute errors and standard deviation for both systolic and diastolic blood pressure estimations were considerably low, 3.05 ± 5.26 mmHg and 1.58 ± 2.6 mmHg, in turn.
Collapse
Affiliation(s)
- Ali Bahari Malayeri
- Department of Electrical Engineering, Shahid Beheshti University, 1983969411, Tehran, Iran
| | | |
Collapse
|
78
|
Yi Z, Liu Z, Li W, Ruan T, Chen X, Liu J, Yang B, Zhang W. Piezoelectric Dynamics of Arterial Pulse for Wearable Continuous Blood Pressure Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110291. [PMID: 35285098 DOI: 10.1002/adma.202110291] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Piezoelectric arterial pulse wave dynamics are traditionally considered to be similar to those of typical blood pressure waves. However, achieving accurate continuous blood pressure wave monitoring based on arterial pulse waves remains challenging, because the correlation between piezoelectric pulse waves and their related blood pressure waves is unclear. To address this, the correlation between piezoelectric pulse waves and blood pressure waves is first elucidated via theoretical, simulation, and experimental analysis of these dynamics. Based on this correlation, the authors develop a wireless wearable continuous blood pressure monitoring system, with better portability than conventional systems that are based on the pulse wave velocity between multiple sensors. They explore the feasibility of achieving wearable continuous blood pressure monitoring without motion artifacts, using a single piezoelectric sensor. These findings eliminate the controversy over the arterial pulse wave piezoelectric response, and can potentially be used to develop a portable wearable continuous blood pressure monitoring device for the early prevention and daily control of hypertension.
Collapse
Affiliation(s)
- Zhiran Yi
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaoxu Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenbo Li
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Ruan
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
79
|
Charlton PH, Paliakaitė B, Pilt K, Bachler M, Zanelli S, Kulin D, Allen J, Hallab M, Bianchini E, Mayer CC, Terentes-Printzios D, Dittrich V, Hametner B, Veerasingam D, Žikić D, Marozas V. Assessing hemodynamics from the photoplethysmogram to gain insights into vascular age: a review from VascAgeNet. Am J Physiol Heart Circ Physiol 2022; 322:H493-H522. [PMID: 34951543 PMCID: PMC8917928 DOI: 10.1152/ajpheart.00392.2021] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/07/2022]
Abstract
The photoplethysmogram (PPG) signal is widely measured by clinical and consumer devices, and it is emerging as a potential tool for assessing vascular age. The shape and timing of the PPG pulse wave are both influenced by normal vascular aging, changes in arterial stiffness and blood pressure, and atherosclerosis. This review summarizes research into assessing vascular age from the PPG. Three categories of approaches are described: 1) those which use a single PPG signal (based on pulse wave analysis), 2) those which use multiple PPG signals (such as pulse transit time measurement), and 3) those which use PPG and other signals (such as pulse arrival time measurement). Evidence is then presented on the performance, repeatability and reproducibility, and clinical utility of PPG-derived parameters of vascular age. Finally, the review outlines key directions for future research to realize the full potential of photoplethysmography for assessing vascular age.
Collapse
Affiliation(s)
- Peter H Charlton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Research Centre for Biomedical Engineering, University of London, London, United Kingdom
| | - Birutė Paliakaitė
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Kristjan Pilt
- Department of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Martin Bachler
- Biomedical Systems, Center for Health and Bioresources, AIT Austrian Institute of Technology, Seibersdorf, Austria
| | - Serena Zanelli
- Laboratoire Analyze, Géométrie et Applications, University Sorbonne Paris Nord, Paris, France
- Axelife, Redon, France
| | - Dániel Kulin
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- E-Med4All Europe, Limited, Budapest, Hungary
| | - John Allen
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Magid Hallab
- Axelife, Redon, France
- Centre de recherche et d'Innovation, Clinique Bizet, Paris, France
| | | | - Christopher C Mayer
- Biomedical Systems, Center for Health and Bioresources, AIT Austrian Institute of Technology, Seibersdorf, Austria
| | - Dimitrios Terentes-Printzios
- Hypertension and Cardiometabolic Unit, First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Verena Dittrich
- Redwave Medical, Gesellschaft mit beschränkter Haftung, Jena, Germany
| | - Bernhard Hametner
- Biomedical Systems, Center for Health and Bioresources, AIT Austrian Institute of Technology, Seibersdorf, Austria
| | - Dave Veerasingam
- Department of Cardiothoracic Surgery, Galway University Hospitals, Galway, Ireland
| | - Dejan Žikić
- Faculty of Medicine, Institute of Biophysics, University of Belgrade, Belgrade, Serbia
| | - Vaidotas Marozas
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
80
|
Huang B, Chen W, Lin CL, Juang CF, Wang J. MLP-BP: A novel framework for cuffless blood pressure measurement with PPG and ECG signals based on MLP-Mixer neural networks. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
81
|
Chen JW, Huang HK, Fang YT, Lin YT, Li SZ, Chen BW, Lo YC, Chen PC, Wang CF, Chen YY. A Data-Driven Model with Feedback Calibration Embedded Blood Pressure Estimator Using Reflective Photoplethysmography. SENSORS (BASEL, SWITZERLAND) 2022; 22:1873. [PMID: 35271020 PMCID: PMC8914760 DOI: 10.3390/s22051873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/07/2022] [Accepted: 02/25/2022] [Indexed: 12/05/2022]
Abstract
Ambulatory blood pressure (BP) monitoring (ABPM) is vital for screening cardiovascular activity. The American College of Cardiology/American Heart Association guideline for the prevention, detection, evaluation, and management of BP in adults recommends measuring BP outside the office setting using daytime ABPM. The recommendation to use night-day BP measurements to confirm hypertension is consistent with the recommendation of several other guidelines. In recent studies, ABPM was used to measure BP at regular intervals, and it reduces the effect of the environment on BP. Out-of-office measurements are highly recommended by almost all hypertension organizations. However, traditional ABPM devices based on the oscillometric technique usually interrupt sleep. For all-day ABPM purposes, a photoplethysmography (PPG)-based wrist-type device has been developed as a convenient tool. This optical, noninvasive device estimates BP using morphological characteristics from PPG waveforms. As measurement can be affected by multiple variables, calibration is necessary to ensure that the calculated BP values are accurate. However, few studies focused on adaptive calibration. A novel adaptive calibration model, which is data-driven and embedded in a wearable device, was proposed. The features from a 15 s PPG waveform and personal information were input for estimation of BP values and our data-driven calibration model. The model had a feedback calibration process using the exponential Gaussian process regression method to calibrate BP values and avoid inter- and intra-subject variability, ensuring accuracy in long-term ABPM. The estimation error of BP (ΔBP = actual BP-estimated BP) of systolic BP was -0.1776 ± 4.7361 mmHg; ≤15 mmHg, 99.225%, and of diastolic BP was -0.3846 ± 6.3688 mmHg; ≤15 mmHg, 98.191%. The success rate was improved, and the results corresponded to the Association for the Advancement of Medical Instrumentation standard and British Hypertension Society Grading criteria for medical regulation. Using machine learning with a feedback calibration model could be used to assess ABPM for clinical purposes.
