51
|
Ni P, Wang J, Zhong P, Li Y, Wu FX, Pan Y. Constructing Disease Similarity Networks Based on Disease Module Theory. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:906-915. [PMID: 29993782 DOI: 10.1109/tcbb.2018.2817624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Quantifying the associations between diseases is now playing an important role in modern biology and medicine. Actually discovering associations between diseases could help us gain deeper insights into pathogenic mechanisms of complex diseases, thus could lead to improvements in disease diagnosis, drug repositioning, and drug development. Due to the growing body of high-throughput biological data, a number of methods have been developed for computing similarity between diseases during the past decade. However, these methods rarely consider the interconnections of genes related to each disease in protein-protein interaction network (PPIN). Recently, the disease module theory has been proposed, which states that disease-related genes or proteins tend to interact with each other in the same neighborhood of a PPIN. In this study, we propose a new method called ModuleSim to measure associations between diseases by using disease-gene association data and PPIN data based on disease module theory. The experimental results show that by considering the interactions between disease modules and their modularity, the disease similarity calculated by ModuleSim has a significant correlation with disease classification of Disease Ontology (DO). Furthermore, ModuleSim outperforms other four popular methods which are all using disease-gene association data and PPIN data to measure disease-disease associations. In addition, the disease similarity network constructed by MoudleSim suggests that ModuleSim is capable of finding potential associations between diseases.
Collapse
|
52
|
Jiang H, Wang J, Li M, Lan W, Wu FX, Pan Y. miRTRS: A Recommendation Algorithm for Predicting miRNA Targets. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1032-1041. [PMID: 30281478 DOI: 10.1109/tcbb.2018.2873299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
microRNAs (miRNAs) are small and important non-coding RNAs that regulate gene expression in transcriptional and post-transcriptional level by combining with their targets (genes). Predicting miRNA targets is an important problem in biological research. It is expensive and time-consuming to identify miRNA targets by using biological experiments. Many computational methods have been proposed to predict miRNA targets. In this study, we develop a novel method, named miRTRS, for predicting miRNA targets based on a recommendation algorithm. miRTRS can predict targets for an isolated (new) miRNA with miRNA sequence similarity, as well as isolated (new) targets for a miRNA with gene sequence similarity. Furthermore, when compared to supervised machine learning methods, miRTRS does not need to select negative samples. We use 10-fold cross validation and independent datasets to evaluate the performance of our method. We compared miRTRS with two most recently published methods for miRNA target prediction. The experimental results have shown that our method miRTRS outperforms competing prediction methods in terms of AUC and other evaluation metrics.
Collapse
|
53
|
Zheng R, Liang Z, Chen X, Tian Y, Cao C, Li M. An Adaptive Sparse Subspace Clustering for Cell Type Identification. Front Genet 2020; 11:407. [PMID: 32425984 PMCID: PMC7212354 DOI: 10.3389/fgene.2020.00407] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/31/2020] [Indexed: 01/04/2023] Open
Abstract
The rapid development of single-cell transcriptome sequencing technology has provided us with a cell-level perspective to study biological problems. Identification of cell types is one of the fundamental issues in computational analysis of single-cell data. Due to the large amount of noise from single-cell technologies and high dimension of expression profiles, traditional clustering methods are not so applicable to solve it. To address the problem, we have designed an adaptive sparse subspace clustering method, called AdaptiveSSC, to identify cell types. AdaptiveSSC is based on the assumption that the expression of cells with the same type lies in the same subspace; one cell can be expressed as a linear combination of the other cells. Moreover, it uses a data-driven adaptive sparse constraint to construct the similarity matrix. The comparison results of 10 scRNA-seq datasets show that AdaptiveSSC outperforms original subspace clustering and other state-of-art methods in most cases. Moreover, the learned similarity matrix can also be integrated with a modified t-SNE to obtain an improved visualization result.
Collapse
Affiliation(s)
- Ruiqing Zheng
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhenlan Liang
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Xiang Chen
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Yu Tian
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Chen Cao
- Departments of Biochemistry & Molecular Biology and Medical Genetics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
54
|
Wang J, Kuang Z, Ma Z, Han G. GBDTL2E: Predicting lncRNA-EF Associations Using Diffusion and HeteSim Features Based on a Heterogeneous Network. Front Genet 2020; 11:272. [PMID: 32351537 PMCID: PMC7174746 DOI: 10.3389/fgene.2020.00272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/06/2020] [Indexed: 12/02/2022] Open
Abstract
Interactions between genetic factors and environmental factors (EFs) play an important role in many diseases. Many diseases result from the interaction between genetics and EFs. The long non-coding RNA (lncRNA) is an important non-coding RNA that regulates life processes. The ability to predict the associations between lncRNAs and EFs is of important practical significance. However, the recent methods for predicting lncRNA-EF associations rarely use the topological information of heterogenous biological networks or simply treat all objects as the same type without considering the different and subtle semantic meanings of various paths in the heterogeneous network. In order to address this issue, a method based on the Gradient Boosting Decision Tree (GBDT) to predict the association between lncRNAs and EFs (GBDTL2E) is proposed in this paper. The innovation of the GBDTL2E integrates the structural information and heterogenous networks, combines the Hetesim features and the diffusion features based on multi-feature fusion, and uses the machine learning algorithm GBDT to predict the association between lncRNAs and EFs based on heterogeneous networks. The experimental results demonstrate that the proposed algorithm achieves a high performance.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhufang Kuang
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhihao Ma
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Genwei Han
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
55
|
Yan C, Wu FX, Wang J, Duan G. PESM: predicting the essentiality of miRNAs based on gradient boosting machines and sequences. BMC Bioinformatics 2020; 21:111. [PMID: 32183740 PMCID: PMC7079416 DOI: 10.1186/s12859-020-3426-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a kind of small noncoding RNA molecules that are direct posttranscriptional regulations of mRNA targets. Studies have indicated that miRNAs play key roles in complex diseases by taking part in many biological processes, such as cell growth, cell death and so on. Therefore, in order to improve the effectiveness of disease diagnosis and treatment, it is appealing to develop advanced computational methods for predicting the essentiality of miRNAs. Result In this study, we propose a method (PESM) to predict the miRNA essentiality based on gradient boosting machines and miRNA sequences. First, PESM extracts the sequence and structural features of miRNAs. Then it uses gradient boosting machines to predict the essentiality of miRNAs. We conduct the 5-fold cross-validation to assess the prediction performance of our method. The area under the receiver operating characteristic curve (AUC), F-measure and accuracy (ACC) are used as the metrics to evaluate the prediction performance. We also compare PESM with other three competing methods which include miES, Gaussian Naive Bayes and Support Vector Machine. Conclusion The results of experiments show that PESM achieves the better prediction performance (AUC: 0.9117, F-measure: 0.8572, ACC: 0.8516) than other three computing methods. In addition, the relative importance of all features also further shows that newly added features can be helpful to improve the prediction performance of methods.
