51
|
Niu L, Guo Y, Lin Z, Shi Z, Bian T, Qi L, Meng L, Grace AA, Zheng H, Yuan TF. Noninvasive ultrasound deep brain stimulation of nucleus accumbens induces behavioral avoidance. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1328-1336. [PMID: 32180109 DOI: 10.1007/s11427-019-1616-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/03/2020] [Indexed: 01/03/2023]
Abstract
Ultrasound stimulation is an emerging noninvasive option in treating neuropsychiatric disorders. The present study investigates the behavioral alterations resulting from ultrasound stimulation on the nucleus accumbens (NAc) in freely moving mice. Our results show that an acute ultrasound stimulation on the NAc, rather than the visual cortex or auditory cortex, led to a pronounced avoidance behavior, while repeated NAc ultrasound stimulation resulted in an obvious conditioned place aversion with changes in synaptic protein (GluA1/2 subunit) expression. Notably, NAc ultrasound stimulation suppressed the morphine-induced conditioned place preference. The results provide evidence that NAc ultrasound stimulation can be applied as a potential noninvasive therapeutic option in treating psychiatric disorders.
Collapse
Affiliation(s)
- Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yanchen Guo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengrong Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhe Shi
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.,Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Tianyuan Bian
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lin Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110016, China
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
52
|
Yuan Y, Zhao Z, Wang Z, Wang X, Yan J, Li X. The Effect of Low-Intensity Transcranial Ultrasound Stimulation on Behavior in a Mouse Model of Parkinson's Disease Induced by MPTP. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1017-1021. [PMID: 32149644 DOI: 10.1109/tnsre.2020.2978865] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study investigated the effects of low-intensity transcranial ultrasound stimulation (TUS) on behavior in a mouse model of Parkinson's disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The PD mouse model was induced by consecutive injecting the mice with MPTP for 7 days. When the animal model is completed, we performed behavioral tests including the wire hanging test, open field test and forced swimming test on day 1, 2, 3, 4, 7, 14 during 2 weeks. Simultaneously, the ultrasound was used to stimulate the brain tissue of the mice daily for these 2 weeks. The data were analyzed to examine treatment effects. When the PD+TUS and PD+Sham groups were compared, the behavior of the PD+TUS mice was better on the fourth day after TUS (*p<0.05) and had further improved on the fourteenth day of TUS (**p<0.01). These results demonstrate that TUS can improve behavior in mice with MPTP-induced PD. The treatment effect gradually improved as the TUS duration increased.
Collapse
|
53
|
Li D, Cui Z, Xu S, Xu T, Wu S, Bouakaz A, Wan M, Zhang S. Low-Intensity Focused Ultrasound Stimulation Treatment Decreases Blood Pressure in Spontaneously Hypertensive Rats. IEEE Trans Biomed Eng 2020; 67:3048-3056. [PMID: 32086192 DOI: 10.1109/tbme.2020.2975279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE We applied low-intensity focused ultrasound (LIFU) stimulation of the ventrolateral periaqueductal gray (vlPAG) in spontaneously hypertensive rats (SHRs) model to demonstrate the feasibility of LIFU stimulation to decrease blood pressure (BP). METHODS The rats were treated with LIFU stimulation for 20 min every day for one week. The change of BP and heart rate (HR) were recorded to evaluate the antihypertensive effect. Then the plasma levels of epinephrine (EPI), norepinephrine (NE), and angiotensin II (ANGII) were measured to evaluate the activity of the sympathetic nervous system (SNS) and the renin-angiotensin system (RAS). The c-fos immunofluorescence assay was performed to investigate the antihypertensive nerve pathway. Moreover, the biological safety of ultrasound sonication was examined. RESULTS The LIFU stimulation induced a significant reduction of BP in 8 SHRs. The mean systolic blood pressure (SBP) was reduced from 170 ± 4 mmHg to 128 ± 4.5 mmHg after a one-week treatment, p < 0.01. The activity of SNS and RAS were also inhibited. The results of the c-fos immunofluorescence assay showed that US stimulation of the vlPAG significantly enhanced the neuronal activity both in vlPAG and caudal ventrolateral medulla (CVLM) regions. And the US stimulation used in this study did not cause significant tissue damage, hemorrhage and cell apoptosis in the sonication region. CONCLUSION The results support that LIFU stimulation of the vlPAG could relieve hypertension in SHRs. SIGNIFICANCE The LIFU stimulation of the vlPAG could potentially be a new alternative non-invasive device therapy for hypertension.
