51
|
Das D, Baruah IK, Panda D, Paswan RR, Acharjee S, Sarmah BK. Bruchid beetle ovipositioning mediated defense responses in black gram pods. BMC PLANT BIOLOGY 2021; 21:38. [PMID: 33430784 PMCID: PMC7802178 DOI: 10.1186/s12870-020-02796-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/14/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Black gram [Vigna mungo (L)] seeds are a rich source of digestible protein and dietary fibre, both for human and animal consumption. However, the quality and quantity of the Vigna seeds are severely affected by bruchid beetles during storage. Therefore, analyses of the expression of the bruchid induced transcript dynamics in black gram pods would be helpful to understand the underlying defense mechanism against bruchid oviposition. RESULTS We used the RNAseq approach to survey the changes in transcript profile in the developing seeds of a moderately resistant cultivar IC-8219 against bruchid oviposition using a susceptible cultivar T-9 as a control. A total of 96,084,600 and 99,532,488 clean reads were generated from eight (4 each) samples of IC-8219 and T-9 cultivar, respectively. Based on the BLASTX search against the NR database, 32,584 CDSs were generated of which 31,817 CDSs were significantly similar to Vigna radiata, a close relative of Vigna mungo. The IC-8219 cultivar had 630 significantly differentially expressed genes (DEGs) of which 304 and 326 genes up and down-regulated, respectively. However, in the T-9 cultivar, only 168 DEGs were identified of which 142 and 26 genes up and down-regulated, respectively. The expression analyses of 10 DEGs by qPCR confirmed the accuracy of the RNA-Seq data. Gene Ontology and KEGG pathway analyses helped us to better understand the role of these DEGs in oviposition mediated defense response of black gram. In both the cultivars, the most significant transcriptomic changes in response to the oviposition were related to the induction of defense response genes, transcription factors, secondary metabolites, enzyme inhibitors, and signal transduction pathways. It appears that the bruchid ovipositioning mediated defense response in black gram is induced by SA signaling pathways and defense genes such as defensin, genes for secondary metabolites, and enzyme inhibitors could be potential candidates for resistance to bruchids. CONCLUSION We generated a transcript profile of immature black gram pods upon bruchid ovipositioning by de novo assembly and studied the underlying defense mechanism of a moderately resistant cultivar.
Collapse
Affiliation(s)
- Debajit Das
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Indrani K Baruah
- Office of the ICAR-National Professor (Norman Borlaug Chair) and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India
| | - Debashis Panda
- Distributed Information Centre, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Ricky Raj Paswan
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India.
- Office of the ICAR-National Professor (Norman Borlaug Chair) and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India.
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India.
- Office of the ICAR-National Professor (Norman Borlaug Chair) and DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, India.
| |
Collapse
|
52
|
Cheng Y, Li C, Hou J, Li Y, Jiang C, Ge Y. Mitogen-Activated Protein Kinase Cascade and Reactive Oxygen Species Metabolism are Involved in Acibenzolar-S-Methyl-Induced Disease Resistance in Apples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10928-10936. [PMID: 32902967 DOI: 10.1021/acs.jafc.0c04257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Apple fruits were subjected to dipping treatment to explore the effects of acibenzolar-S-methyl (ASM) and the mitogen-activated protein kinase (MAPK) inhibitor PD98059 on lesion growth in fruits inoculated with Penicillium expansum. We investigated the roles of the MAPK cascade and reactive oxygen species metabolism in disease resistance in apples. ASM treatment inhibited lesion growth; suppressed catalase (CAT) activity; increased H2O2 content; reduced glutathione and ascorbic acid contents; and increased glutathione reductase, ascorbate peroxidase, peroxidase, superoxide dismutase, and NADPH oxidase activities. Moreover, ASM upregulated MdSOD, MdPOD, MdGR, MdAPX, MdMAPK4, MdMAPK2, and MdMAPKK1 expressions and downregulated MdCAT and MdMAPK3 expressions. PD98059 + ASM treatment increased CAT activity and MdCAT and MdMAPK3 expressions; inhibited MdSOD, MdPOD, MdGR, MdAPX, MdMAPK4, MdMAPK2, and MdMAPKK1 expressions; reduced superoxide dismutase, peroxidase, ascorbate peroxidase, and glutathione reductase activities; and reduced glutathione content in apples. These findings indicate that ASM induces disease resistance in apples by regulating the expressions of key genes involved in reactive oxygen species metabolism and the MAPK cascade.
