51
|
Khan NA, Ali S, Choi K. Modified Time-Frequency Marginal Features for Detection of Seizures in Newborns. SENSORS 2022; 22:s22083036. [PMID: 35459022 PMCID: PMC9025536 DOI: 10.3390/s22083036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
The timely detection of seizure activity in the case of newborns can help save lives. Clinical signs of seizures in newborns are difficult to observe, so, in this study, we propose an automated method of detecting seizures in newborns using multi-channel electroencephalogram (EEG) recording acquired from 36 newborns admitted to Royal Women's Hospital, Brisbane, Australia. A novel set of time-frequency marginal features are defined to detect seizure activity in newborns. The proposed set is based on the observation that EEG seizure signals appear either as a train of spikes or as a summation of frequency-modulated chirps with slow variation in the instantaneous frequency curve. The proposed set of features is obtained by extracting the time-frequency (TF) signature of seizure spikes and frequency-modulated chirps by exploiting the direction of ridges in the TF plane. Based on extracted TF signature of spikes, the modified time-marginal is computed whereas based on the extracted TF signature of frequency-modulated chirps, the modified frequency-marginal is computed. It is demonstrated that features extracted from the modified time-domain marginal and frequency-domain marginal in combination with TF statistical and frequency-related features lead to better accuracy than the existing TF signal classification method, i.e., the proposed method achieves an F1 score of 70.93% which is 5% greater than the existing method.
Collapse
Affiliation(s)
- Nabeel Ali Khan
- Faculty of Engineering & IT, Foundation University Islamabad, Islamabad 46000, Pakistan;
| | - Sadiq Ali
- Department of Electrical Engineering, University of Engineering and Technology, Peshawar 25000, Pakistan;
| | - Kwonhue Choi
- Department of Information and Communicaiton, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence:
| |
Collapse
|
52
|
Nanopower Integrated Gaussian Mixture Model Classifier for Epileptic Seizure Prediction. Bioengineering (Basel) 2022; 9:bioengineering9040160. [PMID: 35447720 PMCID: PMC9028754 DOI: 10.3390/bioengineering9040160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
This paper presents a new analog front-end classification system that serves as a wake-up engine for digital back-ends, targeting embedded devices for epileptic seizure prediction. Predicting epileptic seizures is of major importance for the patient’s quality of life as they can lead to paralyzation or even prove fatal. Existing solutions rely on power hungry embedded digital inference engines that typically consume several μW or even mW. To increase the embedded device’s autonomy, a new approach is presented combining an analog feature extractor with an analog Gaussian mixture model-based binary classifier. The proposed classification system provides an initial, power-efficient prediction with high sensitivity to switch on the digital engine for the accurate evaluation. The classifier’s circuit is chip-area efficient, operating with minimal power consumption (180 nW) at low supply voltage (0.6 V), allowing long-term continuous operation. Based on a real-world dataset, the proposed system achieves 100% sensitivity to guarantee that all seizures are predicted and good specificity (69%), resulting in significant power reduction of the digital engine and therefore the total system. The proposed classifier was designed and simulated in a TSMC 90 nm CMOS process, using the Cadence IC suite.
Collapse
|
53
|
Shah SY, Larijani H, Gibson RM, Liarokapis D. Random Neural Network Based Epileptic Seizure Episode Detection Exploiting Electroencephalogram Signals. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22072466. [PMID: 35408080 PMCID: PMC9002775 DOI: 10.3390/s22072466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 06/12/2023]
Abstract
Epileptic seizures are caused by abnormal electrical activity in the brain that manifests itself in a variety of ways, including confusion and loss of awareness. Correct identification of epileptic seizures is critical in the treatment and management of patients with epileptic disorders. One in four patients present resistance against seizures episodes and are in dire need of detecting these critical events through continuous treatment in order to manage the specific disease. Epileptic seizures can be identified by reliably and accurately monitoring the patients' neuro and muscle activities, cardiac activity, and oxygen saturation level using state-of-the-art sensing techniques including electroencephalograms (EEGs), electromyography (EMG), electrocardiograms (ECGs), and motion or audio/video recording that focuses on the human head and body. EEG analysis provides a prominent solution to distinguish between the signals associated with epileptic episodes and normal signals; therefore, this work aims to leverage on the latest EEG dataset using cutting-edge deep learning algorithms such as random neural network (RNN), convolutional neural network (CNN), extremely random tree (ERT), and residual neural network (ResNet) to classify multiple variants of epileptic seizures from non-seizures. The results obtained highlighted that RNN outperformed all other algorithms used and provided an overall accuracy of 97%, which was slightly improved after cross validation.
Collapse
Affiliation(s)
- Syed Yaseen Shah
- School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK; (R.M.G.); (D.L.)
| | - Hadi Larijani
- SMART Technology Research Centre, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK
| | - Ryan M. Gibson
- School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK; (R.M.G.); (D.L.)
| | - Dimitrios Liarokapis
- School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK; (R.M.G.); (D.L.)
| |
Collapse
|
54
|
Wen Y, Zhang Y, Wen L, Cao H, Ai G, Gu M, Wang P, Chen H. A 65nm/0.448 mW EEG processor with parallel architecture SVM and lifting wavelet transform for high-performance and low-power epilepsy detection. Comput Biol Med 2022; 144:105366. [PMID: 35305503 DOI: 10.1016/j.compbiomed.2022.105366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices.
Collapse
Affiliation(s)
- Yongzhong Wen
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China.
| | - Yuejun Zhang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China.
| | - Liang Wen
- Department of Electronic Technology, China Coast Guard Academy, Ningbo, Zhejiang, 315801, China.
| | - Haojie Cao
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China.
| | - Guangpeng Ai
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China.
| | - Minghong Gu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China.
| | - Pengjun Wang
- Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China.
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
55
|
Yan X, Yang D, Lin Z, Vucetic B. Significant Low-dimensional Spectral-temporal Features for Seizure Detection. IEEE Trans Neural Syst Rehabil Eng 2022; 30:668-677. [PMID: 35245199 DOI: 10.1109/tnsre.2022.3156931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Absence seizure as a generalized onset seizure, simultaneously spreading seizure to both sides of the brain, involves around ten-second sudden lapses of consciousness. It common occurs in children than adults, which affects living quality even threats lives. Absence seizure can be confused with inattentive attention-deficit hyperactivity disorder since both have similar symptoms, such as inattention and daze. Therefore, it is necessary to detect absence seizure onset. However, seizure onset detection in electroencephalography (EEG) signals is a challenging task due to the non-stereotyped seizure activities as well as their stochastic and non-stationary characteristics in nature. Joint spectral-temporal features are believed to contain sufficient and powerful feature information for absence seizure detection. However, the resulting high-dimensional features involve redundant information and require heavy computational load. Here, we discover significant low-dimensional spectral-temporal features in terms of mean-standard deviation of wavelet transform coefficient (MS-WTC), based on which a novel absence seizure detection framework is developed. The EEG signals are transformed into the spectral-temporal domain, with their low-dimensional features fed into a convolutional neural network. Superior detection performance is achieved on the widely-used benchmark dataset as well as a clinical dataset from the Chinese 301 Hospital. For the former, seven classification tasks were evaluated with the accuracy from 99.8% to 100.0%, while for the latter, the method achieved a mean accuracy of 94.7%, overwhelming other methods with low-dimensional temporal and spectral features. Experimental results on two seizure datasets demonstrate reliability, efficiency and stability of our proposed MS-WTC method, validating the significance of the extracted low-dimensional spectral-temporal features.
