51
|
Ruan J, Zhu Z, Wu C, Ye G, Zhou J, Yue J. A fast and effective detection framework for whole-slide histopathology image analysis. PLoS One 2021; 16:e0251521. [PMID: 33979398 PMCID: PMC8115773 DOI: 10.1371/journal.pone.0251521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
Pathologists generally pan, focus, zoom and scan tissue biopsies either under microscopes or on digital images for diagnosis. With the rapid development of whole-slide digital scanners for histopathology, computer-assisted digital pathology image analysis has attracted increasing clinical attention. Thus, the working style of pathologists is also beginning to change. Computer-assisted image analysis systems have been developed to help pathologists perform basic examinations. This paper presents a novel lightweight detection framework for automatic tumor detection in whole-slide histopathology images. We develop the Double Magnification Combination (DMC) classifier, which is a modified DenseNet-40 to make patch-level predictions with only 0.3 million parameters. To improve the detection performance of multiple instances, we propose an improved adaptive sampling method with superpixel segmentation and introduce a new heuristic factor, local sampling density, as the convergence condition of iterations. In postprocessing, we use a CNN model with 4 convolutional layers to regulate the patch-level predictions based on the predictions of adjacent sampling points and use linear interpolation to generate a tumor probability heatmap. The entire framework was trained and validated using the dataset from the Camelyon16 Grand Challenge and Hubei Cancer Hospital. In our experiments, the average AUC was 0.95 in the test set for pixel-level detection.
Collapse
Affiliation(s)
- Jun Ruan
- School of Information Engineering, Wuhan University of Technology, Wuhan, China
| | - Zhikui Zhu
- School of Information Engineering, Wuhan University of Technology, Wuhan, China
| | - Chenchen Wu
- School of Information Engineering, Wuhan University of Technology, Wuhan, China
| | - Guanglu Ye
- School of Information Engineering, Wuhan University of Technology, Wuhan, China
| | - Jingfan Zhou
- School of Information Engineering, Wuhan University of Technology, Wuhan, China
| | - Junqiu Yue
- Department of Pathology, Huazhong University of Science and Technology, Tongji Medical College, Hubei Cancer Hospital, Wuhan, China
- * E-mail:
| |
Collapse
|
52
|
Puttagunta M, Ravi S. Medical image analysis based on deep learning approach. MULTIMEDIA TOOLS AND APPLICATIONS 2021; 80:24365-24398. [PMID: 33841033 PMCID: PMC8023554 DOI: 10.1007/s11042-021-10707-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/28/2020] [Accepted: 02/10/2021] [Indexed: 05/05/2023]
Abstract
Medical imaging plays a significant role in different clinical applications such as medical procedures used for early detection, monitoring, diagnosis, and treatment evaluation of various medical conditions. Basicsof the principles and implementations of artificial neural networks and deep learning are essential for understanding medical image analysis in computer vision. Deep Learning Approach (DLA) in medical image analysis emerges as a fast-growing research field. DLA has been widely used in medical imaging to detect the presence or absence of the disease. This paper presents the development of artificial neural networks, comprehensive analysis of DLA, which delivers promising medical imaging applications. Most of the DLA implementations concentrate on the X-ray images, computerized tomography, mammography images, and digital histopathology images. It provides a systematic review of the articles for classification, detection, and segmentation of medical images based on DLA. This review guides the researchers to think of appropriate changes in medical image analysis based on DLA.
Collapse
Affiliation(s)
- Muralikrishna Puttagunta
- Department of Computer Science, School of Engineering and Technology, Pondicherry University, Pondicherry, India
| | - S. Ravi
- Department of Computer Science, School of Engineering and Technology, Pondicherry University, Pondicherry, India
| |
Collapse
|
53
|
Lancellotti C, Cancian P, Savevski V, Kotha SRR, Fraggetta F, Graziano P, Di Tommaso L. Artificial Intelligence & Tissue Biomarkers: Advantages, Risks and Perspectives for Pathology. Cells 2021; 10:787. [PMID: 33918173 PMCID: PMC8066881 DOI: 10.3390/cells10040787] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
Tissue Biomarkers are information written in the tissue and used in Pathology to recognize specific subsets of patients with diagnostic, prognostic or predictive purposes, thus representing the key elements of Personalized Medicine. The advent of Artificial Intelligence (AI) promises to further reinforce the role of Pathology in the scenario of Personalized Medicine: AI-based devices are expected to standardize the evaluation of tissue biomarkers and also to discover novel information, which would otherwise be ignored by human review, and use them to make specific predictions. In this review we will present how AI has been used to support Tissue Biomarkers evaluation in the specific field of Pathology, give an insight to the intriguing field of AI-based biomarkers and discuss possible advantages, risk and perspectives for Pathology.