Collapse
Affiliation(s)
- Yuan Cheng
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Canying Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Jiabao Hou
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Yihan Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Chaonan Jiang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Yonghong Ge
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| |
Collapse
|
53
|
Kumar RR, Arora K, Goswami S, Sakhare A, Singh B, Chinnusamy V, Praveen S. MAPK Enzymes: a ROS Activated Signaling Sensors Involved in Modulating Heat Stress Response, Tolerance and Grain Stability of Wheat under Heat Stress. 3 Biotech 2020; 10:380. [PMID: 32802722 DOI: 10.1007/s13205-020-02377-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling cascade is highly conserved across the species triggering the self-adjustment of the cells by transmitting the external signals to the nucleus. The cascade consists of MAPK kinase kinases (MAPKKKs), MAPK kinases (MAPKKs) and MAPKs. These kinases are functionally interrelated through activation by sequential phosphorylation. MAPK cascade is involved in modulating the tolerance and regulating the growth and developmental processes in plants through transcriptional programming. The cascade has been well characterized in Arabidopsis, Tobacco and rice, but limited information is available in wheat due to complexity of genome. MAPK-based sensors have been reported to be highly specific for the external or intracellular stimuli activating specific TF, stress-associated genes (SAGs) and stress-associated proteins (SAPs) linked with heat-stress tolerance and other biological functions especially size, number and quality of grains. Even, MAPKs have been reported to influence the activity of ATP-binding cassette (ABC) transporter superfamily involved in stabilizing the quality of the grains under adverse conditions. Wheat has also diverse network of MAPKs involved in transcriptional reprogramming upon sensing the terminal HS and in turn protect the plants. Current review mainly focuses on the role of MAPKs as signaling sensor and modulator of defense mechanism for mitigating the effect of heat on plants with focus on wheat. It also indirectly protects the nutrient depletion from the grains under heat stress. MAPKs, lying at pivotal positions, can be utilized for manipulating the heat-stress response (HSR) of wheat to develop plant for future (P4F).
Collapse
Affiliation(s)
- Ranjeet R Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Kirti Arora
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Suneha Goswami
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Akshay Sakhare
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture (CESCRA), Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Shelly Praveen
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
54
|
Abulfaraj AA. Stepwise signal transduction cascades under salt stress in leaves of wild barley (Hordeum spontaneum). BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1807408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Aala Abdulaziz Abulfaraj
- Department of Biological Sciences, Science and Arts College, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
55
|
Koch KG, Palmer NA, Donze-Reiner T, Scully ED, Seravalli J, Amundsen K, Twigg P, Louis J, Bradshaw JD, Heng-Moss TM, Sarath G. Aphid-Responsive Defense Networks in Hybrid Switchgrass. FRONTIERS IN PLANT SCIENCE 2020; 11:1145. [PMID: 32849703 PMCID: PMC7412557 DOI: 10.3389/fpls.2020.01145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/14/2020] [Indexed: 05/30/2023]
Abstract
Aphid herbivory elicits plant defense-related networks that are influenced by host genetics. Plants of the upland switchgrass (Panicum virgatum) cultivar Summer can be a suitable host for greenbug aphids (Schizaphis graminum; GB), and yellow sugarcane aphids (Sipha flava, YSA), whereas the lowland cultivar Kanlow exhibited multi-species resistance that curtails aphid reproduction. However, stabilized hybrids of Summer (♀) x Kanlow (♂) (SxK) with improved agronomics can be damaged by both aphids. Here, hormone and metabolite analyses, coupled with RNA-Seq analysis of plant transcriptomes, were utilized to delineate defense networks induced by aphid feeding in SxK switchgrass and pinpoint plant transcription factors (TFs), such as WRKYs that potentially regulate these responses. Abscisic acid (ABA) levels were significantly higher in GB infested plants at 5 and 10 days after infestation (DAI). ABA levels were highest at 15DAI in YSA infested plants. Jasmonic acid levels were significantly elevated under GB infestation, while salicylic acid levels were signifi40cantly elevated only at 15 DAI in YSA infested plants. Similarly, levels of several metabolites were altered in common or specifically to each aphid. YSA infestation induced a significant enrichment of flavonoids consistent with an upregulation of many genes associated with flavonoid biosynthesis at 15DAI. Gene co-expression modules that responded singly to either aphid or in common to both aphids were differentiated and linked to specific TFs. Together, these data provide important clues into the interplay of metabolism and transcriptional remodeling accompanying defense responses to aphid herbivory in hybrid switchgrass.