Collapse
|
56
|
Ketu S, Mishra PK. Hybrid classification model for eye state detection using electroencephalogram signals. Cogn Neurodyn 2022; 16:73-90. [PMID: 35126771 PMCID: PMC8807771 DOI: 10.1007/s11571-021-09678-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 02/03/2023] Open
Abstract
The electroencephalography (EEG) signal is an essential source of Brain-Computer Interface (BCI) technology implementation. The BCI is nothing but a non-muscle communication medium among the external devices and the brain. The basic concept of BCI is to enable the interaction among the neurological ill patients to others with the help of brain signals. EEG signal classification is an essential requirement for various applications such as motor imagery classification, drug effects diagnosis, emotion classification, seizure prediction/detection, eye state prediction/detection, and so on. Thus, there is a need for an efficient classification model that can deal with the EEG datasets more adequately with better classification accuracy, which will further help in developing the automatic solution for the medical domain. In this paper, we have introduced a hybrid classification model for eye state detection using electroencephalogram (EEG) signals. This hybrid classification model has been evaluated with the other traditional machine learning models, eight classification models (Prepossessed + Hypertuned) and six state-of-the-art methods to assess its appropriateness and correctness. This proposed classification model establishes a machine learning-based hybrid model for the classification of eye state using EEG signals with greater exactness. It is also capable of solving the issue of outlier detection and removal to address the class imbalance problem, which will offer the solution toward building the robotic or smart machine-based solution for social well-being.
Collapse
Affiliation(s)
- Shwet Ketu
- Department of Computer Science, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pramod Kumar Mishra
- Department of Computer Science, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
57
|
Extracting Epileptic Features in EEGs Using a Dual-Tree Complex Wavelet Transform Coupled with a Classification Algorithm. Brain Res 2022; 1779:147777. [PMID: 34999060 DOI: 10.1016/j.brainres.2022.147777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/07/2021] [Accepted: 01/02/2022] [Indexed: 11/24/2022]
Abstract
The detection of epileptic seizures from electroencephalogram (EEG) signals is traditionally performed by clinical experts through visual inspection. It is a long process, is error prone, and requires a highly trained expert. In this research, a new method is presented for seizure classification for EEG signals using a dual-tree complex wavelet transform (DT-CWT) and fast Fourier transform (FFT) coupled with a least square support vector machine (LS-SVM) classifier. In this method, each EEG signal is divided into four segments. Each segment is further split into smaller sub-segments. The DT-CWT is applied to decompose each sub-segment into detailed and approximation coefficients (real and imaginary parts). The obtained coefficients by the DT-CWT at each decomposition level are passed through an FFT to identify the relevant frequency bands. Finally, a set of effective features are extracted from the sub-segments, and are then forwarded to the LS-SVM classifier to classify epileptic EEGs. In this paper, two epileptic EEG databases from Bonn and Bern Universities are used to evaluate the extracted features using the proposed method. The experimental results demonstrate that the method obtained an average accuracy of 97.7% and 96.8% for the Bonn and Bern databases, respectively. The results prove that the proposed DT-CWT and FFT based features extraction is an effective way to extract discriminative information from brain signals. The obtained results are also compared to those by k-means and Naïve Bayes classifiers as well as with the results from the previous methods reported for classifying epileptic seizures and identifying the focal and non-focal EEG signals. The obtained results show that the proposed method outperforms the others and it is effective in detecting epileptic seziures in EEG signals. The technique can be adopted to aid neurologists to better diagnose neurological disorders and for an early seizure warning system.
Collapse
|
58
|
Abdulhussien AS, AbdulSaddaa AT, Iqbal K. Automatic seizure detection with different time delays using SDFT and time-domain feature extraction. J Biomed Res 2022; 36:48-57. [PMID: 35403610 PMCID: PMC8894282 DOI: 10.7555/jbr.36.20210124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Amal S. Abdulhussien
- Communication Technical Engineering College, Al-Furat Al-Awsat Technical University, Al-Najaf 54001, Iraq
- Amal Salman Abdulhussien, Communication Technical Engineering College, Al-Furat Al-Awsat Technical University, abylon-najaf street, Al-Najaf 540001, Iraq. Tel: +964-771-674-2333. E-mail:
| | - Ahmad T. AbdulSaddaa
- Communication Technical Engineering College, Al-Furat Al-Awsat Technical University, Al-Najaf 54001, Iraq
| | - Kamran Iqbal
- Department of System Engineering, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| |
Collapse
|
59
|
Jaglan S, Dhull SK, Singh KK. Tertiary wavelet model based automatic epilepsy classification system. INTERNATIONAL JOURNAL OF INTELLIGENT UNMANNED SYSTEMS 2021. [DOI: 10.1108/ijius-10-2021-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeThis work proposes a tertiary wavelet model based automatic epilepsy classification system using electroencephalogram (EEG) signals.Design/methodology/approachIn this paper, a three-stage system has been proposed for automated classification of epilepsy signals. In the first stage, a tertiary wavelet model uses the orthonormal M-band wavelet transform. This model decomposes EEG signals into three bands of different frequencies. In the second stage, the decomposed EEG signals are analyzed to find novel statistical features. The statistical values of the features are demonstrated using multi-parameters graph comparing normal and epileptic signals. In the last stage, the features are inputted to different conventional classifiers that classify pre-ictal, inter-ictal (epileptic with seizure-free interval) and ictal (seizure) EEG segments.FindingsFor the proposed system the performance of five different classifiers, namely, KNN, DT, XGBoost, SVM and RF is evaluated for the University of BONN data set using different performance parameters. It is observed that RF classifier gives the best performance among the above said classifiers, with an average accuracy of 99.47%.Originality/valueEpilepsy is a neurological condition in which two or more spontaneous seizures occur repeatedly. EEG signals are widely used and it is an important method for detecting epilepsy. EEG signals contain information about the brain's electrical activity. Clinicians manually examine the EEG waveforms to detect epileptic anomalies, which is a time-consuming and error-prone process. An automated epilepsy classification system is proposed in this paper based on combination of signal processing (tertiary wavelet model) and novel features-based classification using the EEG signals.
Collapse
|
60
|
Al-Hadeethi H, Abdulla S, Diykh M, Green JH. Determinant of Covariance Matrix Model Coupled with AdaBoost Classification Algorithm for EEG Seizure Detection. Diagnostics (Basel) 2021; 12:74. [PMID: 35054242 PMCID: PMC8774996 DOI: 10.3390/diagnostics12010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
Experts usually inspect electroencephalogram (EEG) recordings page-by-page in order to identify epileptic seizures, which leads to heavy workloads and is time consuming. However, the efficient extraction and effective selection of informative EEG features is crucial in assisting clinicians to diagnose epilepsy accurately. In this paper, a determinant of covariance matrix (Cov-Det) model is suggested for reducing EEG dimensionality. First, EEG signals are segmented into intervals using a sliding window technique. Then, Cov-Det is applied to each interval. To construct a features vector, a set of statistical features are extracted from each interval. To eliminate redundant features, the Kolmogorov-Smirnov (KST) and Mann-Whitney U (MWUT) tests are integrated, the extracted features ranked based on KST and MWUT metrics, and arithmetic operators are adopted to construe the most pertinent classified features for each pair in the EEG signal group. The selected features are then fed into the proposed AdaBoost Back-Propagation neural network (AB_BP_NN) to effectively classify EEG signals into seizure and free seizure segments. Finally, the AB_BP_NN is compared with several classical machine learning techniques; the results demonstrate that the proposed mode of AB_BP_NN provides insignificant false positive rates, simpler design, and robustness in classifying epileptic signals. Two datasets, the Bern-Barcelona and Bonn datasets, are used for performance evaluation. The proposed technique achieved an average accuracy of 100% and 98.86%, respectively, for the Bern-Barcelona and Bonn datasets, which is considered a noteworthy improvement compared to the current state-of-the-art methods.