Collapse
Affiliation(s)
- Jia-Wei Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (J.-W.C.); (Y.-T.F.); (S.-Z.L.); (B.-W.C.)
| | - Hsin-Kai Huang
- Department of Cardiology, Ten-Chan General Hospital (Chung Li), Taoyuan 32043, Taiwan;
| | - Yu-Ting Fang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (J.-W.C.); (Y.-T.F.); (S.-Z.L.); (B.-W.C.)
- Food and Drug Administration, Ministry of Health and Welfare, Taipei 11561, Taiwan
| | - Yen-Ting Lin
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan;
| | - Shih-Zhang Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (J.-W.C.); (Y.-T.F.); (S.-Z.L.); (B.-W.C.)
| | - Bo-Wei Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (J.-W.C.); (Y.-T.F.); (S.-Z.L.); (B.-W.C.)
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Po-Chuan Chen
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Ching-Fu Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (J.-W.C.); (Y.-T.F.); (S.-Z.L.); (B.-W.C.)
- Biomedical Engineering Research and Development Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (J.-W.C.); (Y.-T.F.); (S.-Z.L.); (B.-W.C.)
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| |
Collapse
|
82
|
Cuffless Blood Pressure Measurement Using Linear and Nonlinear Optimized Feature Selection. Diagnostics (Basel) 2022; 12:diagnostics12020408. [PMID: 35204499 PMCID: PMC8870879 DOI: 10.3390/diagnostics12020408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
The cuffless blood pressure (BP) measurement allows for frequent measurement without discomfort to the patient compared to the cuff inflation measurement. With the availability of a large dataset containing physiological waveforms, now it is possible to use them through different learning algorithms to produce a relationship with changes in BP. In this paper, a novel cuffless noninvasive blood pressure measurement technique has been proposed using optimized features from electrocardiogram and photoplethysmography based on multivariate symmetric uncertainty (MSU). The technique is an improvement over other contemporary methods due to the inclusion of feature optimization depending on both linear and nonlinear relationships with the change of blood pressure. MSU has been used as a selection criterion with algorithms such as the fast correlation and ReliefF algorithms followed by the penalty-based regression technique to make sure the features have maximum relevance as well as minimum redundancy. The result from the technique was compared with the performance of similar techniques using the MIMIC-II dataset. After training and testing, the root mean square error (RMSE) comes as 5.28 mmHg for systolic BP and 5.98 mmHg for diastolic BP. In addition, in terms of mean absolute error, the result improved to 4.27 mmHg for SBP and 5.01 for DBP compared to recent cuffless BP measurement techniques which have used substantially large datasets and feature optimization. According to the British Hypertension Society Standard (BHS), our proposed technique achieved at least grade B in all cumulative criteria for cuffless BP measurement.
Collapse
|
83
|
Haque CA, Kwon TH, Kim KD. Cuffless Blood Pressure Estimation Based on Monte Carlo Simulation Using Photoplethysmography Signals. SENSORS 2022; 22:s22031175. [PMID: 35161920 PMCID: PMC8838459 DOI: 10.3390/s22031175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022]
Abstract
Blood pressure measurements are one of the most routinely performed medical tests globally. Blood pressure is an important metric since it provides information that can be used to diagnose several vascular diseases. Conventional blood pressure measurement systems use cuff-based devices to measure the blood pressure, which may be uncomfortable and sometimes burdensome to the subjects. Therefore, in this study, we propose a cuffless blood pressure estimation model based on Monte Carlo simulation (MCS). We propose a heterogeneous finger model for the MCS at wavelengths of 905 nm and 940 nm. After recording the photon intensities from the MCS over a certain range of blood pressure values, the actual photoplethysmography (PPG) signals were used to estimate blood pressure. We used both publicly available and self-made datasets to evaluate the performance of the proposed model. In case of the publicly available dataset for transmission-type MCS, the mean absolute errors are 3.32 ± 6.03 mmHg for systolic blood pressure (SBP), 2.02 ± 2.64 mmHg for diastolic blood pressure (DBP), and 1.76 ± 2.8 mmHg for mean arterial pressure (MAP). The self-made dataset is used for both transmission- and reflection-type MCSs; its mean absolute errors are 2.54 ± 4.24 mmHg for SBP, 1.49 ± 2.82 mmHg for DBP, and 1.51 ± 2.41 mmHg for MAP in the transmission-type case as well as 3.35 ± 5.06 mmHg for SBP, 2.07 ± 2.83 mmHg for DBP, and 2.12 ± 2.83 mmHg for MAP in the reflection-type case. The estimated results of the SBP and DBP satisfy the requirements of the Association for the Advancement of Medical Instrumentation (AAMI) standards and are within Grade A according to the British Hypertension Society (BHS) standards. These results show that the proposed model is efficient for estimating blood pressures using fingertip PPG signals.