Collapse
Affiliation(s)
- Cheng Yan
- Hunan Provincial Key Lab on Bioinformtics, School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China.,School of Computer and Information,Qiannan Normal University for Nationalities, Longshan Road, DuYun, 558000, China
| | - Fang-Xiang Wu
- Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SKS7N5A9, Canada
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformtics, School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China
| | - Guihua Duan
- Hunan Provincial Key Lab on Bioinformtics, School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China.
| |
Collapse
|
56
|
Lan W, Zhu M, Chen Q, Chen B, Liu J, Li M, Chen YPP. CircR2Cancer: a manually curated database of associations between circRNAs and cancers. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5979746. [PMID: 33181824 PMCID: PMC7661096 DOI: 10.1093/database/baaa085] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 01/16/2023]
Abstract
Accumulating evidences have shown that the deregulation of circRNA has close association with many human cancers. However, these experimental verified circRNA–cancer associations are not collected in any database. Here, we develop a manually curated database (circR2Cancer) that provides experimentally supported associations between circRNAs and cancers. The current version of the circR2Cancer contains 1439 associations between 1135 circRNAs and 82 cancers by extracting data from existing literatures and databases. In addition, circR2Cancer contains the information of cancer exacted from Disease Ontology and basic biological information of circRNAs from circBase. At the same time, circR2Cancer provides a simple and friendly interface for users to conveniently browse, search and download the data. It will be a useful and valuable resource for researchers to understanding the regulation mechanism of circRNA in cancers. Database URL http://www.biobdlab.cn:8000
Collapse
Affiliation(s)
- Wei Lan
- School of Computer, Electronic and Information, Guangxi University, No.100 Daxue East Road, Nanning, Guangxi, 530004, China.,Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, No. 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Mingrui Zhu
- School of Computer, Electronic and Information, Guangxi University, No.100 Daxue East Road, Nanning, Guangxi, 530004, China
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, No.100 Daxue East Road, Nanning, Guangxi, 530004, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, No.100 Daxue East Road, Nanning, Guangxi, 530004, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, No.100 Daxue East Road, Nanning, Guangxi, 530004, China
| | - Jin Liu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, No. 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, No. 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University Plenty Rd & Kingsbury Dr, Melbourne, Vic 3086, Australia
| |
Collapse
|
57
|
Yan C, Duan G, Wu FX, Wang J. IILLS: predicting virus-receptor interactions based on similarity and semi-supervised learning. BMC Bioinformatics 2019; 20:651. [PMID: 31881820 PMCID: PMC6933616 DOI: 10.1186/s12859-019-3278-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Viral infectious diseases are the serious threat for human health. The receptor-binding is the first step for the viral infection of hosts. To more effectively treat human viral infectious diseases, the hidden virus-receptor interactions must be discovered. However, current computational methods for predicting virus-receptor interactions are limited. Result In this study, we propose a new computational method (IILLS) to predict virus-receptor interactions based on Initial Interaction scores method via the neighbors and the Laplacian regularized Least Square algorithm. IILLS integrates the known virus-receptor interactions and amino acid sequences of receptors. The similarity of viruses is calculated by the Gaussian Interaction Profile (GIP) kernel. On the other hand, we also compute the receptor GIP similarity and the receptor sequence similarity. Then the sequence similarity is used as the final similarity of receptors according to the prediction results. The 10-fold cross validation (10CV) and leave one out cross validation (LOOCV) are used to assess the prediction performance of our method. We also compare our method with other three competing methods (BRWH, LapRLS, CMF). Conlusion The experiment results show that IILLS achieves the AUC values of 0.8675 and 0.9061 with the 10-fold cross validation and leave-one-out cross validation (LOOCV), respectively, which illustrates that IILLS is superior to the competing methods. In addition, the case studies also further indicate that the IILLS method is effective for the virus-receptor interaction prediction.
Collapse
Affiliation(s)
- Cheng Yan
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China.,School of Computer and Information,Qiannan Normal University for Nationalities, Longshan Road, DuYun, 558000, China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China.
| | - Fang-Xiang Wu
- Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SKS7N5A9, Canada
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China
| |
Collapse
|
58
|
Yan C, Duan G, Pan Y, Wu FX, Wang J. DDIGIP: predicting drug-drug interactions based on Gaussian interaction profile kernels. BMC Bioinformatics 2019; 20:538. [PMID: 31874609 PMCID: PMC6929542 DOI: 10.1186/s12859-019-3093-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND A drug-drug interaction (DDI) is defined as a drug effect modified by another drug, which is very common in treating complex diseases such as cancer. Many studies have evidenced that some DDIs could be an increase or a decrease of the drug effect. However, the adverse DDIs maybe result in severe morbidity and even morality of patients, which also cause some drugs to withdraw from the market. As the multi-drug treatment becomes more and more common, identifying the potential DDIs has become the key issue in drug development and disease treatment. However, traditional biological experimental methods, including in vitro and vivo, are very time-consuming and expensive to validate new DDIs. With the development of high-throughput sequencing technology, many pharmaceutical studies and various bioinformatics data provide unprecedented opportunities to study DDIs. RESULT In this study, we propose a method to predict new DDIs, namely DDIGIP, which is based on Gaussian Interaction Profile (GIP) kernel on the drug-drug interaction profiles and the Regularized Least Squares (RLS) classifier. In addition, we also use the k-nearest neighbors (KNN) to calculate the initial relational score in the presence of new drugs via the chemical, biological, phenotypic data of drugs. We compare the prediction performance of DDIGIP with other competing methods via the 5-fold cross validation, 10-cross validation and de novo drug validation. CONLUSION In 5-fold cross validation and 10-cross validation, DDRGIP method achieves the area under the ROC curve (AUC) of 0.9600 and 0.9636 which are better than state-of-the-art method (L1 Classifier ensemble method) of 0.9570 and 0.9599. Furthermore, for new drugs, the AUC value of DDIGIP in de novo drug validation reaches 0.9262 which also outperforms the other state-of-the-art method (Weighted average ensemble method) of 0.9073. Case studies and these results demonstrate that DDRGIP is an effective method to predict DDIs while being beneficial to drug development and disease treatment.