Collapse
Affiliation(s)
- Hanan Al-Hadeethi
- School of Sciences, University of Southern Queensland, Toowoomba, QLD 4300, Australia;
| | - Shahab Abdulla
- USQ College, University of Southern Queensland, Toowoomba, QLD 4300, Australia
| | - Mohammed Diykh
- College of Education for Pure Science, University of Thi-Qar, Nasiriyah 64001, Iraq
- Information and Communication Technology Research Group, Scientific Research Centre, Al-Ayen University, Nasiriyah 64001, Iraq
| | - Jonathan H. Green
- USQ College, University of Southern Queensland, Toowoomba, QLD 4300, Australia
- Faculty of the Humanities, University of the Free State, Bloemfontein 9301, South Africa
| |
Collapse
|
61
|
Tatum WO, Mani J, Jin K, Halford JJ, Gloss D, Fahoum F, Maillard L, Mothersill I, Beniczky S. Minimum standards for inpatient long-term video-EEG monitoring: A clinical practice guideline of the international league against epilepsy and international federation of clinical neurophysiology. Clin Neurophysiol 2021; 134:111-128. [PMID: 34955428 DOI: 10.1016/j.clinph.2021.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The objective of this clinical practice guideline is to provide recommendations on the indications and minimum standards for inpatient long-term video-electroencephalographic monitoring (LTVEM). The Working Group of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology develop guidelines aligned with the Epilepsy Guidelines Task Force. We reviewed published evidence using The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement. We found limited high-level evidence aimed at specific aspects of diagnosis for LTVEM performed to evaluate patients with seizures and nonepileptic events (see Table S1). For classification of evidence, we used the Clinical Practice Guideline Process Manual of the American Academy of Neurology. We formulated recommendations for the indications, technical requirements, and essential practice elements of LTVEM to derive minimum standards used in the evaluation of patients with suspected epilepsy using GRADE (Grading of Recommendations, Assessment, Development, and Evaluation). Further research is needed to obtain evidence about long-term outcome effects of LTVEM and establish its clinical utility.
Collapse
Affiliation(s)
- William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
| | - Jayanti Mani
- Department of Neurology, Kokilaben Dhirubai Ambani Hospital, Mumbai, India
| | - Kazutaka Jin
- Department of Epileptology, Tohoku University Graduate School of Medicine, Japan
| | - Jonathan J Halford
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA.
| | - David Gloss
- Department of Neurology, Charleston Area Medical Center, Charleston, WV, USA
| | - Firas Fahoum
- Department of Neurology, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Louis Maillard
- Department of Neurology, University of Nancy, UMR7039, University of Lorraine, France.
| | - Ian Mothersill
- Department of Clinical Neurophysiology, Swiss Epilepsy Center, Zurich Switzerland.
| | - Sandor Beniczky
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark; Danish Epilepsy Center, Dianalund, Denmark.
| |
Collapse
|
62
|
Automatic Diagnosis of Epileptic Seizures in EEG Signals Using Fractal Dimension Features and Convolutional Autoencoder Method. BIG DATA AND COGNITIVE COMPUTING 2021. [DOI: 10.3390/bdcc5040078] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper proposes a new method for epileptic seizure detection in electroencephalography (EEG) signals using nonlinear features based on fractal dimension (FD) and a deep learning (DL) model. Firstly, Bonn and Freiburg datasets were used to perform experiments. The Bonn dataset consists of binary and multi-class classification problems, and the Freiburg dataset consists of two-class EEG classification problems. In the preprocessing step, all datasets were prepossessed using a Butterworth band pass filter with 0.5–60 Hz cut-off frequency. Then, the EEG signals of the datasets were segmented into different time windows. In this section, dual-tree complex wavelet transform (DT-CWT) was used to decompose the EEG signals into the different sub-bands. In the following section, in order to feature extraction, various FD techniques were used, including Higuchi (HFD), Katz (KFD), Petrosian (PFD), Hurst exponent (HE), detrended fluctuation analysis (DFA), Sevcik, box counting (BC), multiresolution box-counting (MBC), Margaos-Sun (MSFD), multifractal DFA (MF-DFA), and recurrence quantification analysis (RQA). In the next step, the minimum redundancy maximum relevance (mRMR) technique was used for feature selection. Finally, the k-nearest neighbors (KNN), support vector machine (SVM), and convolutional autoencoder (CNN-AE) were used for the classification step. In the classification step, the K-fold cross-validation with k = 10 was employed to demonstrate the effectiveness of the classifier methods. The experiment results show that the proposed CNN-AE method achieved an accuracy of 99.736% and 99.176% for the Bonn and Freiburg datasets, respectively.
Collapse
|
63
|
Tatum WO, Mani J, Jin K, Halford JJ, Gloss D, Fahoum F, Maillard L, Mothersill I, Beniczky S. Minimum standards for inpatient long-term video-electroencephalographic monitoring: A clinical practice guideline of the International League Against Epilepsy and International Federation of Clinical Neurophysiology. Epilepsia 2021; 63:290-315. [PMID: 34897662 DOI: 10.1111/epi.16977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023]
Abstract
The objective of this clinical practice guideline is to provide recommendations on the indications and minimum standards for inpatient long-term video-electroencephalographic monitoring (LTVEM). The Working Group of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology develop guidelines aligned with the Epilepsy Guidelines Task Force. We reviewed published evidence using the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) statement. We found limited high-level evidence aimed at specific aspects of diagnosis for LTVEM performed to evaluate patients with seizures and nonepileptic events. For classification of evidence, we used the Clinical Practice Guideline Process Manual of the American Academy of Neurology. We formulated recommendations for the indications, technical requirements, and essential practice elements of LTVEM to derive minimum standards used in the evaluation of patients with suspected epilepsy using GRADE (Grading of Recommendations Assessment, Development, and Evaluation). Further research is needed to obtain evidence about long-term outcome effects of LTVEM and to establish its clinical utility.
Collapse
Affiliation(s)
- William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jayanti Mani
- Department of Neurology, Kokilaben Dhirubai Ambani Hospital, Mumbai, India
| | - Kazutaka Jin
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jonathan J Halford
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David Gloss
- Department of Neurology, Charleston Area Medical Center, Charleston, West Virginia, USA
| | - Firas Fahoum
- Department of Neurology, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Louis Maillard
- Department of Neurology, University of Nancy, UMR7039, University of Lorraine, Nancy, France
| | - Ian Mothersill
- Department of Clinical Neurophysiology, Swiss Epilepsy Center, Zurich,, Switzerland
| | - Sandor Beniczky
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark.,Danish Epilepsy Center, Dianalund, Denmark
| |
Collapse
|
64
|
Yeom HG, Jeong H. F-Value Time-Frequency Analysis: Between-Within Variance Analysis. Front Neurosci 2021; 15:729449. [PMID: 34955709 PMCID: PMC8697975 DOI: 10.3389/fnins.2021.729449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
Studies on brain mechanisms enable us to treat various brain diseases and develop diverse technologies for daily life. Therefore, an analysis method of neural signals is critical, as it provides the basis for many brain studies. In many cases, researchers want to understand how neural signals change according to different conditions. However, it is challenging to find distinguishing characteristics, and doing so requires complex statistical analysis. In this study, we propose a novel analysis method, FTF (F-value time-frequency) analysis, that applies the F-value of ANOVA to time-frequency analysis. The proposed method shows the statistical differences among conditions in time and frequency. To evaluate the proposed method, electroencephalography (EEG) signals were analyzed using the proposed FTF method. The EEG signals were measured during imagined movement of the left hand, right hand, foot, and tongue. The analysis revealed the important characteristics which were different among different conditions and similar within the same condition. The FTF analysis method will be useful in various fields, as it allows researchers to analyze how frequency characteristics vary according to different conditions.
Collapse
Affiliation(s)
- Hong Gi Yeom
- Department of Electronics Engineering, Chosun University, Gwangju, South Korea
| | - Hyundoo Jeong
- Department of Mechatronics Engineering, Incheon National University, Incheon, South Korea
| |
Collapse
|
65
|
Boulila W, Shah SA, Ahmad J, Driss M, Ghandorh H, Alsaeedi A, Al-Sarem M, Saeed F. Noninvasive Detection of Respiratory Disorder Due to COVID-19 at the Early Stages in Saudi Arabia. ELECTRONICS 2021; 10:2701. [DOI: 10.3390/electronics10212701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Kingdom of Saudi Arabia has suffered from COVID-19 disease as part of the global pandemic due to severe acute respiratory syndrome coronavirus 2. The economy of Saudi Arabia also suffered a heavy impact. Several measures were taken to help mitigate its impact and stimulate the economy. In this context, we present a safe and secure WiFi-sensing-based COVID-19 monitoring system exploiting commercially available low-cost wireless devices that can be deployed in different indoor settings within Saudi Arabia. We extracted different activities of daily living and respiratory rates from ubiquitous WiFi signals in terms of channel state information (CSI) and secured them from unauthorized access through permutation and diffusion with multiple substitution boxes using chaos theory. The experiments were performed on healthy participants. We used the variances of the amplitude information of the CSI data and evaluated their security using several security parameters such as the correlation coefficient, mean-squared error (MSE), peak-signal-to-noise ratio (PSNR), entropy, number of pixel change rate (NPCR), and unified average change intensity (UACI). These security metrics, for example, lower correlation and higher entropy, indicate stronger security of the proposed encryption method. Moreover, the NPCR and UACI values were higher than 99% and 30, respectively, which also confirmed the security strength of the encrypted information.