Collapse
|
84
|
Mahmud S, Ibtehaz N, Khandakar A, Tahir AM, Rahman T, Islam KR, Hossain MS, Rahman MS, Musharavati F, Ayari MA, Islam MT, Chowdhury MEH. A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals. SENSORS (BASEL, SWITZERLAND) 2022; 22:919. [PMID: 35161664 PMCID: PMC8840244 DOI: 10.3390/s22030919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022]
Abstract
Cardiovascular diseases are the most common causes of death around the world. To detect and treat heart-related diseases, continuous blood pressure (BP) monitoring along with many other parameters are required. Several invasive and non-invasive methods have been developed for this purpose. Most existing methods used in hospitals for continuous monitoring of BP are invasive. On the contrary, cuff-based BP monitoring methods, which can predict systolic blood pressure (SBP) and diastolic blood pressure (DBP), cannot be used for continuous monitoring. Several studies attempted to predict BP from non-invasively collectible signals such as photoplethysmograms (PPG) and electrocardiograms (ECG), which can be used for continuous monitoring. In this study, we explored the applicability of autoencoders in predicting BP from PPG and ECG signals. The investigation was carried out on 12,000 instances of 942 patients of the MIMIC-II dataset, and it was found that a very shallow, one-dimensional autoencoder can extract the relevant features to predict the SBP and DBP with state-of-the-art performance on a very large dataset. An independent test set from a portion of the MIMIC-II dataset provided a mean absolute error (MAE) of 2.333 and 0.713 for SBP and DBP, respectively. On an external dataset of 40 subjects, the model trained on the MIMIC-II dataset provided an MAE of 2.728 and 1.166 for SBP and DBP, respectively. For both the cases, the results met British Hypertension Society (BHS) Grade A and surpassed the studies from the current literature.
Collapse
Affiliation(s)
- Sakib Mahmud
- Department of Electrical Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (S.M.); (N.I.); (A.K.); (A.M.T.); (T.R.); (K.R.I.)
| | - Nabil Ibtehaz
- Department of Electrical Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (S.M.); (N.I.); (A.K.); (A.M.T.); (T.R.); (K.R.I.)
| | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (S.M.); (N.I.); (A.K.); (A.M.T.); (T.R.); (K.R.I.)
| | - Anas M. Tahir
- Department of Electrical Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (S.M.); (N.I.); (A.K.); (A.M.T.); (T.R.); (K.R.I.)
| | - Tawsifur Rahman
- Department of Electrical Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (S.M.); (N.I.); (A.K.); (A.M.T.); (T.R.); (K.R.I.)
| | - Khandaker Reajul Islam
- Department of Electrical Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (S.M.); (N.I.); (A.K.); (A.M.T.); (T.R.); (K.R.I.)
| | - Md Shafayet Hossain
- Department of Electrical, Electronics and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.S.H.); (M.T.I.)
| | - M. Sohel Rahman
- Department of CSE, BUET, ECE Building, West Palashi, Dhaka 1205, Bangladesh;
| | - Farayi Musharavati
- Department Mechanical and Industrial Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohamed Arselene Ayari
- Department of Civil and Architectural Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
- Technology Innovation and Engineering Education (TIEE), Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohammad Tariqul Islam
- Department of Electrical, Electronics and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.S.H.); (M.T.I.)
| | - Muhammad E. H. Chowdhury
- Department of Electrical Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (S.M.); (N.I.); (A.K.); (A.M.T.); (T.R.); (K.R.I.)
| |
Collapse
|
85
|
Farki A, Baradaran Kazemzadeh R, Akhondzadeh Noughabi E. A Novel Clustering-Based Algorithm for Continuous and Noninvasive Cuff-Less Blood Pressure Estimation. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3549238. [PMID: 35075386 PMCID: PMC8783699 DOI: 10.1155/2022/3549238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022]
Abstract
Extensive research has been performed on continuous and noninvasive cuff-less blood pressure (BP) measurement using artificial intelligence algorithms. This approach involves extracting certain features from physiological signals, such as ECG, PPG, ICG, and BCG, as independent variables and extracting features from arterial blood pressure (ABP) signals as dependent variables and then using machine-learning algorithms to develop a blood pressure estimation model based on these data. The greatest challenge of this field is the insufficient accuracy of estimation models. This paper proposes a novel blood pressure estimation method with a clustering step for accuracy improvement. The proposed method involves extracting pulse transit time (PTT), PPG intensity ratio (PIR), and heart rate (HR) features from electrocardiogram (ECG) and photoplethysmogram (PPG) signals as the inputs of clustering and regression, extracting systolic blood pressure (SBP) and diastolic blood pressure (DBP) features from ABP signals as dependent variables, and finally developing regression models by applying gradient boosting regression (GBR), random forest regression (RFR), and multilayer perceptron regression (MLP) on each cluster. The method was implemented using the MIMIC-II data set with the silhouette criterion used to determine the optimal number of clusters. The results showed that because of the inconsistency, high dispersion, and multitrend behavior of the extracted features vectors, the accuracy can be significantly improved by running a clustering algorithm and then developing a regression model on each cluster and finally weighted averaging of the results based on the error of each cluster. When implemented with 5 clusters and GBR, this approach yielded an MAE of 2.56 for SBP estimates and 2.23 for DBP estimates, which were significantly better than the best results without clustering (DBP: 6.27, SBP: 6.36).