Collapse
Affiliation(s)
- Kyle G. Koch
- Department of Entomology, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Nathan A. Palmer
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Teresa Donze-Reiner
- Biology Department, West Chester University of Pennsylvania, West Chester, PA, United States
| | - Erin D. Scully
- Stored Product Insect and Engineering Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Javier Seravalli
- Redox Biology Center, Department of Biochemistry, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Keenan Amundsen
- Department of Agronomy and Horticulture, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Paul Twigg
- Biology Department, University of Nebraska at Kearney, Kearney, NE, United States
| | - Joe Louis
- Department of Entomology, University of Nebraska at Lincoln, Lincoln, NE, United States
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jeffrey D. Bradshaw
- Department of Entomology, University of Nebraska at Lincoln, Lincoln, NE, United States
| | | | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska at Lincoln, Lincoln, NE, United States
| |
Collapse
|
56
|
Hõrak H. Defense, Fast and Slow: Activation of Different MAPK Pathways in Response to Wounding. THE PLANT CELL 2020; 32:1788-1789. [PMID: 32284346 PMCID: PMC7268799 DOI: 10.1105/tpc.20.00282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Hanna Hõrak
- Institute of TechnologyUniversity of Tartu, Estonia
| |
Collapse
|
57
|
Sözen C, Schenk ST, Boudsocq M, Chardin C, Almeida-Trapp M, Krapp A, Hirt H, Mithöfer A, Colcombet J. Wounding and Insect Feeding Trigger Two Independent MAPK Pathways with Distinct Regulation and Kinetics. THE PLANT CELL 2020; 32:1988-2003. [PMID: 32265268 PMCID: PMC7268812 DOI: 10.1105/tpc.19.00917] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 05/24/2023]
Abstract
Abiotic and biotic factors cause plant wounding and trigger complex short- and long-term responses at the local and systemic levels. These responses are under the control of complex signaling pathways, which are still poorly understood. Here, we show that the rapid activation of clade-A mitogen-activated protein kinases (MAPKs) MPK3 and MPK6 by wounding depends on the upstream MAPK kinases MKK4 and MKK5 but is independent of jasmonic acid (JA) signaling. In addition, this fast module does not control wound-triggered JA accumulation in Arabidopsis (Arabidopsis thaliana), unlike its orthologs in tobacco. We also demonstrate that a second MAPK module, composed of MKK3 and the clade-C MAPKs MPK1/2/7, is activated by wounding in a MKK4/5-independent manner. We provide evidence that the activation of this MKK3-MPK1/2/7 module occurs mainly through wound-induced JA production via the transcriptional regulation of upstream clade-III MAP3Ks, particularly MAP3K14. We show that mkk3 mutant plants are more susceptible to herbivory from larvae of the generalist lepidopteran herbivore Spodoptera littoralis, indicating that the MKK3-MPK1/2/7 module is involved in counteracting insect feeding.