Collapse
Affiliation(s)
- Wadii Boulila
- College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia
- RIADI Laboratory, National School of Computer Science, University of Manouba, Manouba 2010, Tunisia
| | - Syed Aziz Shah
- Centre for Intelligent Healthcare, Coventry University, Coventry CV1 5FB, UK
| | - Jawad Ahmad
- School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| | - Maha Driss
- College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia
| | - Hamza Ghandorh
- College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia
| | - Abdullah Alsaeedi
- College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia
| | - Mohammed Al-Sarem
- College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia
- Department of Computer Science, Saba’a Region University, Mareb, Yemen
| | - Faisal Saeed
- College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia
- School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK
| |
Collapse
|
66
|
Abstract
In this paper, we introduce VPNet, a novel model-driven neural network architecture based on variable projection (VP). Applying VP operators to neural networks results in learnable features, interpretable parameters, and compact network structures. This paper discusses the motivation and mathematical background of VPNet and presents experiments. The VPNet approach was evaluated in the context of signal processing, where we classified a synthetic dataset and real electrocardiogram (ECG) signals. Compared to fully connected and one-dimensional convolutional networks, VPNet offers fast learning ability and good accuracy at a low computational cost of both training and inference. Based on these advantages and the promising results obtained, we anticipate a profound impact on the broader field of signal processing, in particular on classification, regression and clustering problems.
Collapse
Affiliation(s)
- Péter Kovács
- Department of Numerical Analysis, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest 1117, Hungary
| | - Gergő Bognár
- Department of Numerical Analysis, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest 1117, Hungary.,Institute of Signal Processing, Johannes Kepler University Linz, Altenberger str. 69, Linz 4040, Austria.,JKU LIT SAL eSPML Lab, Silicon Austria Labs, Altenberger str. 69, Linz 4040, Austria
| | - Christian Huber
- Embedded AI Research Group, Silicon Austria Labs GmbH, Altenberger str. 69, Linz 4040, Austria
| | - Mario Huemer
- Institute of Signal Processing, Johannes Kepler University Linz, Altenberger str. 69, Linz 4040, Austria.,JKU LIT SAL eSPML Lab, Silicon Austria Labs, Altenberger str. 69, Linz 4040, Austria
| |
Collapse
|
67
|
Patel P,
R
R, Annavarapu RN. EEG-based human emotion recognition using entropy as a feature extraction measure. Brain Inform 2021; 8:20. [PMID: 34609639 PMCID: PMC8492873 DOI: 10.1186/s40708-021-00141-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 09/04/2021] [Indexed: 11/10/2022] Open
Abstract
Many studies on brain-computer interface (BCI) have sought to understand the emotional state of the user to provide a reliable link between humans and machines. Advanced neuroimaging methods like electroencephalography (EEG) have enabled us to replicate and understand a wide range of human emotions more precisely. This physiological signal, i.e., EEG-based method is in stark comparison to traditional non-physiological signal-based methods and has been shown to perform better. EEG closely measures the electrical activities of the brain (a nonlinear system) and hence entropy proves to be an efficient feature in extracting meaningful information from raw brain waves. This review aims to give a brief summary of various entropy-based methods used for emotion classification hence providing insights into EEG-based emotion recognition. This study also reviews the current and future trends and discusses how emotion identification using entropy as a measure to extract features, can accomplish enhanced identification when using EEG signal.
Collapse
Affiliation(s)
- Pragati Patel
- Department of Physics, School of Physical, Chemical, and Applied Sciences, Pondicherry University, Puducherry, 605014 India
| | -
Raghunandan
R
- Department of Physics, School of Physical, Chemical, and Applied Sciences, Pondicherry University, Puducherry, 605014 India
| | - Ramesh Naidu Annavarapu
- Department of Physics, School of Physical, Chemical, and Applied Sciences, Pondicherry University, Puducherry, 605014 India
| |
Collapse
|
68
|
Sahani M, Rout SK, Dash PK. FPGA implementation of epileptic seizure detection using semisupervised reduced deep convolutional neural network. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
69
|
Automatic detection for epileptic seizure using graph-regularized nonnegative matrix factorization and Bayesian linear discriminate analysis. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
70
|
Zheng Z, Dong X, Yao J, Zhou L, Ding Y, Chen A. Identification of Epileptic EEG Signals Through TSK Transfer Learning Fuzzy System. Front Neurosci 2021; 15:738268. [PMID: 34566574 PMCID: PMC8462357 DOI: 10.3389/fnins.2021.738268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
We propose a new model to identify epilepsy EEG signals. Some existing intelligent recognition technologies require that the training set and test set have the same distribution when recognizing EEG signals, some only consider reducing the marginal distribution distance of the data while ignoring the intra-class information of data, and some lack of interpretability. To address these deficiencies, we construct a TSK transfer learning fuzzy system (TSK-TL) based on the easy-to-interpret TSK fuzzy system the transfer learning method. The proposed model is interpretable. By using the information contained in the source domain and target domains more effectively, the requirements for data distribution are further relaxed. It realizes the identification of epilepsy EEG signals in data drift scene. The experimental results show that compared with the existing algorithms, TSK-TL has better performance in EEG recognition of epilepsy.
Collapse
Affiliation(s)
- Zhaoliang Zheng
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Xuan Dong
- Department of Tuberculosis and Respiratory Diseases, Wuhan Jinyintan Hospital, Wuhan, China
| | - Jian Yao
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Leyuan Zhou
- Department of Radiotherapy, Affiliated Hospital, Jiangnan University, Wuxi, China
| | - Yang Ding
- Department of Radiotherapy, Affiliated Hospital, Jiangnan University, Wuxi, China
| | - Aiguo Chen
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| |
Collapse
|
71
|
Eltrass AS, Tayel MB, EL-qady AF. Automatic epileptic seizure detection approach based on multi-stage Quantized Kernel Least Mean Square filters. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.103031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
72
|
Samal D, Dash PK, Bisoi R. Automatic identification of epileptic seizure signal using optimized added kernel support vector machine (OAKSVM). Neural Comput Appl 2021. [DOI: 10.1007/s00521-020-05675-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
73
|
Yao W, Yao W, Ju Y, Xia Y, Guo D, Yao D. Distribution of equal states for amplitude fluctuations in epileptic EEG. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
74
|
Baghersalimi S, Teijeiro T, Atienza D, Aminifar A. Personalized Real-Time Federated Learning for Epileptic Seizure Detection. IEEE J Biomed Health Inform 2021; 26:898-909. [PMID: 34242177 DOI: 10.1109/jbhi.2021.3096127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Epilepsy is one of the most prevalent paroxystic neurological disorders. It is characterized by the occurrence of spontaneous seizures. About 1 out of 3 patients have drug-resistant epilepsy, thus their seizures cannot be controlled by medication. Automatic detection of epileptic seizures can substantially improve the patient's quality of life. To achieve a high-quality model, we have to collect data from various patients in a central server. However, sending the patient's raw data to this central server puts patient privacy at risk and consumes a significant amount of energy. To address these challenges, in this work, we have designed and evaluated a standard federated learning framework in the context of epileptic seizure detection using a deep learning-based approach, which operates across a cluster of machines. We evaluated the accuracy and performance of our proposed approach on the NVIDIA Jetson Nano Developer Kit based on the EPILEPSIAE database, which is one of the largest public epilepsy datasets for seizure detection. Our proposed framework achieved a sensitivity of 81.25%, a specificity of 82.00%, and a geometric mean of 81.62%. It can be implemented on embedded platforms that complete the entire training process in 1.86 hours using 344.34 mAh energy on a single battery charge. We also studied a personalized variant of the federated learning, where each machine is responsible for training a deep neural network (DNN) to learn the discriminative electrocardiography (ECG) features of the epileptic seizures of the specific person monitored based on its local data. In this context, the DNN benefitted from a well-trained model without sharing the patient's raw data with a server or a central cloud repository. We observe in our results that personalized federated learning provides an increase in all the performance metric, with a sensitivity of 90.24%, a specificity of 91.58%, and a geometric mean of 90.90%.