Collapse
Affiliation(s)
- Ali Farki
- Department of Information Technology Engineering Industrial and Systems Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Reza Baradaran Kazemzadeh
- Department of Information Technology Engineering Industrial and Systems Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Elham Akhondzadeh Noughabi
- Department of Information Technology Engineering Industrial and Systems Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
86
|
Ibrahim B, Jafari R. Cuffless blood pressure monitoring from a wristband with calibration-free algorithms for sensing location based on bio-impedance sensor array and autoencoder. Sci Rep 2022; 12:319. [PMID: 35013376 PMCID: PMC8748973 DOI: 10.1038/s41598-021-03612-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Continuous monitoring of blood pressure (BP) is essential for the prediction and the prevention of cardiovascular diseases. Cuffless BP methods based on non-invasive sensors integrated into wearable devices can translate blood pulsatile activity into continuous BP data. However, local blood pulsatile sensors from wearable devices suffer from inaccurate pulsatile activity measurement based on superficial capillaries, large form-factor devices and BP variation with sensor location which degrade the accuracy of BP estimation and the device wearability. This study presents a cuffless BP monitoring method based on a novel bio-impedance (Bio-Z) sensor array built in a flexible wristband with small-form factor that provides a robust blood pulsatile sensing and BP estimation without calibration methods for the sensing location. We use a convolutional neural network (CNN) autoencoder that reconstructs an accurate estimate of the arterial pulse signal independent of sensing location from a group of six Bio-Z sensors within the sensor array. We rely on an Adaptive Boosting regression model which maps the features of the estimated arterial pulse signal to systolic and diastolic BP readings. BP was accurately estimated with average error and correlation coefficient of 0.5 ± 5.0 mmHg and 0.80 for diastolic BP, and 0.2 ± 6.5 mmHg and 0.79 for systolic BP, respectively.
Collapse
Affiliation(s)
- Bassem Ibrahim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
| | - Roozbeh Jafari
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA. .,Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA. .,Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
87
|
Natarajan K, Block RC, Yavarimanesh M, Chandrasekhar A, Mestha LK, Inan OT, Hahn JO, Mukkamala R. Photoplethysmography Fast Upstroke Time Intervals Can Be Useful Features for Cuff-Less Measurement of Blood Pressure Changes in Humans. IEEE Trans Biomed Eng 2022; 69:53-62. [PMID: 34097603 PMCID: PMC8782151 DOI: 10.1109/tbme.2021.3087105] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Photoplethysmography (PPG) waveform analysis is being increasingly investigated for continuous, non-invasive, and cuff-less blood pressure (BP) measurement. However, the efficacy of this approach and the useful features and models remain largely unclear. The objectives were to develop easy-to-understand models relating PPG waveform features to BP changes (after a cuff calibration) and to determine their value in BP measurement accuracy. METHODS The study data comprised finger, toe, and ear PPG waveforms, an ECG waveform, and reference manual cuff BP measurements from 32 human subjects (25% hypertensive) before and after slow breathing, mental arithmetic, cold pressor, and nitroglycerin administration. Stepwise linear regression was employed to create parsimonious models for predicting the intervention-induced BP changes from popular PPG waveform features, pulse arrival time (PAT, time delay between ECG R-wave and PPG foot), and subject demographics. Leave-one-subject-out cross validation was applied to compare the BP change prediction root-mean-squared-errors (RMSEs) of the resulting models to reference models in which PPG waveform features were excluded. RESULTS Finger b-time (PPG foot to minimum second derivative time interval) and ear "STT" (PPG amplitude divided by maximum derivative), when combined with PAT, reduced the systolic BP change prediction RMSE of reference models by 6-7% (p 0.022). Ear STT together with pulse width reduced the diastolic BP change prediction RMSE of the reference model by 13% (p = 0.003). CONCLUSION The two PPG fast upstroke time intervals can offer some added value in cuff-less BP trending. SIGNIFICANCE This study offers important information towards achieving non-invasive and passive BP monitoring without a cuff.
Collapse
Affiliation(s)
- Keerthana Natarajan
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823 USA
| | - Robert C. Block
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Mohammad Yavarimanesh
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823 USA
| | - Anand Chandrasekhar
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823 USA. He is now with the Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA 02142 USA
| | - Lalit K. Mestha
- Palo Alto Research Center East (a Xerox Company), Webster, NY 14580, USA. He is now with the Department of Electrical Engineering, University of Texas, Arlington, TX 78712, USA
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jin-Oh Hahn
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ramakrishna Mukkamala
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
88
|
Secure Health Monitoring Communication Systems Based on IoT and Cloud Computing for Medical Emergency Applications. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:8016525. [PMID: 34938329 PMCID: PMC8687823 DOI: 10.1155/2021/8016525] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/18/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022]
Abstract
Smart health surveillance technology has attracted wide attention between patients and professionals or specialists to provide early detection of critical abnormal situations without the need to be in direct contact with the patient. This paper presents a secure smart monitoring portable multivital signal system based on Internet-of-Things (IoT) technology. The implemented system is designed to measure the key health parameters: heart rate (HR), blood oxygen saturation (SpO2), and body temperature, simultaneously. The captured physiological signals are processed and encrypted using the Advanced Encryption Standard (AES) algorithm before sending them to the cloud. An ESP8266 integrated unit is used for processing, encryption, and providing connectivity to the cloud over Wi-Fi. On the other side, trusted medical organization servers receive and decrypt the measurements and display the values on the monitoring dashboard for the authorized specialists. The proposed system measurements are compared with a number of commercial medical devices. Results demonstrate that the measurements of the proposed system are within the 95% confidence interval. Moreover, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Relative Error (MRE) for the proposed system are calculated as 1.44, 1.12, and 0.012, respectively, for HR, 1.13, 0.92, and 0.009, respectively, for SpO2, and 0.13, 0.11, and 0.003, respectively, for body temperature. These results demonstrate the high accuracy and reliability of the proposed system.