Collapse
Affiliation(s)
- Cécile Sözen
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
| | - Sebastian T Schenk
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
| | - Marie Boudsocq
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
| | - Camille Chardin
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Marilia Almeida-Trapp
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Anne Krapp
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Heribert Hirt
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jean Colcombet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
| |
Collapse
|
58
|
Chen L, Sun H, Wang F, Yue D, Shen X, Sun W, Zhang X, Yang X. Genome-wide identification of MAPK cascade genes reveals the GhMAP3K14-GhMKK11-GhMPK31 pathway is involved in the drought response in cotton. PLANT MOLECULAR BIOLOGY 2020; 103:211-223. [PMID: 32172495 DOI: 10.1007/s11103-020-00986-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascade pathway, which has three components, MAP3Ks, MKKs and MPKs, is involved in diverse biological processes in plants. In the current study, MAPK cascade genes were identified in three cotton species, based on gene homology with Arabidopsis. Selection pressure analysis of MAPK cascade genes revealed that purifying selection occurred among the cotton species. Expression pattern analysis showed that some MAPK cascade genes differentially expressed under abiotic stresses and phytohormones treatments, and especially under drought stress. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments showed extensive interactions between different MAPK cascade proteins. Virus-induced gene silencing (VIGS) assays showed that some MAPK cascade modules play important roles in the drought stress response, and the GhMAP3K14-GhMKK11-GhMPK31 signal pathway was demonstrated to regulate drought stress tolerance in cotton. This study provides new information on the function of MAPK cascade genes in the drought response, and will help direct molecular breeding for improved drought stress tolerance in cotton.
Collapse
Affiliation(s)
- Lin Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Heng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Fengjiao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xiankun Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
59
|
Hu CH, Wang PQ, Zhang PP, Nie XM, Li BB, Tai L, Liu WT, Li WQ, Chen KM. NADPH Oxidases: The Vital Performers and Center Hubs during Plant Growth and Signaling. Cells 2020; 9:E437. [PMID: 32069961 PMCID: PMC7072856 DOI: 10.3390/cells9020437] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
NADPH oxidases (NOXs), mostly known as respiratory burst oxidase homologs (RBOHs), are the key producers of reactive oxygen species (ROS) in plants. A lot of literature has addressed ROS signaling in plant development regulation and stress responses as well as on the enzyme's structure, evolution, function, regulation and associated mechanisms, manifesting the role of NOXs/RBOHs as the vital performers and center hubs during plant growth and signaling. This review focuses on recent advances of NOXs/RBOHs on cell growth, hormone interaction, calcium signaling, abiotic stress responses, and immunity. Several primary particles, including Ca2+, CDPKs, BIK1, ROPs/RACs, CERK, FER, ANX, SnRK and SIK1-mediated regulatory mechanisms, are fully summarized to illustrate the signaling behavior of NOXs/RBOHs and their sophisticated and dexterous crosstalks. Diverse expression and activation regulation models endow NOXs/RBOHs powerful and versatile functions in plants to maintain innate immune homeostasis and development integrity. NOXs/RBOHs and their related regulatory items are the ideal targets for crop improvement in both yield and quality during agricultural practices.