Collapse
Affiliation(s)
- Cheng Yan
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083 China
- School of Computer and Information,Qiannan Normal University for Nationalities, Longshan Road, DuYun, 558000 China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083 China
| | - Yi Pan
- Department of Computer Science, Georgia State University, Atlanta, GA30302 USA
| | - Fang-Xiang Wu
- Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SKS7N5A9 Canada
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083 China
| |
Collapse
|
59
|
Osone T, Yoshida N. The Relationship Between the miRNA Sequence and Disease May be Revealed by Focusing on Hydrogen Bonding Sites in RNA-RNA Interactions. Cells 2019; 8:cells8121615. [PMID: 31835885 PMCID: PMC6952923 DOI: 10.3390/cells8121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs are important genes in biological processes. Although the function of microRNAs has been elucidated, the relationship between the sequence and the disease is not sufficiently clear. It is important to clarify the relationship between the sequence and the disease because it is possible to clarify the meaning of the microRNA genetic code consisting of four nucleobases. Since seed theory is based on sequences, its development can be expected to reveal the meaning of microRNA sequences. However, this method has many false positives and false negatives. On the other hand, disease-related microRNA searches using network analysis are not based on sequences, so it is difficult to clarify the relationship between sequences and diseases. Therefore, RNA–RNA interactions which are caused by hydrogen bonding were focused on. As a result, it was clarified that sequences and diseases were highly correlated by calculating the electric field in microRNA which is considered as the torus. It was also suggested that four diseases with different major classifications can be distinguished. Conventionally, RNA was interpreted as a one-dimensional array of four nucleobases, but a new approach to RNA from this study can be expected to provide a new perspective on RNA-RNA interactions.
Collapse
Affiliation(s)
- Tatsunori Osone
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
- Correspondence: ; Tel.: +81-50-3568-0281
| | - Naohiro Yoshida
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan;
| |
Collapse
|
60
|
An improved random forest-based computational model for predicting novel miRNA-disease associations. BMC Bioinformatics 2019; 20:624. [PMID: 31795954 PMCID: PMC6889672 DOI: 10.1186/s12859-019-3290-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/21/2019] [Indexed: 01/29/2023] Open
Abstract
Background A large body of evidence shows that miRNA regulates the expression of its target genes at post-transcriptional level and the dysregulation of miRNA is related to many complex human diseases. Accurately discovering disease-related miRNAs is conductive to the exploring of the pathogenesis and treatment of diseases. However, because of the limitation of time-consuming and expensive experimental methods, predicting miRNA-disease associations by computational models has become a more economical and effective mean. Results Inspired by the work of predecessors, we proposed an improved computational model based on random forest (RF) for identifying miRNA-disease associations (IRFMDA). First, the integrated similarity of diseases and the integrated similarity of miRNAs were calculated by combining the semantic similarity and Gaussian interaction profile kernel (GIPK) similarity of diseases, the functional similarity and GIPK similarity of miRNAs, respectively. Then, the integrated similarity of diseases and the integrated similarity of miRNAs were combined to represent each miRNA-disease relationship pair. Next, the miRNA-disease relationship pairs contained in the HMDD (v2.0) database were considered positive samples, and the randomly constructed miRNA-disease relationship pairs not included in HMDD (v2.0) were considered negative samples. Next, the feature selection based on the variable importance score of RF was performed to choose more useful features to represent samples to optimize the model’s ability of inferring miRNA-disease associations. Finally, a RF regression model was trained on reduced sample space to score the unknown miRNA-disease associations. The AUCs of IRFMDA under local leave-one-out cross-validation (LOOCV), global LOOCV and 5-fold cross-validation achieved 0.8728, 0.9398 and 0.9363, which were better than several excellent models for predicting miRNA-disease associations. Moreover, case studies on oesophageal cancer, lymphoma and lung cancer showed that 94 (oesophageal cancer), 98 (lymphoma) and 100 (lung cancer) of the top 100 disease-associated miRNAs predicted by IRFMDA were supported by the experimental data in the dbDEMC (v2.0) database. Conclusions Cross-validation and case studies demonstrated that IRFMDA is an excellent miRNA-disease association prediction model, and can provide guidance and help for experimental studies on the regulatory mechanism of miRNAs in complex human diseases in the future.
Collapse
|
61
|
Qin Z, Zhu K, Xue J, Cao P, Xu L, Xu Z, Liang K, Zhu J, Jia R. Zinc-induced protective effect for testicular ischemia-reperfusion injury by promoting antioxidation via microRNA-101-3p/Nrf2 pathway. Aging (Albany NY) 2019; 11:9295-9309. [PMID: 31692452 PMCID: PMC6874427 DOI: 10.18632/aging.102348] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/27/2019] [Indexed: 01/09/2023]
Abstract
The present study was performed to determine the protective effect of Zinc on the rat testicular ischemia-reperfusion (I/R) injury and its mechanism. In vivo, the pathological changes and the apoptosis index were significantly relieved in the rats with Low-dose Zinc pretreatment, compared to the I/R group. After Low-dose Zinc treatment, the levels of tissue Malondialdehyde (MDA) were significantly decreased, while tissue antioxidant indices were significantly increased. Meanwhile, the level of NF-κB was significantly lower compared to I/R group, while the levels of Nrf2-dependent antioxidant enzymes were significantly higher in Low-dose Zinc+I/R group. In vitro, Low-dose Zinc markedly increased Leydig cell (TM3) cell viability, and relieved testicular oxidative damage via down-regulating ROS. A total of 22 differently expressed microRNAs were screened out using microRNA microarray in rat testicular tissue caused by I/R injury, especially showing that miR-101-3p was selected as the target miRNA. Furthermore, the levels of Nrf2 and NF-κB were apparently increased/decreased in TM3 cells treated with Hypoxic/Reoxygenation (H/R) after miR-101-3p mimics/inhibitor. In addition, H/R-induced testicular oxidative damage was recovered in TM3 administrated with miR-101-3p inhibitor and si-Nrf2. Therefore, this study provided a novel insight for investigating protective effect of Zinc on testicular I/R injury by promoting antioxidation via miR-101-3p/Nrf2.
Collapse
Affiliation(s)
- Zhiqiang Qin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Kai Zhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jianxin Xue
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Department of Urology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Pu Cao
- Department of Urology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Kai Liang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jiageng Zhu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
62
|
Xiao Q, Luo J, Dai J. Computational Prediction of Human Disease- Associated circRNAs Based on Manifold Regularization Learning Framework. IEEE J Biomed Health Inform 2019; 23:2661-2669. [DOI: 10.1109/jbhi.2019.2891779] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
63
|
Pan X, Shen HB. Inferring Disease-Associated MicroRNAs Using Semi-supervised Multi-Label Graph Convolutional Networks. iScience 2019; 20:265-277. [PMID: 31605942 PMCID: PMC6817654 DOI: 10.1016/j.isci.2019.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in biological processes involved in diseases. The associations between diseases and protein-coding genes (PCGs) have been well investigated, and miRNAs interact with PCGs to trigger them to be functional. We present a computational method, DimiG, to infer miRNA-associated diseases using a semi-supervised Graph Convolutional Network model (GCN). DimiG uses a multi-label framework to integrate PCG-PCG interactions, PCG-miRNA interactions, PCG-disease associations, and tissue expression profiles. DimiG is trained on disease-PCG associations and an interaction network using a GCN, which is further used to score associations between diseases and miRNAs. We evaluate DimiG on a benchmark set from verified disease-miRNA associations. Our results demonstrate that DimiG outperforms the best unsupervised method and is comparable to two supervised methods. Three case studies of prostate cancer, lung cancer, and inflammatory bowel disease further demonstrate the efficacy of DimiG, where top miRNAs predicted by DimiG are supported by literature.
