51
|
Baygin M, Tuncer T, Dogan S, Tan RS, Acharya UR. Automated arrhythmia detection with homeomorphically irreducible tree technique using more than 10,000 individual subject ECG records. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
52
|
A novel deep recurrent convolutional neural network for subthalamic nucleus localization using local field potential signals. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
53
|
A novel bio-inspired hybrid multi-filter wrapper gene selection method with ensemble classifier for microarray data. Neural Comput Appl 2021; 35:11531-11561. [PMID: 34539088 PMCID: PMC8435304 DOI: 10.1007/s00521-021-06459-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 08/26/2021] [Indexed: 01/04/2023]
Abstract
Microarray technology is known as one of the most important tools for collecting DNA expression data. This technology allows researchers to investigate and examine types of diseases and their origins. However, microarray data are often associated with a small sample size, a significant number of genes, imbalanced data, etc., making classification models inefficient. Thus, a new hybrid solution based on a multi-filter and adaptive chaotic multi-objective forest optimization algorithm (AC-MOFOA) is presented to solve the gene selection problem and construct the Ensemble Classifier. In the proposed solution, a multi-filter model (i.e., ensemble filter) is proposed as preprocessing step to reduce the dataset's dimensions, using a combination of five filter methods to remove redundant and irrelevant genes. Accordingly, the results of the five filter methods are combined using a voting-based function. Additionally, the results of the proposed multi-filter indicate that it has good capability in reducing the gene subset size and selecting relevant genes. Then, an AC-MOFOA based on the concepts of non-dominated sorting, crowding distance, chaos theory, and adaptive operators is presented. AC-MOFOA as a wrapper method aimed at reducing dataset dimensions, optimizing KELM, and increasing the accuracy of the classification, simultaneously. Next, in this method, an ensemble classifier model is presented using AC-MOFOA results to classify microarray data. The performance of the proposed algorithm was evaluated on nine public microarray datasets, and its results were compared in terms of the number of selected genes, classification efficiency, execution time, time complexity, hypervolume indicator, and spacing metric with five hybrid multi-objective methods, and three hybrid single-objective methods. According to the results, the proposed hybrid method could increase the accuracy of the KELM in most datasets by reducing the dataset's dimensions and achieve similar or superior performance compared to other multi-objective methods. Furthermore, the proposed Ensemble Classifier model could provide better classification accuracy and generalizability in the seven of nine microarray datasets compared to conventional ensemble methods. Moreover, the comparison results of the Ensemble Classifier model with three state-of-the-art ensemble generation methods indicate its competitive performance in which the proposed ensemble model achieved better results in the five of nine datasets.
Collapse
|
54
|
Hammad M, Kandala RN, Abdelatey A, Abdar M, Zomorodi‐Moghadam M, Tan RS, Acharya UR, Pławiak J, Tadeusiewicz R, Makarenkov V, Sarrafzadegan N, Khosravi A, Nahavandi S, EL-Latif AAA, Pławiak P. Automated detection of shockable ECG signals: A review. Inf Sci (N Y) 2021; 571:580-604. [DOI: 10.1016/j.ins.2021.05.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
55
|
Ding H, Chen L, Tao Q, Fu Z, Dong L, Cui X. DCU-Net: a dual-channel U-shaped network for image splicing forgery detection. Neural Comput Appl 2021; 35:5015-5031. [PMID: 34404963 PMCID: PMC8359769 DOI: 10.1007/s00521-021-06329-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/10/2021] [Indexed: 11/27/2022]
Abstract
The detection and location of image splicing forgery are a challenging task in the field of image forensics. It is to study whether an image contains a suspicious tampered area pasted from another image. In this paper, we propose a new image tamper location method based on dual-channel U-Net, that is, DCU-Net. The detection framework based on DCU-Net is mainly divided into three parts: encoder, feature fusion, and decoder. Firstly, high-pass filters are used to extract the residual of the tampered image and generate the residual image, which contains the edge information of the tampered area. Secondly, a dual-channel encoding network model is constructed. The input of the model is the original tampered image and the tampered residual image. Then, the deep features extracted from the dual-channel encoding network are fused for the first time, and then the tampered features with different granularity are extracted by dilation convolution, and then, the secondary fusion is carried out. Finally, the fused feature map is input into the decoder, and the predicted image is decoded layer by layer. The experimental results on Casia2.0 and Columbia datasets show that DCU-Net performs better than the latest algorithm and can accurately locate tampered areas. In addition, the attack experiments show that DCU-Net model has good robustness and can resist noise and JPEG recompression attacks.