Collapse
|
89
|
Dagamseh A, Qananwah Q, Al Quran H, Shaker Ibrahim K. Towards a portable-noninvasive blood pressure monitoring system utilizing the photoplethysmogram signal. BIOMEDICAL OPTICS EXPRESS 2021; 12:7732-7751. [PMID: 35003863 PMCID: PMC8713675 DOI: 10.1364/boe.444535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Blood pressure (BP) responds instantly to the body's conditions, such as movements, diseases or infections, and sudden excitation. Therefore, BP monitoring is a standard clinical measurement and is considered one of the fundamental health signs that assist in predicting and diagnosing several cardiovascular diseases. The traditional BP techniques (i.e. the cuff-based methods) only provide intermittent measurements over a certain period. Additionally, they cause turbulence in the blood flow, impeding the continuous BP monitoring, especially in emergency cases. In this study, an instrumentation system is designed to estimate BP noninvasively by measuring the PPG signal utilizing the optical technique. The photoplethysmogram (PPG) signals were measured and processed for ≈ 450 cases with different clinical conditions and irrespective of their health condition. A total of 13 features of the PPG signal were used to estimate the systolic and diastolic blood pressure (SBP and DBP), utilizing several machine learning techniques. The experimental results showed that the designed system is able to effectively describe the complex-embedded relationship between the features of the PPG signal and BP (SBP and DBP) with high accuracy. The mean absolute error (MAE) ± standard deviation (SD) was 4.82 ± 3.49 mmHg for the SBP and 1.37 ± 1.65 mmHg for the DBP, with a mean error (ME) of ≈ 0 mmHg. The estimation results are consistent with the Association for the American National Standards of the Association for the Advancement of Medical Instrumentation (AAMI) and achieved Grade A in the British Hypertension Society (BHS) standards for the DBP and Grade B for the SBP. Such a study effectively contributes to the scientific efforts targeting the promotion of the practical application for providing a portable-noninvasive instrumentation system for BP monitoring purposes. Once the BP is determined with sufficient accuracy, it can be utilized further in the early prediction and classification of various arrhythmias such as hypertension, tachycardia, bradycardia, and atrial fibrillation (as the early detection can be a critical issue).
Collapse
Affiliation(s)
- Ahmad Dagamseh
- Department of Electronics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, P.O. Box 21163, Irbid, Jordan
| | - Qasem Qananwah
- Department of Biomedical Systems and informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, P.O. Box 21163, Irbid, Jordan
| | - Hiam Al Quran
- Department of Biomedical Systems and informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, P.O. Box 21163, Irbid, Jordan
- Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Khalid Shaker Ibrahim
- Faculty of Medicine, Jordan University of Science and Technology, King Abdullah University Hospital, Irbid, Jordan
| |
Collapse
|
90
|
An Alignment-Free Sensing Module for Noninvasive Radial Artery Blood Pressure Measurement. ELECTRONICS 2021. [DOI: 10.3390/electronics10232896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sensor–artery alignment has always been a significant problem in arterial tonometry devices and prevents their application to wearable continuous blood pressure (BP) monitoring. Traditional solutions are to use a complex servo system to search for the best measurement position or to use an inefficient pressure sensor array. In this study, a novel solid–liquid mixture pressure sensing module is proposed. A flexible film with unique liquid-filled structures greatly reduces the pulse measurement error caused by sensor misplacement. The ideal measuring location was defined as −2.5 to 2.5 mm from the center of the module and the pressure variation was within 5.4%, which is available in the real application. Even at a distance of ±4 mm from the module center, the pressure decays by 23.7%, and its dynamic waveform is maintained. In addition, the sensing module is also endowed with the capability of measuring the pulse wave transmit time as a complementary method for BP measuring. The capability of the developed alignment-free sensing module in BP measurement was been validated. Twenty subjects were selected for the BP measurement experiment, which followed IEEE standards. The experimental results showed that the mean error of SBP is −4.26 mmHg with a standard deviation of 7.0 mmHg, and the mean error of DBP is 2.98 mmHg with a standard deviation of 5.07 mmHg. The device is expected to provide a new solution for wearable continuous BP monitoring.