Collapse
|
75
|
Yang L, Ding S, Zhou F, Yang X, Xiao Y. Robust EEG feature learning model based on an adaptive weight and pairwise-fused LASSO. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
76
|
Synchroextracting chirplet transform-based epileptic seizures detection using EEG. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
77
|
A novel time-varying modeling and signal processing approach for epileptic seizure detection and classification. Neural Comput Appl 2021. [DOI: 10.1007/s00521-020-05330-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
78
|
Sahani M, Rout SK, Dash PK. Epileptic Seizure Recognition Using Reduced Deep Convolutional Stack Autoencoder and Improved Kernel RVFLN From EEG Signals. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:595-605. [PMID: 34156948 DOI: 10.1109/tbcas.2021.3090995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, reduced deep convolutional stack autoencoder (RDCSAE) and improved kernel random vector functional link network (IKRVFLN) are combined to recognize the epileptic seizure using both the multichannel scalp and single-channel electroencephalogram (EEG) signals. The novel RDCSAE structure is designed to extract the most discriminative unsupervised features from EEG signals and fed into the proposed supervised IKRVFLN classifier to train efficiently by reducing the mean-square error cost function for recognizing the epileptic seizure activity with promising accuracy. The proposed RDCSAE-IKRVFLN algorithm is tested over the benchmark Boston Children's Hospital multichannel scalp EEG (sEEG) and Boon University, Germany single-channel EEG databases. The less computational complexity, higher learning speed, better model generalization, accurate epileptic seizure recognition, remarkable classification accuracy, negligible false positive rate per hour (FPR/h) and short event recognition time are the main advantages of the proposed RDCSAE-IKRVFLN method over reduced deep convolutional neural network (RDCNN), RDCSAE and RDCSAE-KRVFLN methods. The proposed RDCSAE-IKRVFLN method is implemented in a high-speed reconfigurable field-programmable gate array (FPGA) hardware environment to design a computer-aided-diagnosis (CAD) system for automatic epileptic seizure diagnosis. The simplicity, feasibility, and practicability of the proposed method validate the stable and reliable performances of epilepsy detection and recognition.
Collapse
|
79
|
Alhudhaif A. A novel multi-class imbalanced EEG signals classification based on the adaptive synthetic sampling (ADASYN) approach. PeerJ Comput Sci 2021; 7:e523. [PMID: 34084928 PMCID: PMC8157152 DOI: 10.7717/peerj-cs.523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Brain signals (EEG-Electroencephalography) are a gold standard frequently used in epilepsy prediction. It is crucial to predict epilepsy, which is common in the community. Early diagnosis is essential to reduce the treatment process of the disease and to keep the process healthier. METHODS In this study, a five-classes dataset was used: EEG signals from different individuals, healthy EEG signals from tumor document, EEG signal with epilepsy, EEG signal with eyes closed, and EEG signal with eyes open. Four different methods have been proposed to classify five classes of EEG signals. In the first approach, the EEG signal was first divided into four different bands (beta, alpha, theta, and delta), and then 25 time-domain features were extracted from each band, and the main EEG signal and these extracted features were combined to obtain 125-time domain features (feature extraction). Using the Random Forests classifier, EEG activities were classified into five classes. In the second approach, each One-Against-One (OVO) approach with 125 attributes was split into ten parts, pairwise, and then each piece was classified with the Random Forests classifier. The majority voting scheme was used to combine decisions from the ten classifiers. In the third proposed method, each One-Against-All (OVA) approach with 125 attributes was divided into five parts, and then each piece was classified with the Random Forests classifier. The majority voting scheme was used to combine decisions from the five classifiers. In the fourth proposed approach, each One-Against-All (OVA) approach with 125 attributes was divided into five parts. Since each piece obtained had an imbalanced data distribution, an adaptive synthetic (ADASYN) sampling approach was used to stabilize each piece. Then, each balanced piece was classified with the Random Forests classifier. To combine the decisions obtanied from each classifier, the majority voting scheme has been used. RESULTS The first approach achieved 71.90% classification success in classifying five-class EEG signals. The second approach achieved a classification success of 91.08% in classifying five-class EEG signals. The third method achieved 89% success, while the fourth proposed approach achieved 91.72% success. The results obtained show that the proposed fourth approach (the combination of the ADASYN sampling approach and Random Forest Classifier) achieved the best success in classifying five class EEG signals. This proposed method could be used in the detection of epilepsy events in the EEG signals.
Collapse
|
80
|
Krishnaprasanna R, Vijaya Baskar V, Panneerselvam J. Automatic identification of epileptic seizures using volume of phase space representation. Phys Eng Sci Med 2021; 44:545-556. [PMID: 33956327 DOI: 10.1007/s13246-021-01006-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/26/2021] [Indexed: 11/26/2022]
Abstract
Epilepsy is a neurological disorder that affects people of any age, which can be detected by Electroencephalogram (EEG) signals. This paper proposes a novel method called Volume of Phase Space Representation (VOPSR) to classify seizure and seizure-free EEG signals automatically. Primarily, the recorded EEG signal is disintegrated into several Intrinsic Mode Functions (IMFs) using the Empirical Mode Decomposition (EMD) method and the three-dimensional phase space have been reconstructed for the obtained IMFs. The volume is measured for the obtained 3D-PSR for different IMFs called VOPSR, which is used as a feature set for the classification of Epileptic seizure EEG signals. Support vector machine (SVM) is used as a classifier for the classification of epileptic and epileptic-free EEG signals. The classification performance of the proposed method is evaluated under different kernels such as Linear, Polynomial and Radial Basis Function (RBF) kernels. Finally, the proposed method outperforms noteworthy state-of-the-art classification methods in the context of epileptic EEG signals, achieving 99.13% accuracy (average) with the Linear, Polynomial, and RBF kernels. The proposed technique can be used to detect epilepsy from the EEG signals automatically without human intervention.
Collapse
Affiliation(s)
- R Krishnaprasanna
- Department of ECE, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India.
| | - V Vijaya Baskar
- School of EEE, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | | |
Collapse
|
81
|
Sui L, Zhao X, Zhao Q, Tanaka T, Cao J. Hybrid Convolutional Neural Network for Localization of Epileptic Focus Based on iEEG. Neural Plast 2021; 2021:6644365. [PMID: 34007267 PMCID: PMC8100408 DOI: 10.1155/2021/6644365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/14/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Epileptic focus localization by analysing intracranial electroencephalogram (iEEG) plays a critical role in successful surgical therapy of resection of the epileptogenic lesion. However, manual analysis and classification of the iEEG signal by clinicians are arduous and time-consuming and excessively depend on the experience. Due to individual differences of patients, the iEEG signal from different patients usually shows very diverse features even if the features belong to the same class. Accordingly, automatic detection of epileptic focus is required to improve the accuracy and to shorten the time for treatment. In this paper, we propose a novel feature fusion-based iEEG classification method, a deep learning model termed Time-Frequency Hybrid Network (TF-HybridNet), in which short-time Fourier transform (STFT) and 1d convolution layers are performed on the input iEEG in parallel to extract features of the time-frequency domain and feature maps. And then, the time-frequency features and feature maps are fused and fed to a 2d convolutional neural network (CNN). We used the Bern-Barcelona iEEG dataset for evaluating the performance of TF-HybridNet, and the experimental results show that our approach is able to differentiate the focal from nonfocal iEEG signal with an average classification accuracy of 94.3% and demonstrates an improved accuracy rate compared to the model using only STFT or one-dimensional convolutional layers as feature extraction.