Collapse
|
54
|
Zhou H, Niu L, Xia X, Lin Z, Liu X, Su M, Guo R, Meng L, Zheng H. Wearable Ultrasound Improves Motor Function in an MPTP Mouse Model of Parkinson's Disease. IEEE Trans Biomed Eng 2019; 66:3006-3013. [DOI: 10.1109/tbme.2019.2899631] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
55
|
Tsai SJ. Preventive potential of low intensity pulsed ultrasound for chronic traumatic encephalopathy after repetitive head collisions in contact sports. Med Hypotheses 2019; 134:109422. [PMID: 31654885 DOI: 10.1016/j.mehy.2019.109422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 01/25/2023]
Abstract
Chronic traumatic encephalopathy (CTE), a disease process well-recognized in boxers, American football players and military personnel, is a progressive neurodegenerative disease caused by repetitive blows to the head. Subjects with CTE can have a wide range of emotional, cognitive and physical symptoms. The cognitive group patients had a significantly higher probability of developing dementia in later years. Currently, there are no disease modifying regimen for CTE. Timely intervention of head blow could diminish the development of CTE. Low-intensity pulsed ultrasound (LIPUS) is a common adjunct used to promote bone healing for fresh fracture. Recent reports suggest that LIPUS can noninvasively modulate the cortical function and have neuroprotective effect in various animal models of traumatic brain injury, stroke, Alzheimer's disease and major depressive disorder. The multifunctional mechanisms of LIPUS neuroprotective effect include several trophic factor stimulations, anti-inflammatory properties and reduction of brain edema. From the above evidence, LIPUS intervention could be a strategy for the prevention of the clinical CTE sequelae of repetitive head blows. We hypothesized that due to its neuroprotective effects, the non-invasive and easy-to-use method of LIPUS brain stimulation could have a preventive effect on players who have head blows during the match. The development of a time sensitive protocol, resembling the therapeutic algorithm for traumatic brain injury, would potentially prevent the development of subsequent CTE adverse outcome. Further long-term longitudinal studies of LIPUS stimulation are warranted to verify the prevention efficacy of this intervention for CTE.
Collapse
Affiliation(s)
- Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taiwan; Brain Research Center, National Yang-Ming University, Taiwan.
| |
Collapse
|
56
|
Li X, Yang H, Yan J, Wang X, Yuan Y, Li X. Seizure control by low-intensity ultrasound in mice with temporal lobe epilepsy. Epilepsy Res 2019; 154:1-7. [DOI: 10.1016/j.eplepsyres.2019.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/23/2019] [Accepted: 04/03/2019] [Indexed: 12/31/2022]
|
57
|
Wang P, Zhang J, Yu J, Smith C, Feng W. Brain Modulatory Effects by Low-Intensity Transcranial Ultrasound Stimulation (TUS): A Systematic Review on Both Animal and Human Studies. Front Neurosci 2019; 13:696. [PMID: 31396029 PMCID: PMC6667677 DOI: 10.3389/fnins.2019.00696] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023] Open
Abstract
Background and objective: Low Intensity Transcranial Ultrasound Stimulation (TUS) is a new form of non-invasive brain modulation with promising data; however, systematic reviews on the brain modulatory effects of TUS on both animals and humans have not been well-conducted. We aimed to conduct a systematic review on the studies using the TUS to modulate the brain functions and associated behavioral changes in both animals and humans. Methods: A literature search for published studies in the past 10 years was conducted. Two authors independently reviewed the relevant articles. Data were extracted and qualitatively summarized. Quality of studies was assessed by the SYRCLE's risk of bias tool for preclinical studies or the PEDro scale for clinical studies. Results: A total of 24 animal studies (506 animals) and 11 human studies (213 subjects) were included. Findings based on most animal studies demonstrated the excitatory or suppressive modulatory effects of ultrasonic stimulations on motor cortex, somatosensory cortex, thalamus, prefrontal cortex, auditory, and visual areas. Brain modulatory effects also were found among healthy human subjects in seven studies and two clinical studies suggested TUS may result in potential benefits on patients with disorder of consciousness or chronic pain. The safety concerns of TUS seem to be minor based on the human studies. Conclusions: TUS appears to be a viable technique in modulating the brain functions; however, research on TUS is still in its early stages, especially in human studies. Parameters need to be optimized before launching systematic investigations in humans.