Collapse
Affiliation(s)
- Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China; Department of Medical informatics, Erasmus Medical Center, 3015 CE Rotterdam, the Netherlands.
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China.
| |
Collapse
|
64
|
Xie G, Fan Z, Sun Y, Wu C, Ma L. WBNPMD: weighted bipartite network projection for microRNA-disease association prediction. J Transl Med 2019; 17:322. [PMID: 31547811 PMCID: PMC6757419 DOI: 10.1186/s12967-019-2063-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/06/2019] [Indexed: 01/21/2023] Open
Abstract
Background Recently, numerous biological experiments have indicated that microRNAs (miRNAs) play critical roles in exploring the pathogenesis of various human diseases. Since traditional experimental methods for miRNA-disease associations detection are costly and time-consuming, it becomes urgent to design efficient and robust computational techniques for identifying undiscovered interactions. Methods In this paper, we proposed a computation framework named weighted bipartite network projection for miRNA-disease association prediction (WBNPMD). In this method, transfer weights were constructed by combining the known miRNA and disease similarities, and the initial information was properly configured. Then the two-step bipartite network algorithm was implemented to infer potential miRNA-disease associations. Results The proposed WBNPMD was applied to the known miRNA-disease association data, and leave-one-out cross-validation (LOOCV) and fivefold cross-validation were implemented to evaluate the performance of WBNPMD. As a result, our method achieved the AUCs of 0.9321 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.9173 \pm 0.0005$$\end{document}0.9173±0.0005 in LOOCV and fivefold cross-validation, and outperformed other four state-of-the-art methods. We also carried out two kinds of case studies on prostate neoplasm, colorectal neoplasm, and lung neoplasm, and most of the top 50 predicted miRNAs were confirmed to have an association with the corresponding diseases based on dbDeMC, miR2Disease, and HMDD V3.0 databases. Conclusions The experimental results demonstrate that WBNPMD can accurately infer potential miRNA-disease associations. We anticipated that the proposed WBNPMD could serve as a powerful tool for potential miRNA-disease associations excavation. Electronic supplementary material The online version of this article (10.1186/s12967-019-2063-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guobo Xie
- School of Computer Science, Guangdong University of Technology, Guangzhou, China
| | - Zhiliang Fan
- School of Computer Science, Guangdong University of Technology, Guangzhou, China
| | - Yuping Sun
- School of Computer Science, Guangdong University of Technology, Guangzhou, China.
| | - Cuiming Wu
- School of Computer Science, Guangdong University of Technology, Guangzhou, China
| | - Lei Ma
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
65
|
Predicting miRNA-Disease Associations by Incorporating Projections in Low-Dimensional Space and Local Topological Information. Genes (Basel) 2019; 10:genes10090685. [PMID: 31500152 PMCID: PMC6770973 DOI: 10.3390/genes10090685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Predicting the potential microRNA (miRNA) candidates associated with a disease helps in exploring the mechanisms of disease development. Most recent approaches have utilized heterogeneous information about miRNAs and diseases, including miRNA similarities, disease similarities, and miRNA-disease associations. However, these methods do not utilize the projections of miRNAs and diseases in a low-dimensional space. Thus, it is necessary to develop a method that can utilize the effective information in the low-dimensional space to predict potential disease-related miRNA candidates. We proposed a method based on non-negative matrix factorization, named DMAPred, to predict potential miRNA-disease associations. DMAPred exploits the similarities and associations of diseases and miRNAs, and it integrates local topological information of the miRNA network. The likelihood that a miRNA is associated with a disease also depends on their projections in low-dimensional space. Therefore, we project miRNAs and diseases into low-dimensional feature space to yield their low-dimensional and dense feature representations. Moreover, the sparse characteristic of miRNA-disease associations was introduced to make our predictive model more credible. DMAPred achieved superior performance for 15 well-characterized diseases with AUCs (area under the receiver operating characteristic curve) ranging from 0.860 to 0.973 and AUPRs (area under the precision-recall curve) ranging from 0.118 to 0.761. In addition, case studies on breast, prostatic, and lung neoplasms demonstrated the ability of DMAPred to discover potential disease-related miRNAs.
Collapse
|
66
|
Chen Q, Zhao Z, Lan W, Zhang R, Liang J. Predicting miRNA-disease interaction based on recommend method. INFORMATION DISCOVERY AND DELIVERY 2019. [DOI: 10.1108/idd-04-2019-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
MicroRNAs (miRNAs) have been proved to be a significant type of non-coding RNAs related to various human diseases. This paper aims to identify the potential miRNA–disease interactions.
Design/methodology/approach
A computational framework, MDIRM is presented to predict miRNAs-disease interactions. Unlike traditional approaches, the miRNA function similarity is calculated by miRNA–disease interactions. The k-mean method is further used to cluster miRNA similarity network. For miRNAs in the same cluster, their similarities are enhanced, as the miRNAs from the same cluster may be reliable. Further, the potential miRNA–disease association is predicted by using recommend method.
Findings
To evaluate the performance of our model, the fivefold cross validation is implemented to compare with two state-of-the-art methods. The experimental results indicate that MDIRM achieves an AUC of 0.926, which outperforms other methods.
Originality/value
This paper proposes a novel computational method for miRNA–disease interaction prediction based on recommend method. Identifying the relationship between miRNAs and diseases not only helps us better understand the disease occurrence and mechanism through the perspective of miRNA but also promotes disease diagnosis and treatment.