Collapse
Affiliation(s)
- Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, Henan, China
| | - Peng-Qi Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peng-Peng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiu-Min Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
60
|
Ma W, Li X, Shen J, Du Y, Xu K, Jiang Y. Transcriptomic analysis reveals Apis mellifera adaptations to high temperature and high humidity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109599. [PMID: 31494308 DOI: 10.1016/j.ecoenv.2019.109599] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Temperature and humidity are the most important factors affecting the growth, reproduction, and survival of bees. Apis mellifera are important pollinating bees that are widely used in agricultural systems. However, the higher temperatures and humidity in greenhouses are not conducive to the survival of bees. Although previous research has revealed the behavioral responses and physiological mechanisms of honeybees to adapt to high temperature and humidity, there are few data on the exact molecular mechanisms involved. In our study, we investigated gene expression in A. mellifera under different temperature and humidity treatments, using transcriptomic analysis to identify differentially expressed genes (DEGs) and relevant biological processes. Based on the transcriptomic results, we selected several genes with significant differences in expression, and detected the expression patterns of these genes at different temperatures or humidity or different treatment times by q-RT PCR. In the high temperature treatments, 434 DEGs were identified; in the high humidity treatments, 86 DEGs were identified; in the combined high temperature and humidity treatments, 266 DEGs were identified. Analysis results showed that DEGs were enriched in pathways related to amino acid and fatty acid biosynthesis and metabolism under each treatment. In addition, heat shock proteins, zinc finger proteins, serine/threonine-protein kinases, and antioxidase were differentially expressed between the different treatments. The results of the q-RT PCR showed that the expression levels of these genes increased with increasing temperature and over treatment time. Our findings provide a general expression profile of the adaptive expression of heat-resistance genes responding to high temperature and high humidity in A. mellifera, including the expression patterns of several DEGs. Our data provide a basis for future research on the mechanisms underlying the adaptation of insects to high temperature and humidity.
Collapse
Affiliation(s)
- Weihua Ma
- Horticulture Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Xinyu Li
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jinshan Shen
- Horticulture Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Yali Du
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Kai Xu
- Apiculture Science Institute of Jilin Province, Jilin, Jilin, China
| | - Yusuo Jiang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China.
| |
Collapse
|
61
|
Zhou S, Chen M, Zhang Y, Gao Q, Noman A, Wang Q, Li H, Chen L, Zhou P, Lu J, Lou Y. OsMKK3, a Stress-Responsive Protein Kinase, Positively Regulates Rice Resistance to Nilaparvata lugens via Phytohormone Dynamics. Int J Mol Sci 2019; 20:E3023. [PMID: 31226870 PMCID: PMC6628034 DOI: 10.3390/ijms20123023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Plants undergo several but very precise molecular, physiological, and biochemical modulations in response to biotic stresses. Mitogen-activated protein kinase (MAPK) cascades orchestrate multiple cellular processes including plant growth and development as well as plant responses against abiotic and biotic stresses. However, the role of MAPK kinases (MAPKKs/MKKs/MEKs) in the regulation of plant resistance to herbivores has not been extensively investigated. Here, we cloned a rice MKK gene, OsMKK3, and investigated its function. It was observed that mechanical wounding, infestation of brown planthopper (BPH) Nilaparvata lugens, and treatment with methyl jasmonate (MeJA) or salicylic acid (SA) could induce the expression of OsMKK3. The over-expression of OsMKK3 (oe-MKK3) increased levels of jasmonic acid (JA), jasmonoyl-L-isoleucine (JA-Ile), and abscisic acid (ABA), and decreased SA levels in rice after BPH attack. Additionally, the preference for feeding and oviposition, the hatching rate of BPH eggs, and BPH nymph survival rate were significantly compromised due to over-expression of OsMKK3. Besides, oe-MKK3 also augmented chlorophyll content but impaired plant growth. We confirm that MKK3 plays a pivotal role in the signaling pathway. It is proposed that OsMKK3 mediated positive regulation of rice resistance to BPH by means of herbivory-induced phytohormone dynamics.
Collapse
Affiliation(s)
- Shuxing Zhou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Mengting Chen
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuebai Zhang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qing Gao
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ali Noman
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
- Department of Botany, Government college university, Faisalabad 38040, Pakistan.
| | - Qi Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Heng Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lin Chen
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Pengyong Zhou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jing Lu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
62
|
Abstract
Diverse molecular processes regulate the interactions between plants and insect herbivores. Here, we review genes and proteins that are involved in plant-herbivore interactions and discuss how their discovery has structured the current standard model of plant-herbivore interactions. Plants perceive damage-associated and, possibly, herbivore-associated molecular patterns via receptors that activate early signaling components such as Ca2+, reactive oxygen species, and MAP kinases. Specific defense reprogramming proceeds via signaling networks that include phytohormones, secondary metabolites, and transcription factors. Local and systemic regulation of toxins, defense proteins, physical barriers, and tolerance traits protect plants against herbivores. Herbivores counteract plant defenses through biochemical defense deactivation, effector-mediated suppression of defense signaling, and chemically controlled behavioral changes. The molecular basis of plant-herbivore interactions is now well established for model systems. Expanding molecular approaches to unexplored dimensions of plant-insect interactions should be a future priority.