Collapse
Affiliation(s)
- Linfeng Sui
- Graduate School of Engineering, Saitama Institute of Technology, 369-0293, Japan
- RIKEN Center for Advanced Intelligence Project (AIP), 103-0027, Japan
| | - Xuyang Zhao
- RIKEN Center for Advanced Intelligence Project (AIP), 103-0027, Japan
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, 184-8588, Japan
| | - Qibin Zhao
- RIKEN Center for Advanced Intelligence Project (AIP), 103-0027, Japan
| | - Toshihisa Tanaka
- RIKEN Center for Advanced Intelligence Project (AIP), 103-0027, Japan
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, 184-8588, Japan
| | - Jianting Cao
- Graduate School of Engineering, Saitama Institute of Technology, 369-0293, Japan
- RIKEN Center for Advanced Intelligence Project (AIP), 103-0027, Japan
| |
Collapse
|
82
|
Linear and nonlinear analysis of intrinsic mode function after facial stimuli presentation in children with autism spectrum disorder. Comput Biol Med 2021; 133:104376. [PMID: 33866255 DOI: 10.1016/j.compbiomed.2021.104376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022]
Abstract
In this work, a method for classifying Autism Spectrum Disorders (ASD) from typically developing (TD) children is presented using the linear and nonlinear Event-Related Potential (ERP) analysis of the Electro-encephalogram (EEG) signals. The signals were acquired during the presentation of three types of face expression stimuli -happy, fearful and neutral faces. EEGs are first decomposed using the Multivariate Empirical Mode Decomposition (MEMD) method to extract its Intrinsic Mode Functions (IMFs), which provide information about the underlying activities of ERP components. The nonlinear sample entropy (SampEn) features, as well as the standard linear measurements utilizing maximum (Max.), minimum (Min), and standard deviation (Std.), are then extracted from each set of IMFs. These features are then evaluated by the statistical analysis tests and used to construct the input vectors for the Discriminant analysis (DA), Support vector machine (SVM), and k-Nearest Neighbors (kNN) classifiers. Experimental results show that the proposed features can differentiate the ASD and TD children using the happy stimulus dataset with high classification performance for all classifiers that reached 100% accuracy. This result suggests a general deficit in recognizing the positive expression in ASD children. Additionally, we found that the SampEn measurements computed from the alpha and theta bands and the linear features extracted from the delta band can be considered biomarkers for disturbances in Emotional Facial Expression (EFE) processing in ASD children.
Collapse
|
83
|
Yadav VP, Sharma KK. Variational mode decomposition-based seizure classification using Bayesian regularized shallow neural network. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
84
|
An efficient method for identification of epileptic seizures from EEG signals using Fourier analysis. Phys Eng Sci Med 2021; 44:443-456. [PMID: 33779946 DOI: 10.1007/s13246-021-00995-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Epilepsy is a disease recognized as the chronic neurological dysfunction of the human brain which is described by the sudden and excessive electrical discharges of the brain cells. Electroencephalogram (EEG) is a prime tool applied for the diagnosis of epilepsy. In this study, a novel and effective approach is introduced to decompose the non-stationary EEG signals using the Fourier decomposition method. The concept of position, velocity, and acceleration has been employed on the EEG signals for feature extraction using [Formula: see text] norms computed from Fourier intrinsic band functions (FIBFs). The proposed scheme comprises three main sections. In the first section, the EEG signal is decomposed into a finite number of FIBFs. In the second stage, the features are extracted from FIBFs and relevant features are selected by using the Kruskal-Wallis test. In the last stage, the significant features are passed on to the support vector machine (SVM) classifier. By applying 10-fold cross-validation, the proposed method provides better results in comparison to the state-of-the-art methods discussed in the literature, with an average classification accuracy of 99.96% and 99.94% for classification of EEG signals from the BONN dataset and the CHB-MIT dataset, respectively. It can be implemented using the computationally efficient fast Fourier transform (FFT) algorithm.
Collapse
|
85
|
Dong A, Li Z, Zheng Q. Transferred Subspace Learning Based on Non-negative Matrix Factorization for EEG Signal Classification. Front Neurosci 2021; 15:647393. [PMID: 33841089 PMCID: PMC8024531 DOI: 10.3389/fnins.2021.647393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
EEG signal classification has been a research hotspot recently. The combination of EEG signal classification with machine learning technology is very popular. Traditional machine leaning methods for EEG signal classification assume that the EEG signals are drawn from the same distribution. However, the assumption is not always satisfied with the practical applications. In practical applications, the training dataset and the testing dataset are from different but related domains. How to make best use of the training dataset knowledge to improve the testing dataset is critical for these circumstances. In this paper, a novel method combining the non-negative matrix factorization technology and the transfer learning (NMF-TL) is proposed for EEG signal classification. Specifically, the shared subspace is extracted from the testing dataset and training dataset using non-negative matrix factorization firstly and then the shared subspace and the original feature space are combined to obtain the final EEG signal classification results. On the one hand, the non-negative matrix factorization can assure to obtain essential information between the testing and the training dataset; on the other hand, the combination of shared subspace and the original feature space can fully use all the signals including the testing and the training dataset. Extensive experiments on Bonn EEG confirmed the effectiveness of the proposed method.
Collapse
Affiliation(s)
- Aimei Dong
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Science), Jinan, China
| | - Zhigang Li
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Science), Jinan, China
| | - Qiuyu Zheng
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Science), Jinan, China
| |
Collapse
|
86
|
Tao Y, Jiang Y, Xia K, Xue J, Zhou L, Qian P. Classification of EEG signals in epilepsy using a novel integrated TSK fuzzy system. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-201673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of machine learning technology to recognize electrical signals of the brain is becoming increasingly popular. Compared with doctors’ manual judgment, machine learning methods are faster. However, only when its recognition accuracy reaches a high level can it be used in practice. Due to the difference in the data distributions of the training dataset and the test dataset and the lack of training samples, the classification accuracies of general machine learning algorithms are not satisfactory. In fact, among the many machine learning methods used to process epilepsy electroencephalogram (EEG) signals, most are black box methods; however, in medicine, methods with explanatory power are needed. In response to these three challenges, this paper proposes a novel technique based on domain adaptation learning, semi-supervised learning and a fuzzy system. In detail, we use domain adaptation learning to reduce deviation from the data distribution, semi-supervised learning to compensate for the lack of training samples, and the Takagi-Sugen-Kang (TSK) fuzzy system model to improve interpretability. Our experimental results show that the performance of the new method is better than those of most advanced epilepsy classification methods.
Collapse
Affiliation(s)
- Yuwen Tao
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of Media Design and Software Technology, Wuxi, Jiangsu, People’s Republic of China
| | - Yizhang Jiang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of Media Design and Software Technology, Wuxi, Jiangsu, People’s Republic of China
| | - Kaijian Xia
- Changshu No. 1 People’s Hospital, Changshu, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of Media Design and Software Technology, Wuxi, Jiangsu, People’s Republic of China
| | - Jing Xue
- Department of Nephrology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, People’s Republic of China
| | - Leyuan Zhou
- Department of Radiotherapy, Affiliated Hospital, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Pengjiang Qian
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of Media Design and Software Technology, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
87
|
Rule-Based EEG Classifier Utilizing Local Entropy of Time–Frequency Distributions. MATHEMATICS 2021. [DOI: 10.3390/math9040451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Electroencephalogram (EEG) signals are known to contain signatures of stimuli that induce brain activities. However, detecting these signatures to classify captured EEG waveforms is one of the most challenging tasks of EEG analysis. This paper proposes a novel time–frequency-based method for EEG analysis and characterization implemented in a computer-aided decision-support system that can be used to assist medical experts in interpreting EEG patterns. The computerized method utilizes EEG spectral non-stationarity, which is clearly revealed in the time–frequency distributions (TFDs) of multicomponent signals. The proposed algorithm, which is based on the modification of the Rényi entropy, called local or short-term Rényi entropy (STRE), was upgraded with a blind component separation procedure and instantaneous frequency (IF) estimation. The method was applied to EEGs of both forward and backward movements of the left and right hands, as well as to EEGs of imagined hand movements, which were captured by a 19-channel EEG recording system. The obtained results show that in a given virtual instrument, the proposed methods efficiently distinguish between real and imagined limb movements by considering their signatures in terms of the dominant EEG component’s IFs at the specified subset of EEG channels (namely, F3, F4, F7, F8, T3, and T4). Furthermore, computing the number of EEG signal components, their extraction, and IF estimation provide important information that shows potential to enhance existing clinical diagnostic techniques for detecting the intensity, location, and type of brain function abnormalities in patients with neurological motor control disorders.