Collapse
Affiliation(s)
- Cesare Lancellotti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; (C.L.); (S.R.R.K.)
- Pathology Unit, Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Pierandrea Cancian
- Artificial Intelligence Center IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; (P.C.); (V.S.)
| | - Victor Savevski
- Artificial Intelligence Center IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; (P.C.); (V.S.)
| | - Soumya Rupa Reddy Kotha
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; (C.L.); (S.R.R.K.)
- Pathology Unit, Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | | | - Paolo Graziano
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy;
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; (C.L.); (S.R.R.K.)
- Pathology Unit, Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| |
Collapse
|
54
|
Zheng Y, Jiang Z, Xie F, Shi J, Zhang H, Huai J, Cao M, Yang X. Diagnostic Regions Attention Network (DRA-Net) for Histopathology WSI Recommendation and Retrieval. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1090-1103. [PMID: 33351756 DOI: 10.1109/tmi.2020.3046636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of whole slide imaging techniques and online digital pathology platforms have accelerated the popularization of telepathology for remote tumor diagnoses. During a diagnosis, the behavior information of the pathologist can be recorded by the platform and then archived with the digital case. The browsing path of the pathologist on the WSI is one of the valuable information in the digital database because the image content within the path is expected to be highly correlated with the diagnosis report of the pathologist. In this article, we proposed a novel approach for computer-assisted cancer diagnosis named session-based histopathology image recommendation (SHIR) based on the browsing paths on WSIs. To achieve the SHIR, we developed a novel diagnostic regions attention network (DRA-Net) to learn the pathology knowledge from the image content associated with the browsing paths. The DRA-Net does not rely on the pixel-level or region-level annotations of pathologists. All the data for training can be automatically collected by the digital pathology platform without interrupting the pathologists' diagnoses. The proposed approaches were evaluated on a gastric dataset containing 983 cases within 5 categories of gastric lesions. The quantitative and qualitative assessments on the dataset have demonstrated the proposed SHIR framework with the novel DRA-Net is effective in recommending diagnostically relevant cases for auxiliary diagnosis. The MRR and MAP for the recommendation are respectively 0.816 and 0.836 on the gastric dataset. The source code of the DRA-Net is available at https://github.com/zhengyushan/dpathnet.
Collapse
|
55
|
Wieslander H, Harrison PJ, Skogberg G, Jackson S, Friden M, Karlsson J, Spjuth O, Wahlby C. Deep Learning With Conformal Prediction for Hierarchical Analysis of Large-Scale Whole-Slide Tissue Images. IEEE J Biomed Health Inform 2021; 25:371-380. [PMID: 32750907 DOI: 10.1109/jbhi.2020.2996300] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
With the increasing amount of image data collected from biomedical experiments there is an urgent need for smarter and more effective analysis methods. Many scientific questions require analysis of image sub-regions related to some specific biology. Finding such regions of interest (ROIs) at low resolution and limiting the data subjected to final quantification at full resolution can reduce computational requirements and save time. In this paper we propose a three-step pipeline: First, bounding boxes for ROIs are located at low resolution. Next, ROIs are subjected to semantic segmentation into sub-regions at mid-resolution. We also estimate the confidence of the segmented sub-regions. Finally, quantitative measurements are extracted at full resolution. We use deep learning for the first two steps in the pipeline and conformal prediction for confidence assessment. We show that limiting final quantitative analysis to sub-regions with full confidence reduces noise and increases separability of observed biological effects.
Collapse
|
56
|
Lin H, Chen H, Wang X, Wang Q, Wang L, Heng PA. Dual-path network with synergistic grouping loss and evidence driven risk stratification for whole slide cervical image analysis. Med Image Anal 2021; 69:101955. [PMID: 33588122 DOI: 10.1016/j.media.2021.101955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 12/26/2022]
Abstract
Cervical cancer has been one of the most lethal cancers threatening women's health. Nevertheless, the incidence of cervical cancer can be effectively minimized with preventive clinical management strategies, including vaccines and regular screening examinations. Screening cervical smears under microscope by cytologist is a widely used routine in regular examination, which consumes cytologists' large amount of time and labour. Computerized cytology analysis appropriately caters to such an imperative need, which alleviates cytologists' workload and reduce potential misdiagnosis rate. However, automatic analysis of cervical smear via digitalized whole slide images (WSIs) remains a challenging problem, due to the extreme huge image resolution, existence of tiny lesions, noisy dataset and intricate clinical definition of classes with fuzzy boundaries. In this paper, we design an efficient deep convolutional neural network (CNN) with dual-path (DP) encoder for lesion retrieval, which ensures the inference efficiency and the sensitivity on both tiny and large lesions. Incorporated with synergistic grouping loss (SGL), the network can be effectively trained on noisy dataset with fuzzy inter-class boundaries. Inspired by the clinical diagnostic criteria from the cytologists, a novel smear-level classifier, i.e., rule-based risk stratification (RRS), is proposed for accurate smear-level classification and risk stratification, which aligns reasonably with intricate cytological definition of the classes. Extensive experiments on the largest dataset including 19,303 WSIs from multiple medical centers validate the robustness of our method. With high sensitivity of 0.907 and specificity of 0.80 being achieved, our method manifests the potential to reduce the workload for cytologists in the routine practice.
Collapse
Affiliation(s)
- Huangjing Lin
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hao Chen
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiong Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Liansheng Wang
- Department of Computer Science, Xiamen University, Xiamen, China
| | - Pheng-Ann Heng
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
57
|
Zerouaoui H, Idri A. Reviewing Machine Learning and Image Processing Based Decision-Making Systems for Breast Cancer Imaging. J Med Syst 2021; 45:8. [PMID: 33404910 DOI: 10.1007/s10916-020-01689-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/01/2020] [Indexed: 01/11/2023]
Abstract
Breast cancer (BC) is the leading cause of death among women worldwide. It affects in general women older than 40 years old. Medical images analysis is one of the most promising research areas since it provides facilities for diagnosis and decision-making of several diseases such as BC. This paper conducts a Structured Literature Review (SLR) of the use of Machine Learning (ML) and Image Processing (IP) techniques to deal with BC imaging. A set of 530 papers published between 2000 and August 2019 were selected and analyzed according to ten criteria: year and publication channel, empirical type, research type, medical task, machine learning techniques, datasets used, validation methods, performance measures and image processing techniques which include image pre-processing, segmentation, feature extraction and feature selection. Results showed that diagnosis was the most used medical task and that Deep Learning techniques (DL) were largely used to perform classification. Furthermore, we found out that classification was the most ML objective investigated followed by prediction and clustering. Most of the selected studies used Mammograms as imaging modalities rather than Ultrasound or Magnetic Resonance Imaging with the use of public or private datasets with MIAS as the most frequently investigated public dataset. As for image processing techniques, the majority of the selected studies pre-process their input images by reducing the noise and normalizing the colors, and some of them use segmentation to extract the region of interest with the thresholding method. For feature extraction, we note that researchers extracted the relevant features using classical feature extraction techniques (e.g. Texture features, Shape features, etc.) or DL techniques (e. g. VGG16, VGG19, ResNet, etc.), and finally few papers used feature selection techniques in particular the filter methods.
Collapse
Affiliation(s)
- Hasnae Zerouaoui
- Modeling, Simulation and Data Analysis, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Ali Idri
- Modeling, Simulation and Data Analysis, Mohammed VI Polytechnic University, Benguerir, Morocco. .,Software Project Management Research Team, ENSIAS, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
58
|
Srinidhi CL, Ciga O, Martel AL. Deep neural network models for computational histopathology: A survey. Med Image Anal 2021; 67:101813. [PMID: 33049577 PMCID: PMC7725956 DOI: 10.1016/j.media.2020.101813] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/12/2020] [Accepted: 08/09/2020] [Indexed: 12/14/2022]
Abstract
Histopathological images contain rich phenotypic information that can be used to monitor underlying mechanisms contributing to disease progression and patient survival outcomes. Recently, deep learning has become the mainstream methodological choice for analyzing and interpreting histology images. In this paper, we present a comprehensive review of state-of-the-art deep learning approaches that have been used in the context of histopathological image analysis. From the survey of over 130 papers, we review the field's progress based on the methodological aspect of different machine learning strategies such as supervised, weakly supervised, unsupervised, transfer learning and various other sub-variants of these methods. We also provide an overview of deep learning based survival models that are applicable for disease-specific prognosis tasks. Finally, we summarize several existing open datasets and highlight critical challenges and limitations with current deep learning approaches, along with possible avenues for future research.
Collapse
Affiliation(s)
- Chetan L Srinidhi
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Canada.
| | - Ozan Ciga
- Department of Medical Biophysics, University of Toronto, Canada
| | - Anne L Martel
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Canada
| |
Collapse
|
59
|
Xing F, Zhang X, Cornish TC. Artificial intelligence for pathology. Artif Intell Med 2021. [DOI: 10.1016/b978-0-12-821259-2.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
60
|
Zheng Q, Yang L, Zeng B, Li J, Guo K, Liang Y, Liao G. Artificial intelligence performance in detecting tumor metastasis from medical radiology imaging: A systematic review and meta-analysis. EClinicalMedicine 2021; 31:100669. [PMID: 33392486 PMCID: PMC7773591 DOI: 10.1016/j.eclinm.2020.100669] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Early diagnosis of tumor metastasis is crucial for clinical treatment. Artificial intelligence (AI) has shown great promise in the field of medicine. We therefore aimed to evaluate the diagnostic accuracy of AI algorithms in detecting tumor metastasis using medical radiology imaging. METHODS We searched PubMed and Web of Science for studies published from January 1, 1997, to January 30, 2020. Studies evaluating an AI model for the diagnosis of tumor metastasis from medical images were included. We excluded studies that used histopathology images or medical wave-form data and those focused on the region segmentation of interest. Studies providing enough information to construct contingency tables were included in a meta-analysis. FINDINGS We identified 2620 studies, of which 69 were included. Among them, 34 studies were included in a meta-analysis with a pooled sensitivity of 82% (95% CI 79-84%), specificity of 84% (82-87%) and AUC of 0·90 (0·87-0·92). Analysis for different AI algorithms showed a pooled sensitivity of 87% (83-90%) for machine learning and 86% (82-89%) for deep learning, and a pooled specificity of 89% (82-93%) for machine learning, and 87% (82-91%) for deep learning. INTERPRETATION AI algorithms may be used for the diagnosis of tumor metastasis using medical radiology imaging with equivalent or even better performance to health-care professionals, in terms of sensitivity and specificity. At the same time, rigorous reporting standards with external validation and comparison to health-care professionals are urgently needed for AI application in the medical field. FUNDING College students' innovative entrepreneurial training plan program .
Collapse
Affiliation(s)
- Qiuhan Zheng
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Le Yang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Zeng
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jiahao Li
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Kaixin Guo
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yujie Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Guiqing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
61
|
Shaban M, Awan R, Fraz MM, Azam A, Tsang YW, Snead D, Rajpoot NM. Context-Aware Convolutional Neural Network for Grading of Colorectal Cancer Histology Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2395-2405. [PMID: 32012004 DOI: 10.1109/tmi.2020.2971006] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Digital histology images are amenable to the application of convolutional neural networks (CNNs) for analysis due to the sheer size of pixel data present in them. CNNs are generally used for representation learning from small image patches (e.g. 224×224 ) extracted from digital histology images due to computational and memory constraints. However, this approach does not incorporate high-resolution contextual information in histology images. We propose a novel way to incorporate a larger context by a context-aware neural network based on images with a dimension of 1792×1792 pixels. The proposed framework first encodes the local representation of a histology image into high dimensional features then aggregates the features by considering their spatial organization to make a final prediction. We evaluated the proposed method on two colorectal cancer datasets for the task of cancer grading. Our method outperformed the traditional patch-based approaches, problem-specific methods, and existing context-based methods. We also presented a comprehensive analysis of different variants of the proposed method.
Collapse
|
62
|
Sun L, Shao W, Zhang D, Liu M. Anatomical Attention Guided Deep Networks for ROI Segmentation of Brain MR Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2000-2012. [PMID: 31899417 DOI: 10.1109/tmi.2019.2962792] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brain region-of-interest (ROI) segmentation based on structural magnetic resonance imaging (MRI) scans is an essential step for many computer-aid medical image analysis applications. Due to low intensity contrast around ROI boundary and large inter-subject variance, it has been remaining a challenging task to effectively segment brain ROIs from structural MR images. Even though several deep learning methods for brain MR image segmentation have been developed, most of them do not incorporate shape priors to take advantage of the regularity of brain structures, thus leading to sub-optimal performance. To address this issue, we propose an anatomical attention guided deep learning framework for brain ROI segmentation of structural MR images, containing two subnetworks. The first one is a segmentation subnetwork, used to simultaneously extract discriminative image representation and segment ROIs for each input MR image. The second one is an anatomical attention subnetwork, designed to capture the anatomical structure information of the brain from a set of labeled atlases. To utilize the anatomical attention knowledge learned from atlases, we develop an anatomical gate architecture to fuse feature maps derived from a set of atlas label maps and those from the to-be-segmented image for brain ROI segmentation. In this way, the anatomical prior learned from atlases can be explicitly employed to guide the segmentation process for performance improvement. Within this framework, we develop two anatomical attention guided segmentation models, denoted as anatomical gated fully convolutional network (AG-FCN) and anatomical gated U-Net (AG-UNet), respectively. Experimental results on both ADNI and LONI-LPBA40 datasets suggest that the proposed AG-FCN and AG-UNet methods achieve superior performance in ROI segmentation of brain MR images, compared with several state-of-the-art methods.
Collapse
|
63
|
Wang S, Zhu Y, Yu L, Chen H, Lin H, Wan X, Fan X, Heng PA. RMDL: Recalibrated multi-instance deep learning for whole slide gastric image classification. Med Image Anal 2019; 58:101549. [PMID: 31499320 DOI: 10.1016/j.media.2019.101549] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022]
Abstract
The whole slide histopathology images (WSIs) play a critical role in gastric cancer diagnosis. However, due to the large scale of WSIs and various sizes of the abnormal area, how to select informative regions and analyze them are quite challenging during the automatic diagnosis process. The multi-instance learning based on the most discriminative instances can be of great benefit for whole slide gastric image diagnosis. In this paper, we design a recalibrated multi-instance deep learning method (RMDL) to address this challenging problem. We first select the discriminative instances, and then utilize these instances to diagnose diseases based on the proposed RMDL approach. The designed RMDL network is capable of capturing instance-wise dependencies and recalibrating instance features according to the importance coefficient learned from the fused features. Furthermore, we build a large whole-slide gastric histopathology image dataset with detailed pixel-level annotations. Experimental results on the constructed gastric dataset demonstrate the significant improvement on the accuracy of our proposed framework compared with other state-of-the-art multi-instance learning methods. Moreover, our method is general and can be extended to other diagnosis tasks of different cancer types based on WSIs.
Collapse
Affiliation(s)
- Shujun Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Yaxi Zhu
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, China
| | - Lequan Yu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Chen
- Imsight Medical Technology Co., Ltd., China.
| | - Huangjing Lin
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China; Imsight Medical Technology Co., Ltd., China
| | - Xiangbo Wan
- Department of Radiation Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, China
| | - Xinjuan Fan
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, China.
| | - Pheng-Ann Heng
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|