Collapse
|
67
|
Identifying MiRNA-disease association based on integrating miRNA topological similarity and functional similarity. QUANTITATIVE BIOLOGY 2019. [DOI: 10.1007/s40484-019-0176-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
68
|
Chen H, Zhang Z, Feng D. Prediction and interpretation of miRNA-disease associations based on miRNA target genes using canonical correlation analysis. BMC Bioinformatics 2019; 20:404. [PMID: 31345171 PMCID: PMC6657378 DOI: 10.1186/s12859-019-2998-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/16/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND It has been shown that the deregulation of miRNAs is associated with the development and progression of many human diseases. To reduce time and cost of biological experiments, a number of algorithms have been proposed for predicting miRNA-disease associations. However, the existing methods rarely investigated the cause-and-effect mechanism behind these associations, which hindered further biomedical follow-ups. RESULTS In this study, we presented a CCA-based model in which the possible molecular causes of miRNA-disease associations were comprehensively revealed by extracting correlated sets of genes and diseases based on the co-occurrence of miRNAs in target gene profiles and disease profiles. Our method directly suggested the underlying genes involved, which could be used for experimental tests and confirmation. The inference of associated diseases of a new miRNA was made by taking into account the weight vectors of the extracted sets. We extracted 60 pairs of correlated sets from 404 miRNAs with two profiles for 2796 target genes and 362 diseases. The extracted diseases could be considered as possible outcomes of miRNAs regulating the target genes which appeared in the same set, some of which were supported by independent source of information. Furthermore, we tested our method on the 404 miRNAs under the condition of 5-fold cross validations and received an AUC value of 0.84606. Finally, we extensively inferred miRNA-disease associations for 100 new miRNAs and some interesting prediction results were validated by established databases. CONCLUSIONS The encouraging results demonstrated that our method could provide a biologically relevant prediction and interpretation of associations between miRNAs and diseases, which were of great usefulness when guiding biological experiments for scientific research.
Collapse
Affiliation(s)
- Hailin Chen
- School of Software, East China Jiaotong University, Nanchang, 330013 China
| | - Zuping Zhang
- School of Computer Science and Engineering, Central South University, Changsha, 410083 China
| | - Dayi Feng
- School of Software, East China Jiaotong University, Nanchang, 330013 China
| |
Collapse
|
69
|
Chen M, Zhang Y, Li A, Li Z, Liu W, Chen Z. Bipartite Heterogeneous Network Method Based on Co-neighbor for MiRNA-Disease Association Prediction. Front Genet 2019; 10:385. [PMID: 31080459 PMCID: PMC6497741 DOI: 10.3389/fgene.2019.00385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, miRNA variation and dysregulation have been found to be closely related to human tumors, and identifying miRNA-disease associations is helpful for understanding the mechanisms of disease or tumor development and is greatly significant for the prognosis, diagnosis, and treatment of human diseases. This article proposes a Bipartite Heterogeneous network link prediction method based on co-neighbor to predict miRNA-disease association (BHCN). According to the structural characteristics of the bipartite network, the concept of bipartite network co-neighbors is proposed, and the co-neighbors were used to represent the probability of association between disease and miRNA. To predict the isolated diseases and the new miRNA based on the association probability expressed by co-neighbors, we utilized the similarity between disease nodes and the similarity between miRNA nodes in heterogeneous networks to represent the association probability between disease and miRNA. The model's predictive performance was evaluated by the leave-one-out cross validation (LOOCV) on different datasets. The AUC value of BHCN on the gold benchmark dataset was 0.7973, and the AUC obtained on the prediction dataset was 0.9349, which was better than that of the classic global algorithm. In this case study, we conducted predictive studies on breast neoplasms and colon neoplasms. Most of the top 50 predicted results were confirmed by three databases, namely, HMDD, miR2disease, and dbDEMC, with accuracy rates of 96 and 82%. In addition, BHCN can be used for predicting isolated diseases (without any known associated diseases) and new miRNAs (without any known associated miRNAs). In the isolated disease case study, the top 50 of breast neoplasm and colon neoplasm potentials associated with miRNAs predicted an accuracy of 100 and 96%, respectively, thereby demonstrating the favorable predictive power of BHCN for potentially relevant miRNAs.
Collapse
Affiliation(s)
- Min Chen
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China
| | - Yi Zhang
- School of Information Science and Engineering, Guilin University of Technology, Guilin, China
| | - Ang Li
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China
| | - Zejun Li
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China
| | - Wenhua Liu
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China
| | - Zheng Chen
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China
| |
Collapse
|
70
|
Chen Q, Deng C, Lan W, Liu Z, Zheng R, Liu J, Wang J. Identifying Interactions Between Kinases and Substrates Based on Protein-Protein Interaction Network. J Comput Biol 2019; 26:836-845. [PMID: 30990327 DOI: 10.1089/cmb.2019.0048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein phosphorylation is a kind of important post-translational modification of protein, which plays a critical role in many biological processes of eukaryote. Identifying kinase-substrate interactions is helpful to understand the mechanism of many diseases. Many computational algorithms for kinase-substrate interactions identification have been proposed. However, most of those methods are mainly focused on utilizing protein local sequence information. In this article, we propose a new computational method to predict kinase-substrate interactions based on protein-protein interaction (PPI) network. Different from existing methods, the PPI network is utilized to measure the similarities of kinase-kinase and substrate-substrate, respectively. Then, the pairwise similarities of kinase-kinase and substrate-substrate are adjusted based on the assumption that the similarities of kinase-kinase and substrate-substrate are more reliable if they are in the same cluster. Finally, the bi-random walk is used to predict potential kinase-substrate interactions. The experimental results show that our method outperforms other state-of-the-art algorithms in performance. Furthermore, the case study demonstrates that it is effective in predicting potential kinase-substrate interactions.
Collapse
Affiliation(s)
- Qingfeng Chen
- 1School of Computer, Electronics and Information, Guangxi University, Nanning, China
- 2State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Canshang Deng
- 1School of Computer, Electronics and Information, Guangxi University, Nanning, China
| | - Wei Lan
- 1School of Computer, Electronics and Information, Guangxi University, Nanning, China
| | - Zhixian Liu
- 2State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Ruiqing Zheng
- 3School of Computer Science and Engineering, Central South University, Changsha, China
| | - Jin Liu
- 3School of Computer Science and Engineering, Central South University, Changsha, China
| | - Jianxin Wang
- 3School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
71
|
Automatic ICD code assignment of Chinese clinical notes based on multilayer attention BiRNN. J Biomed Inform 2019; 91:103114. [DOI: 10.1016/j.jbi.2019.103114] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
72
|
Li Y, Wu FX, Ngom A. A review on machine learning principles for multi-view biological data integration. Brief Bioinform 2019; 19:325-340. [PMID: 28011753 DOI: 10.1093/bib/bbw113] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 01/08/2023] Open
Abstract
Driven by high-throughput sequencing techniques, modern genomic and clinical studies are in a strong need of integrative machine learning models for better use of vast volumes of heterogeneous information in the deep understanding of biological systems and the development of predictive models. How data from multiple sources (called multi-view data) are incorporated in a learning system is a key step for successful analysis. In this article, we provide a comprehensive review on omics and clinical data integration techniques, from a machine learning perspective, for various analyses such as prediction, clustering, dimension reduction and association. We shall show that Bayesian models are able to use prior information and model measurements with various distributions; tree-based methods can either build a tree with all features or collectively make a final decision based on trees learned from each view; kernel methods fuse the similarity matrices learned from individual views together for a final similarity matrix or learning model; network-based fusion methods are capable of inferring direct and indirect associations in a heterogeneous network; matrix factorization models have potential to learn interactions among features from different views; and a range of deep neural networks can be integrated in multi-modal learning for capturing the complex mechanism of biological systems.