Collapse
|
88
|
Ech-Choudany Y, Scida D, Assarar M, Landré J, Bellach B, Morain-Nicolier F. Dissimilarity-based time–frequency distributions as features for epileptic EEG signal classification. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
89
|
Chowdhury TT, Fattah SA, Shahnaz C. Seizure activity classification based on bimodal Gaussian modeling of the gamma and theta band IMFs of EEG signals. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
90
|
Epilepsy seizure detection using kurtosis based VMD’s parameters selection and bandwidth features. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
91
|
Cura OK, Akan A. Classification of Epileptic EEG Signals Using Synchrosqueezing Transform and Machine Learning. Int J Neural Syst 2021; 31:2150005. [PMID: 33522458 DOI: 10.1142/s0129065721500052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epilepsy is a neurological disease that is very common worldwide. Patient's electroencephalography (EEG) signals are frequently used for the detection of epileptic seizure segments. In this paper, a high-resolution time-frequency (TF) representation called Synchrosqueezing Transform (SST) is used to detect epileptic seizures. Two different EEG data sets, the IKCU data set we collected, and the publicly available CHB-MIT data set are analyzed to test the performance of the proposed model in seizure detection. The SST representations of seizure and nonseizure (pre-seizure or inter-seizure) EEG segments of epilepsy patients are calculated. Various features like higher-order joint TF (HOJ-TF) moments and gray-level co-occurrence matrix (GLCM)-based features are calculated using the SST representation. By using single and ensemble machine learning methods such as k-Nearest Neighbor (kNN), Logistic Regression (LR), Naive Bayes (NB), Support Vector Machine (SVM), Boosted Trees (BT), and Subspace kNN (S-kNN), EEG features are classified. The proposed SST-based approach achieved 95.1% ACC, 96.87% PRE, 95.54% REC values for the IKCU data set, and 95.13% ACC, 93.37% PRE, 90.30% REC values for the CHB-MIT data set in seizure detection. Results show that the proposed SST-based method utilizing novel TF features outperforms the short-time Fourier transform (STFT)-based approach, providing over 95% accuracy for most cases, and compares well with the existing methods.
Collapse
Affiliation(s)
- Ozlem Karabiber Cura
- Department of Biomedical Engineering, Izmir Katip Celebi University, Cigli 35620, Izmir, Turkey
| | - Aydin Akan
- Department of Electrical and Electronics Engineering, Izmir University of Economics, Balcova 35330, Izmir, Turkey
| |
Collapse
|
92
|
Ma D, Yuan S, Shang J, Liu J, Dai L, Kong X, Xu F. The Automatic Detection of Seizure Based on Tensor Distance And Bayesian Linear Discriminant Analysis. Int J Neural Syst 2021; 31:2150006. [PMID: 33522459 DOI: 10.1142/s0129065721500064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electroencephalogram (EEG) plays an important role in recording brain activity to diagnose epilepsy. However, it is not only laborious, but also not very cost effective for medical experts to manually identify the features on EEG. Therefore, automatic seizure detection in accordance with the EEG recordings is significant for the diagnosis and treatment of epilepsy. Here, a new method for detecting seizures using tensor distance (TD) is proposed. First, the time-frequency characteristics of EEG signals are obtained by wavelet transformation, and the tensor representation of EEG signals is then obtained. Tucker decomposition is used to obtain the principal components of the EEG tensor. After, the distances between different categories of EEG tensors are calculated as the EEG features. Finally, the TD features are classified through the Bayesian Linear Discriminant Analysis (Bayesian LDA) classifier. The performance of this method is measured by the sensitivity, specificity, and recognition accuracy. Results indicate 95.12% sensitivity, 97.60% specificity, 97.60% recognition accuracy, and a false detection rate of 0.76 per hour in the invasive EEG dataset, which included 566.57[Formula: see text]h of EEG recording data from 21 patients. Taken together, the results show that TD has a good detection effect for seizure classification and that this method has high computational speed and great potential for real-time diagnosis.
Collapse
Affiliation(s)
- Delu Ma
- School of Computer Science, Qufu Normal University, Rizhao, Shandong 276826, P. R. China
| | - Shasha Yuan
- School of Computer Science, Qufu Normal University, Rizhao, Shandong 276826, P. R. China
| | - Junliang Shang
- School of Computer Science, Qufu Normal University, Rizhao, Shandong 276826, P. R. China
| | - Jinxing Liu
- School of Computer Science, Qufu Normal University, Rizhao, Shandong 276826, P. R. China
| | - Lingyun Dai
- School of Computer Science, Qufu Normal University, Rizhao, Shandong 276826, P. R. China
| | - Xiangzhen Kong
- School of Computer Science, Qufu Normal University, Rizhao, Shandong 276826, P. R. China
| | - Fangzhou Xu
- Department of Physics, School of Electronic and Information Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, P. R. China
| |
Collapse
|
93
|
Chen X, Tao X, Wang FL, Xie H. Global research on artificial intelligence-enhanced human electroencephalogram analysis. Neural Comput Appl 2021. [DOI: 10.1007/s00521-020-05588-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
94
|
|
95
|
Analysis of epileptic EEG signals by using dynamic mode decomposition and spectrum. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
96
|
Mehla VK, Singhal A, Singh P. A novel approach for automated alcoholism detection using Fourier decomposition method. J Neurosci Methods 2020; 346:108945. [PMID: 32910924 DOI: 10.1016/j.jneumeth.2020.108945] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/06/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The identification of alcoholism is of prime importance because of its adverse effects on the central nervous system. Moreover, people suffering from alcoholism are susceptible to various health problems such as cardiomyopathy, immune system disorder, high blood pressure, cirrhosis, brain anomalies, and heart problems. NEW METHOD This study presents a novel approach, based on Fourier theory, known as Fourier decomposition method (FDM) for automatic identification of alcoholism using electroencephalogram (EEG) signals. The FDM approach is employed to decompose EEG signals into a set of desired orthogonal components, commonly referred as Fourier intrinsic band functions (FIBFs), obtained by dividing the complete bandwidth of EEG signal under analysis into equal frequency bands. Time-domain features such as Hjorth parameters, kurtosis, inter-quartile range, and median frequency are extracted from FIBFs. To reduce the complexity, Kruskal-Wallis (KW) statistical test, is performed to adopt the most significant features. RESULTS Simulation results are obtained using different classification methods, namely, k-nearest neighbor (kNN), support vector machine (SVM), and linear discriminant analysis (LDA). The proposed approach with the SVM classifier using radial basis function provides average accuracy of 99.98%, sensitivity of 99.99% and specificity of 99.97%. Performance is also tested in the presence of noise. COMPARISON WITH EXISTING METHOD(S) Classification results highlight the superior performance of our method in comparison to existing works. CONCLUSIONS The proposed scheme provides an efficient approach and can be employed in real-time alcoholism detection.