Collapse
Affiliation(s)
- Hongwei Ding
- School of Cyber Science and Engineering, Wuhan University, Wuhan, China
- Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, Wuhan, China
| | - Leiyang Chen
- School of Cyber Science and Engineering, Wuhan University, Wuhan, China
| | - Qi Tao
- School of Cyber Science and Engineering, Wuhan University, Wuhan, China
| | - Zhongwang Fu
- School of Cyber Science and Engineering, Wuhan University, Wuhan, China
| | - Liang Dong
- School of Cyber Science and Engineering, Wuhan University, Wuhan, China
| | - Xiaohui Cui
- School of Cyber Science and Engineering, Wuhan University, Wuhan, China
- Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, Wuhan, China
| |
Collapse
|
56
|
Chandran V, Sumithra MG, Karthick A, George T, Deivakani M, Elakkiya B, Subramaniam U, Manoharan S. Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using Colposcopy Images. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5584004. [PMID: 33997017 PMCID: PMC8112909 DOI: 10.1155/2021/5584004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
Abstract
Traditional screening of cervical cancer type classification majorly depends on the pathologist's experience, which also has less accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and treatment, colposcopy has played an essential role in lowering the incidence and mortality from cervical cancer over the last 50 years. However, due to the increase in workload, vision screening causes misdiagnosis and low diagnostic efficiency. Medical image processing using the convolutional neural network (CNN) model shows its superiority for the classification of cervical cancer type in the field of deep learning. This paper proposes two deep learning CNN architectures to detect cervical cancer using the colposcopy images; one is the VGG19 (TL) model, and the other is CYENET. In the CNN architecture, VGG19 is adopted as a transfer learning for the studies. A new model is developed and termed as the Colposcopy Ensemble Network (CYENET) to classify cervical cancers from colposcopy images automatically. The accuracy, specificity, and sensitivity are estimated for the developed model. The classification accuracy for VGG19 was 73.3%. Relatively satisfied results are obtained for VGG19 (TL). From the kappa score of the VGG19 model, we can interpret that it comes under the category of moderate classification. The experimental results show that the proposed CYENET exhibited high sensitivity, specificity, and kappa scores of 92.4%, 96.2%, and 88%, respectively. The classification accuracy of the CYENET model is improved as 92.3%, which is 19% higher than the VGG19 (TL) model.
Collapse
Affiliation(s)
- Venkatesan Chandran
- Department of Electronics and Communication Engineering, KPR Institute of Engineering and Technology, Avinashi road, Coimbatore, 641407 Tamilnadu, India
| | - M. G. Sumithra
- Department of Electronics and Communication Engineering, KPR Institute of Engineering and Technology, Avinashi road, Coimbatore, 641407 Tamilnadu, India
| | - Alagar Karthick
- Renewable Energy Lab, Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Avinashi road, Coimbatore, 641407 Tamilnadu, India
| | - Tony George
- Department of Electrical and Electronics Engineering, Adi Shankara Institute of Engineering and Technology Mattoor, Kalady, Kerala 683574, India
| | - M. Deivakani
- Department of Electronics and Communication Engineering, PSNA College of Engineering and Technology, Dindigul, 624622 Tamilnadu, India
| | - Balan Elakkiya
- Department of Electronics and Communication Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Tamilnadu 600062, India
| | - Umashankar Subramaniam
- Department of Communications and Networks, Renewable Energy Lab, College of Engineering, Prince, Sultan University, Riyadh 12435, Saudi Arabia
| | - S. Manoharan
- Department of Computer Science, School of Informatics and Electrical Engineering, Institute of Technology, Ambo University, Ambo, Post Box No. 19, Ethiopia
| |
Collapse
|
57
|
Niroshana SMI, Zhu X, Nakamura K, Chen W. A fused-image-based approach to detect obstructive sleep apnea using a single-lead ECG and a 2D convolutional neural network. PLoS One 2021; 16:e0250618. [PMID: 33901251 PMCID: PMC8075238 DOI: 10.1371/journal.pone.0250618] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/09/2021] [Indexed: 11/18/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a common chronic sleep disorder that disrupts breathing during sleep and is associated with many other medical conditions, including hypertension, coronary heart disease, and depression. Clinically, the standard for diagnosing OSA involves nocturnal polysomnography (PSG). However, this requires expert human intervention and considerable time, which limits the availability of OSA diagnosis in public health sectors. Therefore, electrocardiogram (ECG)-based methods for OSA detection have been proposed to automate the polysomnography procedure and reduce its discomfort. So far, most of the proposed approaches rely on feature engineering, which calls for advanced expert knowledge and experience. This paper proposes a novel fused-image-based technique that detects OSA using only a single-lead ECG signal. In the proposed approach, a convolutional neural network extracts features automatically from images created with one-minute ECG segments. The proposed network comprises 37 layers, including four residual blocks, a dense layer, a dropout layer, and a soft-max layer. In this study, three time-frequency representations, namely the scalogram, the spectrogram, and the Wigner-Ville distribution, were used to investigate the effectiveness of the fused-image-based approach. We found that blending scalogram and spectrogram images further improved the system's discriminative characteristics. Seventy ECG recordings from the PhysioNet Apnea-ECG database were used to train and evaluate the proposed model using 10-fold cross validation. The results of this study demonstrated that the proposed classifier can perform OSA detection with an average accuracy, recall, and specificity of 92.4%, 92.3%, and 92.6%, respectively, for the fused spectral images.