Collapse
Affiliation(s)
- Pu Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiadan Yu
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, China
| | - Colin Smith
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
58
|
Zhou H, Niu L, Meng L, Lin Z, Zou J, Xia X, Huang X, Zhou W, Bian T, Zheng H. Noninvasive Ultrasound Deep Brain Stimulation for the Treatment of Parkinson's Disease Model Mouse. RESEARCH 2019; 2019:1748489. [PMID: 31549045 PMCID: PMC6750068 DOI: 10.34133/2019/1748489] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/22/2019] [Indexed: 01/22/2023]
Abstract
Modulating basal ganglia circuitry is of great significance in the improvement of motor function in Parkinson's disease (PD). Here, for the first time, we demonstrate that noninvasive ultrasound deep brain stimulation (UDBS) of the subthalamic nucleus (STN) or the globus pallidus (GP) improves motor behavior in a subacute mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunohistochemical c-Fos protein expression confirms that there is a relatively high level of c-Fos expression in the STN-UDBS and GP-UDBS group compared with sham group (both p < 0.05). Furthermore, STN-UDBS or GP-UDBS significantly increases the latency to fall in the rotarod test on day 9 (p < 0.05) and decreases the time spent climbing down a vertical rod in the pole test on day 12 (p < 0.05). Moreover, our results reveal that STN-UDBS or GP-UDBS protects the dopamine (DA) neurons from MPTP neurotoxicity by downregulating Bax (p < 0.001), upregulating Bcl-2 (p < 0.01), blocking cytochrome c (Cyt C) release from mitochondria (p < 0.05), and reducing cleaved-caspase 3 activity (p < 0.01) in the ipsilateral substantia nigra (SN). Additionally, the safety of ultrasound stimulation is characterized by hematoxylin and eosin (HE) and Nissl staining; no hemorrhage or tissue damage is detected. These data demonstrate that UDBS enables modulation of STN or GP neural activity and leads to neuroprotection in PD mice, potentially serving as a noninvasive strategy for the clinical treatment of PD.
Collapse
Affiliation(s)
- Hui Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Zhengrong Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Junjie Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Xiangxiang Xia
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Xiaowei Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Wei Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, China
| | - Tianyuan Bian
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| |
Collapse
|
59
|
Yuan Y, Wang X, Yan J, Li X. The effect of anesthetic dose on the motor response induced by low-intensity pulsed ultrasound stimulation. BMC Neurosci 2018; 19:78. [PMID: 30509160 PMCID: PMC6278113 DOI: 10.1186/s12868-018-0476-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
Background Low-intensity pulsed ultrasound stimulation (LIPUS) has been proven to be a noninvasive method with high spatial resolution and deep penetration. Previous studies have qualitatively demonstrated that the electromyographic response caused by LIPUS in the mouse motor cortex is affected by the anesthetic state of the mice. However, the quantitative relationship between motor response and anesthetic dose remains unclear. Results Experimental results show that the success rate decreases stepwise as the isoflurane concentration/mouse weight ratio increases (ratios: [0.004%/g, 0.01%/g], success rate: ~ 90%; [0.012%/g, 0.014%/g], ~ 40%; [0.016%/g, 0.018%/g], ~ 7%; 0.024%/g, 0). The latency and duration of EMG increase significantly when the ratio is more than 0.016%/g. Compared with that at ratios from 0.004 to 0.016%/g, normalized EMG amplitude decreases significantly at ratios of 0.018%/g and 0.020%/g. Conclusions Quantitative calculations indicate that the anesthetic dose has a significant regulatory effect on the motor response of mice during LIPUS. Our results have guiding significance for the selection of the anesthetic dose for LIPUS in mouse motor cortex experiments.
Collapse
Affiliation(s)
- Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Xingran Wang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, 10041, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|