Collapse
Affiliation(s)
- Virender Kumar Mehla
- Department of Electronics and Communication Engineering, Bennett University, Greater Noida, India
| | - Amit Singhal
- Department of Electronics and Communication Engineering, Bennett University, Greater Noida, India.
| | - Pushpendra Singh
- Department of Electronics and Communication Engineering, National Institute of Technology, Hamirpur, India
| |
Collapse
|
97
|
Alam RU, Zhao H, Goodwin A, Kavehei O, McEwan A. Differences in Power Spectral Densities and Phase Quantities Due to Processing of EEG Signals. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6285. [PMID: 33158213 PMCID: PMC7662261 DOI: 10.3390/s20216285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/27/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022]
Abstract
There has been a growing interest in computational electroencephalogram (EEG) signal processing in a diverse set of domains, such as cortical excitability analysis, event-related synchronization, or desynchronization analysis. In recent years, several inconsistencies were found across different EEG studies, which authors often attributed to methodological differences. However, the assessment of such discrepancies is deeply underexplored. It is currently unknown if methodological differences can fully explain emerging differences and the nature of these differences. This study aims to contrast widely used methodological approaches in EEG processing and compare their effects on the outcome variables. To this end, two publicly available datasets were collected, each having unique traits so as to validate the results in two different EEG territories. The first dataset included signals with event-related potentials (visual stimulation) from 45 subjects. The second dataset included resting state EEG signals from 16 subjects. Five EEG processing steps, involved in the computation of power and phase quantities of EEG frequency bands, were explored in this study: artifact removal choices (with and without artifact removal), EEG signal transformation choices (raw EEG channels, Hjorth transformed channels, and averaged channels across primary motor cortex), filtering algorithms (Butterworth filter and Blackman-Harris window), EEG time window choices (-750 ms to 0 ms and -250 ms to 0 ms), and power spectral density (PSD) estimation algorithms (Welch's method, Fast Fourier Transform, and Burg's method). Powers and phases estimated by carrying out variations of these five methods were analyzed statistically for all subjects. The results indicated that the choices in EEG transformation and time-window can strongly affect the PSD quantities in a variety of ways. Additionally, EEG transformation and filter choices can influence phase quantities significantly. These results raise the need for a consistent and standard EEG processing pipeline for computational EEG studies. Consistency of signal processing methods cannot only help produce comparable results and reproducible research, but also pave the way for federated machine learning methods, e.g., where model parameters rather than data are shared.
Collapse
Affiliation(s)
- Raquib-ul Alam
- School of Electrical and Information Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Haifeng Zhao
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (H.Z.); (A.G.); (O.K.); (A.M.)
| | - Andrew Goodwin
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (H.Z.); (A.G.); (O.K.); (A.M.)
| | - Omid Kavehei
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (H.Z.); (A.G.); (O.K.); (A.M.)
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alistair McEwan
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia; (H.Z.); (A.G.); (O.K.); (A.M.)
| |
Collapse
|
98
|
Wang J, Bi L, Fei W, Guan C. Decoding Single-Hand and Both-Hand Movement Directions From Noninvasive Neural Signals. IEEE Trans Biomed Eng 2020; 68:1932-1940. [PMID: 33108279 DOI: 10.1109/tbme.2020.3034112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Decoding human movement parameters from electroencephalograms (EEG) signals is of great value for human-machine collaboration. However, existing studies on hand movement direction decoding concentrate on the decoding of a single-hand movement direction from EEG signals given the opposite hand is maintained still. In practice, the cooperative movement of both hands is common. In this paper, we investigated the neural signatures and decoding of single-hand and both-hand movement directions from EEG signals. The potentials of EEG signals and power sums in the low frequency band of EEG signals from 24 channels were used as decoding features. The linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were used for decoding. Experimental results showed a significant difference in the negative offset maximums of movement-related cortical potentials (MRCPs) at electrode Cz between single-hand and both-hand movements. The recognition accuracies for six-class classification, including two single-hand and four both-hand movement directions, reached 70.29%± 10.85% by using EEG potentials as features with the SVM classifier. These findings showed the feasibility of decoding single-hand and both-hand movement directions. This work can lay a foundation for the future development of an active human-machine collaboration system based on EEG signals and open a new research direction in the field of decoding hand movement parameters from EEG signals.
Collapse
|
99
|
Liu Y, Lin Y, Jia Z, Ma Y, Wang J. Representation based on ordinal patterns for seizure detection in EEG signals. Comput Biol Med 2020; 126:104033. [PMID: 33091826 DOI: 10.1016/j.compbiomed.2020.104033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 11/26/2022]
Abstract
EEG signals carry rich information about brain activity and play an important role in the diagnosis and recognition of epilepsy. Numerous algorithms using EEG signals to detect seizures have been developed in recent decades. However, most of them require well-designed features that highly depend on domain-specific knowledge and algorithm expertise. In this study, we introduce the unigram ordinal pattern (UniOP) and bigram ordinal pattern (BiOP) representations to capture the different underlying dynamics of time series, which only assumes that time series derived from different dynamics can be characterized by repeated ordinal patterns. Specifically, we first transform each subsequence in a time series into the corresponding ordinal pattern in terms of the ranking of values and consider the distribution of ordinal patterns of all subsequences as the UniOP representation. Furthermore, we consider the distribution of the cooccurrence of ordinal patterns as the BiOP representation to characterize the contextual information for each ordinal pattern. We then combine the proposed representations with the nearest neighbor algorithm to evaluate its effectiveness on three publicly available seizure datasets. The results on the Bonn EEG dataset demonstrate that this method provides more than 90% accuracy, sensitivity, and specificity in most cases and outperforms several state-of-the-art methods, which proves its ability to capture the key information of the underlying dynamics of EEG time series at healthy, seizure-free, and seizure states. The results on the second dataset are comparable with the state-of-the-art method, showing the good generalization ability of the proposed method. All performance metrics on the third dataset are approximately 89%, which demonstrates that the proposed representations are suitable for large-scale datasets.
Collapse
Affiliation(s)
- Yunxiao Liu
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, PR China; CAAC Key Laboratory of Intelligent Passenger Service of Civil Aviation, Beijing, China
| | - Youfang Lin
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, PR China; CAAC Key Laboratory of Intelligent Passenger Service of Civil Aviation, Beijing, China
| | - Ziyu Jia
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, PR China; CAAC Key Laboratory of Intelligent Passenger Service of Civil Aviation, Beijing, China
| | - Yan Ma
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jing Wang
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, PR China; CAAC Key Laboratory of Intelligent Passenger Service of Civil Aviation, Beijing, China.
| |
Collapse
|
100
|
Hwang KS, Kan H, Kim SS, Chae JS, Yang JY, Shin DS, Ahn SH, Ahn JH, Cho JH, Jang IS, Shin J, Joo J, Kim CH, Bae MA. Efficacy and pharmacokinetics evaluation of 4-(2-chloro-4-fluorobenzyl)-3-(2-thienyl)-1,2,4-oxadiazol-5(4H)-one (GM-90432) as an anti-seizure agent. Neurochem Int 2020; 141:104870. [PMID: 33035603 DOI: 10.1016/j.neuint.2020.104870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 11/15/2022]
Abstract
Epilepsy is a common chronic neurological disease characterized by recurrent epileptic seizures. A seizure is an uncontrolled electrical activity in the brain that can cause different levels of behavior, emotion, and consciousness. One-third of patients fail to receive sufficient seizure control, even though more than fifty FDA-approved anti-seizure drugs (ASDs) are available. In this study, we attempted small molecule screening to identify potential therapeutic agents for the treatment of seizures using seizure-induced animal models. Through behavioral phenotype-based screening, 4-(2-chloro-4-fluorobenzyl)-3-(2-thienyl)-1,2,4-oxadiazol-5(4H)-one (GM-90432) was identified as a prototype. GM-90432 treatment effectively decreased seizure-like behaviors in zebrafish and mice with chemically induced seizures. These results were consistent with decreased neuronal activity through immunohistochemistry for pERK in zebrafish larvae. Additionally, electroencephalogram (EEG) analysis revealed that GM-90432 decreases seizure-specific EEG events in adult zebrafish. Moreover, we revealed the preferential binding of GM-90432 to voltage-gated Na+ channels using a whole-cell patch clamp technique. Through pharmacokinetic analysis, GM-90432 effectively penetrated the blood-brain barrier and was distributed into the brain. Taken together, we suggest that GM-90432 has the potential to be developed into a new ASD candidate.
Collapse
Affiliation(s)
- Kyu-Seok Hwang
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hyemin Kan
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Seong Soon Kim
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Jin Sil Chae
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Jung Yoon Yang
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Dae-Seop Shin
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Se Hwan Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jin-Hwa Cho
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41940, Republic of Korea
| | | | - Jaeyoung Joo
- Zefit. Inc., Daegu, 42988, Republic of Korea; School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 41940, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34114, Republic of Korea
| | - Myung Ae Bae
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|