Collapse
Affiliation(s)
- Matthias Erb
- Institute of Plant Sciences, University of Bern, 3000 Bern, Switzerland;
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
63
|
Li J, Liu X, Wang Q, Huangfu J, Schuman MC, Lou Y. A Group D MAPK Protects Plants from Autotoxicity by Suppressing Herbivore-Induced Defense Signaling. PLANT PHYSIOLOGY 2019; 179:1386-1401. [PMID: 30602493 PMCID: PMC6446743 DOI: 10.1104/pp.18.01411] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/16/2018] [Indexed: 05/17/2023]
Abstract
The mechanisms by which plants activate and enhance defense responses have been well studied; however, the regulatory mechanisms that allow plants to avoid excessive defense responses are poorly understood. Here, we identified a group D mitogen-activated protein kinase (MAPK) gene from rice (Oryza sativa), OsMAPK20-5, whose expression was rapidly induced by infestation of gravid female adults of a destructive rice pest, brown planthopper (BPH, Nilaparvata lugens), but not by BPH nymphs. Expression silencing of OsMAPK20-5 (irMAPK) increased the accumulation of ethylene and nitric oxide (NO) after gravid female BPH infestation, and thereby increased rice plant resistance to BPH adults and oviposited eggs. However, when exposed to high densities of gravid BPH females, irMAPK plants wilted earlier than wild-type plants, which could be attributed to the hyperaccumulation of ethylene and NO in irMAPK plants. Interestingly, when released into the field, irMAPK plants displayed broad resistance to BPH and white-backed planthopper (Sogatella furcifera), the two most destructive pests of rice, and produced higher yield. Taken together, our study shows that although OsMAPK20-5 can reduce the resistance of rice plants to planthoppers, it also enables rice plants to control excessive defense responses and thereby prevents defense-response-related autotoxicity.
Collapse
Affiliation(s)
- Jiancai Li
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, 310058 Hangzhou, China
| | - Xiaoli Liu
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, 310058 Hangzhou, China
| | - Qi Wang
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, 310058 Hangzhou, China
| | - Jiayi Huangfu
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, 310058 Hangzhou, China
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
- Department of Geography, University of Zurich, 8057 Zurich, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
64
|
Li H, Chen X, Wang Y, Yao D, Lin Y, Lai Z. Exploration of the effect of blue light on microRNAs involved in the accumulation of functional metabolites of longan embryonic calli through RNA-sequencing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1533-1547. [PMID: 30142690 DOI: 10.1002/jsfa.9329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The regulation of functional metabolites under light by structural genes and regulatory genes is understood but the roles of microRNAs in this pathway have rarely been reported and their regulation network is not yet clear. RESULTS Blue light was most conducive to promoting the synthesis of some functional metabolites in longan embryonic callus (ECs). In this study, we sequenced three small RNA libraries of constructed longan ECs under different light qualities (dark, blue, and white). A total of 29 and 22 miRNAs were differentially expressed in the dark versus blue (DB) and dark versus white (DW) combinations, respectively. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, most of the differentially expressed miRNA target genes were involved in plant hormone signal transduction, mitogen-activated protein kinase (MAPK) signaling, biosynthesis of unsaturated fatty acids, and so on. Cytoscape analysis of the target genes of miRNAs indicated that miR396b-5p and miR5139 had the most target genes in DB. Moreover, this study also found that miR171f_3 targeted DELLA, miR390e targeted BRI1, miR396b-5p targeted EBF1/2 and EIN3; these miRNAs participated in the blue light signaling network through their target genes and regulated the accumulation of longan functional metabolites. CONCLUSIONS The results of the study revealed that the expressions of phase-specific miRNAs vary with the change of functional metabolites in longan ECs. This study provides new insights into the molecular mechanisms that allow light to influence plant metabolism. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hansheng Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yun Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deheng Yao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