Collapse
Affiliation(s)
- Yifeng Li
- Information and Communications Technologies, National Research Council Canada, Ottawa, Ontario, Canada
| | - Fang-Xiang Wu
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alioune Ngom
- School of Computer Science, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
73
|
KSIMC: Predicting Kinase⁻Substrate Interactions Based on Matrix Completion. Int J Mol Sci 2019; 20:ijms20020302. [PMID: 30646505 PMCID: PMC6358935 DOI: 10.3390/ijms20020302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/31/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
Protein phosphorylation is an important chemical modification catalyzed by kinases. It plays important roles in many cellular processes. Predicting kinase–substrate interactions is vital to understanding the mechanism of many diseases. Many computational methods have been proposed to identify kinase–substrate interactions. However, the prediction accuracy still needs to be improved. Therefore, it is necessary to develop an efficient computational method to predict kinase–substrate interactions. In this paper, we propose a novel computational approach, KSIMC, to identify kinase–substrate interactions based on matrix completion. Firstly, the kinase similarity and substrate similarity are calculated by aligning sequence of kinase–kinase and substrate–substrate, respectively. Then, the original association network is adjusted based on the similarities. Finally, the matrix completion is used to predict potential kinase–substrate interactions. The experiment results show that our method outperforms other state-of-the-art algorithms in performance. Furthermore, the relevant databases and scientific literature verify the effectiveness of our algorithm for new kinase–substrate interaction identification.
Collapse
|
74
|
Yan C, Wang J, Ni P, Lan W, Wu FX, Pan Y. DNRLMF-MDA:Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:233-243. [PMID: 29990253 DOI: 10.1109/tcbb.2017.2776101] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs about ∼ 22nt nucleotides. Studies have proven that miRNAs play key roles in many human complex diseases. Therefore, discovering miRNA-disease associations is beneficial to understanding disease mechanisms, developing drugs, and treating complex diseases. It is well known that it is a time-consuming and expensive process to discover the miRNA-disease associations via biological experiments. Alternatively, computational models could provide a low-cost and high-efficiency way for predicting miRNA-disease associations. In this study, we propose a method (called DNRLMF-MDA) to predict miRNA-disease associations based on dynamic neighborhood regularized logistic matrix factorization. DNRLMF-MDA integrates known miRNA-disease associations, functional similarity and Gaussian Interaction Profile (GIP) kernel similarity of miRNAs, and functional similarity and GIP kernel similarity of diseases. Especially, positive observations (known miRNA-disease associations) are assigned higher importance levels than negative observations (unknown miRNA-disease associations).DNRLMF-MDA computes the probability that a miRNA would interact with a disease by a logistic matrix factorization method, where latent vectors of miRNAs and diseases represent the properties of miRNAs and diseases, respectively, and further improve prediction performance via dynamic neighborhood regularized. The 5-fold cross validation is adopted to assess the performance of our DNRLMF-MDA, as well as other competing methods for comparison. The computational experiments show that DNRLMF-MDA outperforms the state-of-art method PBMDA. The AUC values of DNRLMF-MDA on three datasets are 0.9357, 0.9411, and 0.9416, respectively, which are superior to the PBMDA's results of 0.9218, 0.9187, and 0.9262. The average computation times per 5-fold cross validation of DNRLMF-MDA on three datasets are 38, 46, and 50 seconds, which are shorter than the PBMDA's average computation times of 10869, 916, and 8448 seconds, respectively. DNRLMF-MDA also can predict potential diseases for new miRNAs. Furthermore, case studies illustrate that DNRLMF-MDA is an effective method to predict miRNA-disease associations.
Collapse
|
75
|
Abstract
BACKGROUND Many evidences have demonstrated that circRNAs (circular RNA) play important roles in controlling gene expression of human, mouse and nematode. More importantly, circRNAs are also involved in many diseases through fine tuning of post-transcriptional gene expression by sequestering the miRNAs which associate with diseases. Therefore, identifying the circRNA-disease associations is very appealing to comprehensively understand the mechanism, treatment and diagnose of diseases, yet challenging. As the complex mechanism between circRNAs and diseases, wet-lab experiments are expensive and time-consuming to discover novel circRNA-disease associations. Therefore, it is of dire need to employ the computational methods to discover novel circRNA-disease associations. RESULT In this study, we develop a method (DWNN-RLS) to predict circRNA-disease associations based on Regularized Least Squares of Kronecker product kernel. The similarity of circRNAs is computed from the Gaussian Interaction Profile(GIP) based on known circRNA-disease associations. In addition, the similarity of diseases is integrated by the mean of GIP similarity and sematic similarity which is computed by the direct acyclic graph (DAG) representation of diseases. The kernels of circRNA-disease pairs are constructed from the Kronecker product of the kernels of circRNAs and diseases. DWNN (decreasing weight k-nearest neighbor) method is adopted to calculate the initial relational score for new circRNAs and diseases. The Kronecker product kernel based regularised least squares approach is used to predict new circRNA-disease associations. We adopt 5-fold cross validation (5CV), 10-fold cross validation (10CV) and leave one out cross validation (LOOCV) to assess the prediction performance of our method, and compare it with other six competing methods (RLS-avg, RLS-Kron, NetLapRLS, KATZ, NBI, WP). CONLUSION The experiment results show that DWNN-RLS reaches the AUC values of 0.8854, 0.9205 and 0.9701 in 5CV, 10CV and LOOCV, respectively, which illustrates that DWNN-RLS is superior to the competing methods RLS-avg, RLS-Kron, NetLapRLS, KATZ, NBI, WP. In addition, case studies also show that DWNN-RLS is an effective method to predict new circRNA-disease associations.
Collapse
Affiliation(s)
- Cheng Yan
- School of Information Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083 China
- School of Computer and Information,Qiannan Normal University for Nationalities, Longshan Road, DuYun, 558000 China
| | - Jianxin Wang
- School of Information Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083 China
| | - Fang-Xiang Wu
- Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SKS7N5A9 Canada
| |
Collapse
|
76
|
Jiang L, Xiao Y, Ding Y, Tang J, Guo F. FKL-Spa-LapRLS: an accurate method for identifying human microRNA-disease association. BMC Genomics 2018; 19:911. [PMID: 30598109 PMCID: PMC6311941 DOI: 10.1186/s12864-018-5273-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the process of post-transcription, microRNAs (miRNAs) are closely related to various complex human diseases. Traditional verification methods for miRNA-disease associations take a lot of time and expense, so it is especially important to design computational methods for detecting potential associations. Considering the restrictions of previous computational methods for predicting potential miRNAs-disease associations, we develop the model of FKL-Spa-LapRLS (Fast Kernel Learning Sparse kernel Laplacian Regularized Least Squares) to break through the limitations. RESULT First, we extract three miRNA similarity kernels and three disease similarity kernels. Then, we combine these kernels into a single kernel through the Fast Kernel Learning (FKL) model, and use sparse kernel (Spa) to eliminate noise in the integrated similarity kernel. Finally, we find the associations via Laplacian Regularized Least Squares (LapRLS). Based on three evaluation methods, global and local leave-one-out cross validation (LOOCV), and 5-fold cross validation, the AUCs of our method achieve 0.9563, 0.8398 and 0.9535, thus it can be seen that our method is reliable. Then, we use case studies of eight neoplasms to further analyze the performance of our method. We find that most of the predicted miRNA-disease associations are confirmed by previous traditional experiments, and some important miRNAs should be paid more attention, which uncover more associations of various neoplasms than other miRNAs. CONCLUSIONS Our proposed model can reveal miRNA-disease associations and improve the accuracy of correlation prediction for various diseases. Our method can be also easily extended with more similarity kernels.
Collapse
Affiliation(s)
- Limin Jiang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China.,Tianjin University Institute of Computational Biology, Tianjin University, Tianjin, China
| | - Yongkang Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yijie Ding
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Jijun Tang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China.,Tianjin University Institute of Computational Biology, Tianjin University, Tianjin, China.,Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
| | - Fei Guo
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China.
| |
Collapse
|
77
|
Jiang L, Ding Y, Tang J, Guo F. MDA-SKF: Similarity Kernel Fusion for Accurately Discovering miRNA-Disease Association. Front Genet 2018; 9:618. [PMID: 30619454 PMCID: PMC6295467 DOI: 10.3389/fgene.2018.00618] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/23/2018] [Indexed: 12/28/2022] Open
Abstract
Identifying accurate associations between miRNAs and diseases is beneficial for diagnosis and treatment of human diseases. It is especially important to develop an efficient method to detect the association between miRNA and disease. Traditional experimental method has high precision, but its process is complicated and time-consuming. Various computational methods have been developed to uncover potential associations based on an assumption that similar miRNAs are always related to similar diseases. In this paper, we propose an accurate method, MDA-SKF, to uncover potential miRNA-disease associations. We first extract three miRNA similarity kernels (miRNA functional similarity, miRNA sequence similarity, Hamming profile similarity for miRNA) and three disease similarity kernels (disease semantic similarity, disease functional similarity, Hamming profile similarity for disease) in two subspaces, respectively. Then, due to limitations that some initial information may be lost in the process and some noises may be exist in integrated similarity kernel, we propose a novel Similarity Kernel Fusion (SKF) method to integrate multiple similarity kernels. Finally, we utilize the Laplacian Regularized Least Squares (LapRLS) method on the integrated kernel to find potential associations. MDA-SKF is evaluated by three evaluation methods, including global leave-one-out cross validation (LOOCV) and local LOOCV and 5-fold cross validation (CV), and achieves AUCs of 0.9576, 0.8356, and 0.9557, respectively. Compared with existing seven methods, MDA-SKF has outstanding performance on global LOOCV and 5-fold. We also test case studies to further analyze the performance of MDA-SKF on 32 diseases. Furthermore, 3200 candidate associations are obtained and a majority of them can be confirmed. It demonstrates that MDA-SKF is an accurate and efficient computational tool for guiding traditional experiments.
Collapse
Affiliation(s)
- Limin Jiang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Yijie Ding
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Jijun Tang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, United States
| | - Fei Guo
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| |
Collapse
|
78
|
Xuan P, Dong Y, Guo Y, Zhang T, Liu Y. Dual Convolutional Neural Network Based Method for Predicting Disease-Related miRNAs. Int J Mol Sci 2018; 19:ijms19123732. [PMID: 30477152 PMCID: PMC6321160 DOI: 10.3390/ijms19123732] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Identification of disease-related microRNAs (disease miRNAs) is helpful for understanding and exploring the etiology and pathogenesis of diseases. Most of recent methods predict disease miRNAs by integrating the similarities and associations of miRNAs and diseases. However, these methods fail to learn the deep features of the miRNA similarities, the disease similarities, and the miRNA–disease associations. We propose a dual convolutional neural network-based method for predicting candidate disease miRNAs and refer to it as CNNDMP. CNNDMP not only exploits the similarities and associations of miRNAs and diseases, but also captures the topology structures of the miRNA and disease networks. An embedding layer is constructed by combining the biological premises about the miRNA–disease associations. A new framework based on the dual convolutional neural network is presented for extracting the deep feature representation of associations. The left part of the framework focuses on integrating the original similarities and associations of miRNAs and diseases. The novel miRNA and disease similarities which contain the topology structures are obtained by random walks on the miRNA and disease networks, and their deep features are learned by the right part of the framework. CNNDMP achieves the superior prediction performance than several state-of-the-art methods during the cross-validation process. Case studies on breast cancer, colorectal cancer and lung cancer further demonstrate CNNDMP’s powerful ability of discovering potential disease miRNAs.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China.
| | - Yihua Dong
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China.
| | - Yahong Guo
- School of Information Science and Technology, Heilongjiang University, Harbin 150080, China.
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China.
| | - Yong Liu
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
79
|
Inferring microRNA-Environmental Factor Interactions Based on Multiple Biological Information Fusion. Molecules 2018; 23:molecules23102439. [PMID: 30249984 PMCID: PMC6222788 DOI: 10.3390/molecules23102439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulated studies have shown that environmental factors (EFs) can regulate the expression of microRNA (miRNA) which is closely associated with several diseases. Therefore, identifying miRNA-EF associations can facilitate the study of diseases. Recently, several computational methods have been proposed to explore miRNA-EF interactions. In this paper, a novel computational method, MEI-BRWMLL, is proposed to uncover the relationship between miRNA and EF. The similarities of miRNA-miRNA are calculated by using miRNA sequence, miRNA-EF interaction, and the similarities of EF-EF are calculated based on the anatomical therapeutic chemical information, chemical structure and miRNA-EF interaction. The similarity network fusion is used to fuse the similarity between miRNA and the similarity between EF, respectively. Further, the multiple-label learning and bi-random walk are employed to identify the association between miRNA and EF. The experimental results show that our method outperforms the state-of-the-art algorithms.