Collapse
|
91
|
Finnegan E, Davidson S, Harford M, Jorge J, Watkinson P, Young D, Tarassenko L, Villarroel M. Pulse arrival time as a surrogate of blood pressure. Sci Rep 2021; 11:22767. [PMID: 34815419 PMCID: PMC8611024 DOI: 10.1038/s41598-021-01358-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Various models have been proposed for the estimation of blood pressure (BP) from pulse transit time (PTT). PTT is defined as the time delay of the pressure wave, produced by left ventricular contraction, measured between a proximal and a distal site along the arterial tree. Most researchers, when they measure the time difference between the peak of the R-wave in the electrocardiogram signal (corresponding to left ventricular depolarisation) and a fiducial point in the photoplethysmogram waveform (as measured by a pulse oximeter attached to the fingertip), describe this erroneously as the PTT. In fact, this is the pulse arrival time (PAT), which includes not only PTT, but also the time delay between the electrical depolarisation of the heart's left ventricle and the opening of the aortic valve, known as pre-ejection period (PEP). PEP has been suggested to present a significant limitation to BP estimation using PAT. This work investigates the impact of PEP on PAT, leading to a discussion on the best models for BP estimation using PAT or PTT. We conducted a clinical study involving 30 healthy volunteers (53.3% female, 30.9 ± 9.35 years old, with a body mass index of 22.7 ± 3.2 kg/m[Formula: see text]). Each session lasted on average 27.9 ± 0.6 min and BP was varied by an infusion of phenylephrine (a medication that causes venous and arterial vasoconstriction). We introduced new processing steps for the analysis of PAT and PEP signals. Various population-based models (Poon, Gesche and Fung) and a posteriori models (inverse linear, inverse squared and logarithm) for estimation of BP from PTT or PAT were evaluated. Across the cohort, PEP was found to increase by 5.5 ms ± 4.5 ms from its baseline value. Variations in PTT were significantly larger in amplitude, - 16.8 ms ± 7.5 ms. We suggest, therefore, that for infusions of phenylephrine, the contribution of PEP on PAT can be neglected. All population-based models produced large BP estimation errors, suggesting that they are insufficient for modelling the complex pathways relating changes in PTT or PAT to changes in BP. Although PAT is inversely correlated with systolic blood pressure (SBP), the gradient of this relationship varies significantly from individual to individual, from - 2946 to - 470.64 mmHg/s in our dataset. For the a posteriori inverse squared model, the root mean squared errors (RMSE) for systolic and diastolic blood pressure (DBP) estimation from PAT were 5.49 mmHg and 3.82 mmHg, respectively. The RMSEs for SBP and DBP estimation by PTT were 4.51 mmHg and 3.53 mmHg, respectively. These models take into account individual calibration curves required for accurate blood pressure estimation. The best performing population-based model (Poon) reported error values around double that of the a posteriori inverse squared model, and so the use of population-based models is not justified.
Collapse
Affiliation(s)
- Eoin Finnegan
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
| | - Shaun Davidson
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Mirae Harford
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
- Critical Care Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - João Jorge
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Peter Watkinson
- Critical Care Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Duncan Young
- Critical Care Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Lionel Tarassenko
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Mauricio Villarroel
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
92
|
Wang W, Mohseni P, Kilgore KL, Najafizadeh L. Cuff-less Blood Pressure Estimation from Photoplethysmography via Visibility Graph and Transfer Learning. IEEE J Biomed Health Inform 2021; 26:2075-2085. [PMID: 34784289 DOI: 10.1109/jbhi.2021.3128383] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper presents a new solution that enables the use of transfer learning for cuff-less blood pressure (BP) monitoring via short duration of photoplethysmogram (PPG). The proposed method estimates BP with low computational budget by 1) creating images from segments of PPG via visibility graph (VG) that preserves the temporal information of the PPG waveform, 2) using pre-trained deep convolutional neural network (CNN) to extract feature vectors from VG images, and 3) solving for the weights and bias between the feature vectors and the reference BPs with ridge regression. Using the University of California Irvine (UCI) database consisting of 348 records, the proposed method achieves a best error performance of 0.008.46 mmHg for systolic blood pressure (SBP), and -0.045.36 mmHg for diastolic blood pressure (DBP), respectively, in terms of the mean error (ME) and the standard deviation (SD) of error, ranking grade B for SBP and grade A for DBP under the British Hypertension Society (BHS) protocol. Our novel data-driven method offers a computationally-efficient end-to-end solution for rapid and user-friendly cuff-less PPG-based BP estimation.
Collapse
|
93
|
Ghosh A, Chatterjee T, Sarkar S. Introduction of Boosting Algorithms in Continuous Non-Invasive Cuff-less Blood Pressure Estimation using Pulse Arrival Time. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5429-5432. [PMID: 34892354 DOI: 10.1109/embc46164.2021.9630848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Blood Pressure (BP) is a critical biomarker for cardiorespiratory health. Conventional non-invasive BP measurement devices are mostly built on the principle of auscultation, oscillometry, or tonometry. The strong correlation between the Pulse Arrival Time (PAT) and BP has enabled unconstrained cuff-less BP monitoring. In this paper, we exploited that relationship for estimating Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), and Mean Arterial pressure (MAP) values. The proposed model involves extraction of PAT values by denoising the signals using advanced filtering techniques and finally employing machine learning algorithms to estimate cuff-less BP. The results are validated against Advancement of Medical Instrumentation (AAMI) standards and British Hypertension Society (BHS) protocols. The proposed method meets the AAMI standards in the context of estimating DBP and MAP values. The model's accuracy achieved Grade A for both MAP and DBP values using the CatBoost algorithm, whereas it achieved grade A for MAP and Grade B for DBP using the XGBoost algorithm based on the BHS standards.