Collapse
Affiliation(s)
- S. M. Isuru Niroshana
- Biomedical Information Engineering Lab, The University of Aizu, Aizuwakamatsu, Fukushima, Japan
| | - Xin Zhu
- Biomedical Information Engineering Lab, The University of Aizu, Aizuwakamatsu, Fukushima, Japan
| | - Keijiro Nakamura
- Division of Cardiovascular Medicine, Ohashi Medical Center, Toho University, Meguro, Tokyo, Japan
| | - Wenxi Chen
- Biomedical Information Engineering Lab, The University of Aizu, Aizuwakamatsu, Fukushima, Japan
| |
Collapse
|
58
|
Sedik A, Hammad M, Abd El-Samie FE, Gupta BB, Abd El-Latif AA. Efficient deep learning approach for augmented detection of Coronavirus disease. Neural Comput Appl 2021; 34:11423-11440. [PMID: 33487885 DOI: 10.1016/j.compeleceng.2022.108011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/29/2020] [Indexed: 04/29/2023]
Abstract
The new Coronavirus disease 2019 (COVID-19) is rapidly affecting the world population with statistics quickly falling out of date. Due to the limited availability of annotated Coronavirus X-ray and CT images, the detection of COVID-19 remains the biggest challenge in diagnosing this disease. This paper provides a promising solution by proposing a COVID-19 detection system based on deep learning. The proposed deep learning modalities are based on convolutional neural network (CNN) and convolutional long short-term memory (ConvLSTM). Two different datasets are adopted for the simulation of the proposed modalities. The first dataset includes a set of CT images, while the second dataset includes a set of X-ray images. Both of these datasets consist of two categories: COVID-19 and normal. In addition, COVID-19 and pneumonia image categories are classified in order to validate the proposed modalities. The proposed deep learning modalities are tested on both X-ray and CT images as well as a combined dataset that includes both types of images. They achieved an accuracy of 100% and an F1 score of 100% in some cases. The simulation results reveal that the proposed deep learning modalities can be considered and adopted for quick COVID-19 screening.
Collapse
Affiliation(s)
- Ahmed Sedik
- Department of the Robotics and Intelligent Machines, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed Hammad
- Information Technology Department, Faculty of Computers and Information, Menoufia University, Shebeen El-Kom, Egypt
| | - Fathi E Abd El-Samie
- Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufa University, Menouf, 32952 Egypt
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, 84428 Saudi Arabia
| | - Brij B Gupta
- National Institute of Technology, Kurukshetra, India
- Department of Computer Science and Information Engineering, Asia University, Taichung City, Taiwan
| | - Ahmed A Abd El-Latif
- Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebeen El-Kom, 32511 Egypt
| |
Collapse
|
59
|
Sedik A, Tawalbeh L, Hammad M, El-Latif AAA, El-Banby GM, Khalaf AAM, El-Samie FEA, Iliyasu AM. Deep Learning Modalities for Biometric Alteration Detection in 5G Networks-Based Secure Smart Cities. IEEE ACCESS 2021; 9:94780-94788. [DOI: 10.1109/access.2021.3088341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|