Collapse
|
80
|
Qu Y, Zhang H, Liang C, Ding P, Luo J. SNMDA: A novel method for predicting microRNA-disease associations based on sparse neighbourhood. J Cell Mol Med 2018; 22:5109-5120. [PMID: 30030889 PMCID: PMC6156399 DOI: 10.1111/jcmm.13799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/25/2018] [Accepted: 06/21/2018] [Indexed: 01/05/2023] Open
Abstract
miRNAs are a class of small noncoding RNAs that are associated with a variety of complex biological processes. Increasing studies have shown that miRNAs have close relationships with many human diseases. The prediction of the associations between miRNAs and diseases has thus become a hot topic. Although traditional experimental methods are reliable, they could only identify a limited number of associations as they are time‐consuming and expensive. Consequently, great efforts have been made to effectively predict reliable disease‐related miRNAs based on computational methods. In this study, we present a novel approach to predict the potential microRNA‐disease associations based on sparse neighbourhood. Specifically, our method takes advantage of the sparsity of the miRNA‐disease association network and integrates the sparse information into the current similarity matrices for both miRNAs and diseases. To demonstrate the utility of our method, we applied global LOOCV, local LOOCV and five‐fold cross‐validation to evaluate our method, respectively. The corresponding AUCs are 0.936, 0.882 and 0.934. Three types of case studies on five common diseases further confirm the performance of our method in predicting unknown miRNA‐disease associations. Overall, results show that SNMDA can predict the potential associations between miRNAs and diseases effectively.
Collapse
Affiliation(s)
- Yu Qu
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Huaxiang Zhang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Pingjian Ding
- School of Information Science and Engineering, Hunan University, Changsha, China
| | - Jiawei Luo
- School of Information Science and Engineering, Hunan University, Changsha, China
| |
Collapse
|
81
|
Li G, Luo J, Xiao Q, Liang C, Ding P. Prediction of microRNA–disease associations with a Kronecker kernel matrix dimension reduction model. RSC Adv 2018. [DOI: 10.1039/c7ra12491k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A Kronecker kernel matrix dimension reduction model for predicting novel miRNA–disease associations.
Collapse
Affiliation(s)
- Guanghui Li
- School of Information Engineering
- East China Jiaotong University
- Nanchang
- China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering
- Hunan University
- Changsha
- China
| | - Qiu Xiao
- College of Computer Science and Electronic Engineering
- Hunan University
- Changsha
- China
| | - Cheng Liang
- College of Information Science and Engineering
- Shandong Normal University
- Jinan
- China
| | - Pingjian Ding
- College of Computer Science and Electronic Engineering
- Hunan University
- Changsha
- China
| |
Collapse
|
82
|
Chen H, Zhang Z, Peng W. miRDDCR: a miRNA-based method to comprehensively infer drug-disease causal relationships. Sci Rep 2017; 7:15921. [PMID: 29162848 PMCID: PMC5698443 DOI: 10.1038/s41598-017-15716-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
Revealing the cause-and-effect mechanism behind drug-disease relationships remains a challenging task. Recent studies suggested that drugs can target microRNAs (miRNAs) and alter their expression levels. In the meanwhile, the inappropriate expression of miRNAs will lead to various diseases. Therefore, targeting specific miRNAs by small-molecule drugs to modulate their activities provides a promising approach to human disease treatment. However, few studies attempt to discover drug-disease causal relationships through the molecular level of miRNAs. Here, we developed a miRNA-based inference method miRDDCR to comprehensively predict drug-disease causal relationships. We first constructed a three-layer drug-miRNA-disease heterogeneous network by combining similarity measurements, existing drug-miRNA associations and miRNA-disease associations. Then, we extended the algorithm of Random Walk to the three-layer heterogeneous network and ranked the potential indications for drugs. Leave-one-out cross-validations and case studies demonstrated that our method miRDDCR can achieve excellent prediction power. Compared with related methods, our causality discovery-based algorithm showed superior prediction ability and highlighted the molecular basis miRNAs, which can be used to assist in the experimental design for drug development and disease treatment. Finally, comprehensively inferred drug-disease causal relationships were released for further studies.
Collapse
Affiliation(s)
- Hailin Chen
- School of Software, East China Jiaotong University, Nanchang, China.
| | - Zuping Zhang
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Wei Peng
- Computer Center of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
83
|
Peng W, Lan W, Zhong J, Wang J, Pan Y. A novel method of predicting microRNA-disease associations based on microRNA, disease, gene and environment factor networks. Methods 2017; 124:69-77. [DOI: 10.1016/j.ymeth.2017.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/02/2017] [Accepted: 05/28/2017] [Indexed: 01/08/2023] Open
|
84
|
Yu H, Chen X, Lu L. Large-scale prediction of microRNA-disease associations by combinatorial prioritization algorithm. Sci Rep 2017; 7:43792. [PMID: 28317855 PMCID: PMC5357838 DOI: 10.1038/srep43792] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022] Open
Abstract
Identification of the associations between microRNA molecules and human diseases from large-scale heterogeneous biological data is an important step for understanding the pathogenesis of diseases in microRNA level. However, experimental verification of microRNA-disease associations is expensive and time-consuming. To overcome the drawbacks of conventional experimental methods, we presented a combinatorial prioritization algorithm to predict the microRNA-disease associations. Importantly, our method can be used to predict microRNAs (diseases) associated with the diseases (microRNAs) without the known associated microRNAs (diseases). The predictive performance of our proposed approach was evaluated and verified by the internal cross-validations and external independent validations based on standard association datasets. The results demonstrate that our proposed method achieves the impressive performance for predicting the microRNA-disease association with the Area Under receiver operation characteristic Curve (AUC), 86.93%, which is indeed outperform the previous prediction methods. Particularly, we observed that the ensemble-based method by integrating the predictions of multiple algorithms can give more reliable and robust prediction than the single algorithm, with the AUC score improved to 92.26%. We applied our combinatorial prioritization algorithm to lung neoplasms and breast neoplasms, and revealed their top 30 microRNA candidates, which are in consistent with the published literatures and databases.
Collapse
Affiliation(s)
- Hua Yu
- State Key Laboratory of Plant Genomics, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Xiaojun Chen
- Key Lab of Agricultural Biotechnology of Ningxia, Agricultural Biotechnology Center, Ningxia Academy of Agriculture and Forestry Sciences, 590 Huanghe East Road, Jinfeng District, Yinchuan, Ningxia, 750002, China.
| | - Lu Lu
- Beijing Computing Center, Beijing Academy of Science and Technology, Building 3 BeiKe Industrial park, Fengxian road 7, Haidian District, Beijing, 100094, China
| |
Collapse
|
85
|
Peng W, Lan W, Yu Z, Wang J, Pan Y. A Framework for Integrating Multiple Biological Networks to Predict MicroRNA-Disease Associations. IEEE Trans Nanobioscience 2017; 16:100-107. [DOI: 10.1109/tnb.2016.2633276] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|