Collapse
|
94
|
Passage B, Ibrahim B, Jafari R. Real-time Signal-to-Noise Ratio Optimization of Bio-Impedance Signal for Cuffless Blood Pressure Monitoring. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7480-7484. [PMID: 34892823 DOI: 10.1109/embc46164.2021.9630920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Continuous and unobtrusive blood pressure (BP) monitoring provides significant advantages in predicting the onset of cardiovascular disease. Bio-impedance sensing is a prominent method for continuous BP monitoring in a wearable form factor that can effectively measure blood pulsations from the arteries and translate them into BP. However, assessing the quality of the bio-impedance signal captured from small electrodes placed on the skin is required to determine the accuracy of BP estimation. In wearable devices, frequent movements of the electrodes on the skin are expected which cause non-optimal contact quality between the electrodes and the skin. This can lead to high skin-electrode impedance which can cause saturation of the current injection module of the bio-impedance device. This phenomenon degrades the signal quality In this paper, we present an automatic gain control (AGC) circuit that controls the amplitude of the current injection into the body based on sensing the skin-electrode impedance to ensure injection of maximum current to maximize the signal-to-noise ratio (SNR) while avoiding saturation of the current injection module. In this work, the proposed AGC method shows higher quality of blood pulsation from bio-impedance signal measured from a human subject with 1.59 dB improvement in SNR which leads to a better estimation of blood pressure.Clinical Relevance- The proposed automatic gain control (AGC) circuit establishes a more accurate method of continuous blood pressure monitoring using bio-impedance.
Collapse
|
95
|
El Hajj C, Kyriacou PA. Recurrent Neural Network Models for Blood Pressure Monitoring Using PPG Morphological Features. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1865-1868. [PMID: 34891651 DOI: 10.1109/embc46164.2021.9630319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Continuous non-invasive Blood Pressure (BP) monitoring is vital for the early detection and control of hypertension. However, this is yet not possible as all current non-invasive BP devices are cuff-based devices and hence precluding continuous monitoring. Several methods have been proposed to overcome this challenge, one of which utilises the Photoplethysmograph (PPG) signal in an effort to predict reliable BP values from this signal using various computational approaches. Although, good performance has been reported in the literature, it was mainly achieved on a small inadequate sample size using conventional models that are unable to account for the temporal variations in the input vector. To address these limitations, this paper proposes cuff-less and continuous blood pressure estimation using Long Short-term Memory (LSTM) and Gated Recurrent Units (GRU). The models were evaluated on 942 patients acquired from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC II) dataset. The proposed models produced superior results in comparison with conventional artificial neural network. In particular, the best performance was achieved by the GRU, with mean absolute error and standard deviation of 5.77 ± 8.52 mmHg and 3.33±5.02 mmHg for systolic (SBP) and diastolic blood pressure (DBP), respectively. Furthermore, the results comply with the international standards for cuff-less blood pressure estimation.
Collapse
|
96
|
Wang W, Mohseni P, Kilgore K, Najafizadeh L. PulseLab: An Integrated and Expandable Toolbox for Pulse Wave Velocity-based Blood Pressure Estimation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5654-5657. [PMID: 34892405 DOI: 10.1109/embc46164.2021.9630916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this paper, we introduce PulseLab, a comprehensive MATLAB toolbox that enables estimating the blood pressure (BP) from electrocardiogram (ECG) and photoplethysmogram (PPG) signals using pulse wave velocity (PWV)-based models. This universal framework consists of 6 sequential modules, covering end-to-end procedures that are needed for estimating BP from raw PPG/ECG data. These modules are "dataset formation", "signal pre-processing", "segmentation", "characteristic-points detection", "pulse transit time (PTT)/ pulse arrival time (PAT) calculation", and "model validation". The toolbox is expandable and its application programming interface (API) is built such that newly-derived PWV-BP models can be easily included. The toolbox also includes a user-friendly graphical user interface (GUI) offering visualization for step-by-step processing of physiological signals, position of characteristic points, PAT/PTT values, and the BP regression results. To the best of our knowledge, PulseLab is the first comprehensive toolbox that enables users to optimize their model by considering several factors along the process for obtaining the most accurate model for cuff-less BP estimation.
Collapse
|
97
|
Li Z, He W. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model. SENSORS (BASEL, SWITZERLAND) 2021; 21:7207. [PMID: 34770514 PMCID: PMC8587576 DOI: 10.3390/s21217207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022]
Abstract
Compared with diastolic blood pressure (DBP) and systolic blood pressure (SBP), the blood pressure (BP) waveform contains richer physiological information that can be used for disease diagnosis. However, most models based on photoplethysmogram (PPG) signals can only estimate SBP and DBP and are susceptible to noise signals. We focus on estimating the BP waveform rather than discrete BP values. We propose a model based on a generalized regression neural network to estimate the BP waveform, SBP and DBP. This model takes the raw PPG signal as input and BP waveform as output. The SBP and DBP are extracted from the estimated BP waveform. In addition, the model contains encoders and decoders, and their role is to be responsible for the conversion between the time domain and frequency domain of the waveform. The prediction results of our model show that the mean absolute error is 3.96 ± 5.36 mmHg for SBP and 2.39 ± 3.28 mmHg for DBP, the root mean square error is 5.54 for SBP and 3.45 for DBP. These results fulfill the Association for the Advancement of Medical Instrumentation (AAMI) standard and obtain grade A according to the British Hypertension Society (BHS) standard. The results show that the proposed model can effectively estimate the BP waveform only using the raw PPG signal.
Collapse
Affiliation(s)
| | - Wei He
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China;
| |
Collapse
|
98
|
Khan Mamun MMR. Cuff-less blood pressure measurement based on hybrid feature selection algorithm and multi-penalty regularized regression technique. Biomed Phys Eng Express 2021; 7. [PMID: 34633299 DOI: 10.1088/2057-1976/ac2ea8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
One of the prominent reasons behind the deterioration of cardiovascular conditions is hypertension. Due to lack of specific symptoms, sometimes existing hypertension goes unnoticed until significant damage happens to the heart or any other body organ. Monitoring of BP at a higher frequency is necessary so that we can take early preventive measures to control and keep it within the normal range. The cuff-based method of measuring BP is inconvenient for frequent daily measurements. The cuffless BP measurement method proposed in this paper uses features extracted from the electrocardiogram (ECG) and photoplethysmography (PPG). ECG and PPG both have distinct characteristics, which change with the change of blood pressure levels. Feature extraction and hybrid feature selection algorithms are followed by a generalized penalty-based regression technique led to a new BP measurement process that uses the minimum number of features. The performance of the proposed technique to measure blood pressure was compared to an approach using an ordinary linear regression method with no feature selection and to other contemporary techniques. MIMIC-II database was used to train and test our proposed method. The root mean square error (RMSE) for systolic blood pressure (SBP) improved from 11.2 mmHg to 5.6 mmHg when the proposed technique was implemented and for diastolic blood pressure (DBP) improved from 12.7 mmHg to 6.69 mmHg. The mean absolute error (MAE) was found to be 4.91 mmHg for SBP and 5.77 mmHg for DBP, which have shown improvement over other existing cuffless techniques where the substantial number of patients, as well as feature selection algorithm, were implemented. In addition, according to the British Hypertension Society standard (BHS) standard for cuff-based BP measurement, the criteria for acceptable measurement are to achieve at least grade B; our proposed method also satisfies this criterion.
Collapse
|
99
|
Batista E, Moncusi MA, López-Aguilar P, Martínez-Ballesté A, Solanas A. Sensors for Context-Aware Smart Healthcare: A Security Perspective. SENSORS (BASEL, SWITZERLAND) 2021; 21:6886. [PMID: 34696099 PMCID: PMC8537585 DOI: 10.3390/s21206886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022]
Abstract
The advances in the miniaturisation of electronic devices and the deployment of cheaper and faster data networks have propelled environments augmented with contextual and real-time information, such as smart homes and smart cities. These context-aware environments have opened the door to numerous opportunities for providing added-value, accurate and personalised services to citizens. In particular, smart healthcare, regarded as the natural evolution of electronic health and mobile health, contributes to enhance medical services and people's welfare, while shortening waiting times and decreasing healthcare expenditure. However, the large number, variety and complexity of devices and systems involved in smart health systems involve a number of challenging considerations to be considered, particularly from security and privacy perspectives. To this aim, this article provides a thorough technical review on the deployment of secure smart health services, ranging from the very collection of sensors data (either related to the medical conditions of individuals or to their immediate context), the transmission of these data through wireless communication networks, to the final storage and analysis of such information in the appropriate health information systems. As a result, we provide practitioners with a comprehensive overview of the existing vulnerabilities and solutions in the technical side of smart healthcare.
Collapse
Affiliation(s)
- Edgar Batista
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; (E.B.); (M.A.M.); (A.M.-B.)
- SIMPPLE S.L., C. Joan Maragall 1A, 43003 Tarragona, Spain
| | - M. Angels Moncusi
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; (E.B.); (M.A.M.); (A.M.-B.)
| | - Pablo López-Aguilar
- Anti-Phishing Working Group EU, Av. Diagonal 621–629, 08028 Barcelona, Spain;
| | - Antoni Martínez-Ballesté
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; (E.B.); (M.A.M.); (A.M.-B.)
| | - Agusti Solanas
- Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; (E.B.); (M.A.M.); (A.M.-B.)
| |
Collapse
|
100
|
Zhang G, Wang Z, Hou F, Wan Z, Chen F, Yu M, Wang J, Wang H. Heart rate variability enhances the accuracy of non-invasive continuous blood pressure estimation under blood loss. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:105106. [PMID: 34717391 DOI: 10.1063/5.0037661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
To propose a new method for real-time monitoring of blood pressure of blood loss (BPBL), this article combines pulse transit time (PTT) and heart rate variability (HRV) as input parameters to build a model for BPBL estimation. In this article, effective parameters such as PTT, R-R interval (RRI), and HRV were extracted and used to establish the blood pressure (BP) estimation. Three BP estimation models were created: the PTT model, the RRI model, and the HRV model, and they were divided into an experimental group and a control group. Finally, the effects of the different estimation models on the accuracy of BPBL were evaluated using the experimental results. The result showed that both the RRI model and the HRV model have a good improvement effect on the prediction accuracy of BPBL, and the HRV model has the highest prediction accuracy than the PTT model and the RRI model. The correlation coefficients between the actual systolic BP (SBP) and diastolic BP (DBP) and the estimated SBP and DBP of the HRV model were 0.9580 and 0.9749, respectively, and the root-mean-square error of the HRV model for both SBP and DBP were 7.59 and 6.56 mmHg, respectively. The results suggest that the accuracy of the BPBL estimated by the HRV models is better than that of the PTT model, which means that HRV seems to be more effective in improving the accuracy of BP estimation compared with RRI. These results in this article provide a new idea for other researchers in the field of BPBL estimation research.
Collapse
Affiliation(s)
- Guang Zhang
- Institute of Medical Support, Academy of Military Sciences, Tianjin 300161, China
| | - Zongge Wang
- Institute of Medical Support, Academy of Military Sciences, Tianjin 300161, China
| | - Feixiang Hou
- Institute of Medical Support, Academy of Military Sciences, Tianjin 300161, China
| | - Zongming Wan
- Tianjin College, University of Science and Technology Beijing, Tianjin 301830, China
| | - Feng Chen
- Institute of Medical Support, Academy of Military Sciences, Tianjin 300161, China
| | - Ming Yu
- Institute of Medical Support, Academy of Military Sciences, Tianjin 300161, China
| | - Jinhai Wang
- School of Life Sciences, TianGong University, Tianjin 300387, China
| | - Huiquan Wang
- School of Life Sciences, TianGong University, Tianjin 300387, China
| |
Collapse
|