65
|
Wari D, Kabir MA, Mujiono K, Hojo Y, Shinya T, Tani A, Nakatani H, Galis I. Honeydew-associated microbes elicit defense responses against brown planthopper in rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1683-1696. [PMID: 30715410 PMCID: PMC6411376 DOI: 10.1093/jxb/erz041] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/22/2019] [Indexed: 05/10/2023]
Abstract
Feeding of sucking insects, such as the rice brown planthopper (Nilaparvata lugens; BPH), causes only limited mechanical damage on plants that is otherwise essential for injury-triggered defense responses against herbivores. In pursuit of complementary BPH elicitors perceived by plants, we examined the potential effects of BPH honeydew secretions on the BPH monocot host, rice (Oryza sativa). We found that BPH honeydew strongly elicits direct and putative indirect defenses in rice, namely accumulation of phytoalexins in the leaves, and release of volatile organic compounds from the leaves that serve to attract natural enemies of herbivores, respectively. We then examined the elicitor active components in the honeydew and found that bacteria in the secretions are responsible for the activation of plant defense. Corroborating the importance of honeydew-associated microbiota for induced plant resistance, BPHs partially devoid of their microbiota via prolonged antibiotics ingestion induced significantly less defense in rice relative to antibiotic-free insects applied to similar groups of plants. Our data suggest that rice plants may additionally perceive herbivores via their honeydew-associated microbes, allowing them to discriminate between incompatible herbivores-that do not produce honeydew-and those that are compatible and therefore dangerous.
Collapse
Affiliation(s)
- David Wari
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Md Alamgir Kabir
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kadis Mujiono
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Faculty of Agriculture, Mulawarman University, Samarinda, Indonesia
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Hiroko Nakatani
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Correspondence:
| |
Collapse
|
66
|
Lin HH, King YC, Li YC, Lin CC, Chen YC, Lin JS, Jeng ST. The p38-like MAP kinase modulated H 2O 2 accumulation in wounding signaling pathways of sweet potato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:305-313. [PMID: 30824008 DOI: 10.1016/j.plantsci.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
In sweet potato (Ipomoea batatas cv Tainung 57), MAPK cascades are involved in the regulation of Ipomoelin (IPO) expression upon wounding. p38 MAPK plays an important role in plant's responses to various environmental stresses. However, the role of p38-like MAPK in wounding response is still unknown. In this study, the levels of phosphorylated-p38-like MAPK (pp38-like MAPK) in sweet potato were noticeably reduced after wounding. In addition, SB203580 (SB), a specific inhibitor blocking p38 MAPK phosphorylation, considerably decreased the accumulation of pp38-like MAPK. Expression of a wound-inducible gene IPO was elevated by SB. Moreover, it stimulated hydrogen peroxide (H2O2) production rather than cytosolic Ca2+ elevation in sweet potato leaves. However, NADPH oxidase (NOX) inhibitor diphenyleneiodonium could not inhibit IPO induction stimulated by SB. These results indicated a p38-like MAPK mechanism was involved in the regulation of IPO expression through NOX-independent H2O2 generation. In addition, the presence of the protein phosphatase inhibitor okadaic acid or the MEK1/ERK inhibitor PD98059 repressed the H2O2- or SB-induced IPO expression, demonstrating phosphatase(s) and MEK1/ERK functioning in the downstream of H2O2 and pp38-like MAPK in the signal transduction pathway stimulating IPO. Conclusively, wounding decreased the amount of pp38-like MAPK, stimulated H2O2 production, and then induced IPO expression.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan; Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Yu-Chi King
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Chi Li
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Ching Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 82444, Taiwan
| | - Jeng-Shane Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan; