51
|
Tank EMH, Harris DA, Desai AA, True HL. Prion protein repeat expansion results in increased aggregation and reveals phenotypic variability. Mol Cell Biol 2007; 27:5445-55. [PMID: 17548473 PMCID: PMC1952097 DOI: 10.1128/mcb.02127-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian prion diseases are fatal neurodegenerative disorders dependent on the prion protein PrP. Expansion of the oligopeptide repeats (ORE) found in PrP is associated with inherited prion diseases. Patients with ORE frequently harbor PrP aggregates, but other factors may contribute to pathology, as they often present with unexplained phenotypic variability. We created chimeric yeast-mammalian prion proteins to examine the influence of the PrP ORE on prion properties in yeast. Remarkably, all chimeric proteins maintained prion characteristics. The largest repeat expansion chimera displayed a higher propensity to maintain a self-propagating aggregated state. Strikingly, the repeat expansion conferred increased conformational flexibility, as observed by enhanced phenotypic variation. Furthermore, the repeat expansion chimera displayed an increased rate of prion conversion, but only in the presence of another aggregate, the [RNQ+] prion. We suggest that the PrP ORE increases the conformational flexibility of the prion protein, thereby enhancing the formation of multiple distinct aggregate structures and allowing more frequent prion conversion. Both of these characteristics may contribute to the phenotypic variability associated with PrP repeat expansion diseases.
Collapse
Affiliation(s)
- Elizabeth M H Tank
- Department of Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8228, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
52
|
Li A, Piccardo P, Barmada SJ, Ghetti B, Harris DA. Prion protein with an octapeptide insertion has impaired neuroprotective activity in transgenic mice. EMBO J 2007; 26:2777-85. [PMID: 17510630 PMCID: PMC1888682 DOI: 10.1038/sj.emboj.7601726] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Accepted: 04/20/2007] [Indexed: 01/13/2023] Open
Abstract
Familial prion diseases are due to dominantly inherited, germline mutations in the PRNP gene that encodes the prion protein (PrP). The cellular mechanism underlying the pathogenic effect of these mutations remains uncertain. To investigate whether pathogenic mutations impair a normal, physiological activity of PrP, we have crossed Tg(PG14) mice, which express PrP with an octapeptide insertion associated with an inherited prion dementia, with Tg(PrPDelta32-134) mice. Tg(PrPDelta32-134) mice, which express an N-terminally truncated form of PrP, spontaneously develop a neurodegenerative phenotype that is stoichiometrically reversed by coexpression of wild-type PrP. We find that, at equivalent expression levels, PG14 PrP is significantly less efficient than wild-type PrP in suppressing the development of clinical symptoms and neuropathology in Tg(PrPDelta32-134) mice. Thus, our results suggest that some features of the neurological illness associated with inherited PrP mutations may be attributable to a loss of PrP neuroprotective function. This mechanism stands in contrast to the toxic gain-of-function mechanisms that are usually invoked to explain the pathogenesis of dominantly inherited neurodegenerative disorders.
Collapse
Affiliation(s)
- Aimin Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Pedro Piccardo
- Division of Neuropathology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD, USA
| | - Sami J Barmada
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Bernardino Ghetti
- Division of Neuropathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David A Harris
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA. Tel.: +1 314 362 4690; Fax: +1 314 747 0940. E-mail:
| |
Collapse
|
53
|
Yu S, Yin S, Li C, Wong P, Chang B, Xiao F, Kang SC, Yan H, Xiao G, Tien P, Sy MS. Aggregation of prion protein with insertion mutations is proportional to the number of inserts. Biochem J 2007; 403:343-51. [PMID: 17187581 PMCID: PMC1874237 DOI: 10.1042/bj20061592] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutation in the prion gene, PRNP, accounts for approx. 10-15% of human prion diseases. However, little is known about the mechanisms by which a mutant prion protein (PrP) causes disease. We compared the biochemical properties of a wild-type human prion protein, rPrP(C) (recombinant wild-type PrP), which has five octapeptide-repeats, with two recombinant human prion proteins with insertion mutations, one with three more octapeptide repeats, rPrP(8OR), and the other with five more octapeptide repeats, rPrP(10OR). We found that the insertion mutant proteins are more prone to aggregate, and the degree and kinetics of aggregation are proportional to the number of inserts. The octapeptide-repeat and alpha-helix 1 regions are important in aggregate formation, because aggregation is inhibited with monoclonal antibodies that are specific for epitopes in these regions. We also showed that a small amount of mutant protein could enhance the formation of mixed aggregates that are composed of mutant protein and wild-type rPrP(C). Accordingly, rPrP(10OR) is also more efficient in promoting the aggregation of rPrP(C) than rPrP(8OR). These findings provide a biochemical explanation for the clinical observations that the severity of the disease in patients with insertion mutations is proportional to the number of inserts, and thus have implications for the pathogenesis of inherited human prion disease.
Collapse
Affiliation(s)
- Shuiliang Yu
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Shaoman Yin
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Chaoyang Li
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Poki Wong
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Binggong Chang
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Fan Xiao
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Shin-Chung Kang
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Huimin Yan
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
- †Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Gengfu Xiao
- †Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Po Tien
- †Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
- ‡Institute of Microbiology, Chinese Academy of Science, Beijing 100080, People's Republic of China
| | - Man-Sun Sy
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
55
|
Sun Y, Breydo L, Makarava N, Yang Q, Bocharova OV, Baskakov IV. Site-specific Conformational Studies of Prion Protein (PrP) Amyloid Fibrils Revealed Two Cooperative Folding Domains within Amyloid Structure. J Biol Chem 2007; 282:9090-7. [PMID: 17244617 DOI: 10.1074/jbc.m608623200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the ability of most proteins to form amyloid, very little is know about amyloid fibril structures and the factors that govern their stability. Using amyloid fibrils produced from full-length prion protein (PrP), we describe a reliable approach for determining both site-specific and global conformational stability of the fibrillar form. To measure site-specific stability, we produced six variants of PrP by replacing the residues at positions 88, 98, 127, 144, 196, and 230 with cysteine, labeled the new cysteines with the fluorescent dye acrylodan, and investigated their conformational status within the amyloid form in guanidine hydrochloride-induced denaturation experiments. We found that the fibrils labeled at positions 127, 144, 196, and 230 displayed cooperative unfolding and showed a very high C1/2 value similar to that observed for the global unfolding of the amyloid structure. The unfolding at residue 98 was also cooperative; however, it showed a C1/2 value substantially lower than that of global unfolding, whereas the unfolding of fibrils labeled at residue 88 was non-cooperative. These data illustrate that there are at least two independent cooperative folding domains within the amyloid structure of the full-length PrP. In addition, kinetic experiments revealed only a partial overlap between the region that constituted the fibrillar cross-beta core and the regions that were involved in nucleation. This result illustrates that separate PrP regions accounted for the nucleation and for the formation of the conformationally most stable fibrillar core.
Collapse
Affiliation(s)
- Ying Sun
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
56
|
Shiraishi N, Utsunomiya H, Nishikimi M. Combination of NADPH and copper ions generates proteinase K-resistant aggregates from recombinant prion protein. J Biol Chem 2006; 281:34880-7. [PMID: 16990274 DOI: 10.1074/jbc.m606581200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have demonstrated that the octapeptide repeats of the N-terminal region of prion protein may be responsible for de novo generation of infectious prions in the absence of template. Here we demonstrate that PrP-(23-98), an N-terminal portion of PrP, is converted to aggregates upon incubation with NADPH and copper ions. Other pyridine nucleotides possessing a phosphate group on the adenine-linked ribose moiety (the reduced form of nicotinamide adenine dinucleotide 3'-phosphate, nicotinic acid adenine dinucleotide phosphate, and NADP) were also effective in promoting aggregation, but NADH and NAD had no effect. The aggregation was attenuated by the metal chelator EDTA or by modification of histidyl residues with diethyl pyrocarbonate. The aggregates are amyloid-like as judged by the binding of thioflavin T, a fluorescent probe for amyloid, but do not exhibit fibrillar structures according to electron micrography. Interestingly the aggregates were resistant to proteinase K digestion. Likewise NADPH and zinc ions caused aggregation of PrP-(23-98), but the resulting aggregates were susceptible to degradation by proteinase K. Upon incubation with NADPH and copper ions, the full-length molecule PrP-(23-231) also formed proteinase K-resistant amyloid-like aggregates. Because it is possible that PrP, NADPH, and copper ions could associate in certain tissues, the aggregation observed in this study may be involved in prion initiation especially in the nonfamilial types of prion diseases.
Collapse
Affiliation(s)
- Noriyuki Shiraishi
- Department of Biochemistry and Central Research Laboratory, Wakayama Medical University, Wakayama 641-8509, Japan.
| | | | | |
Collapse
|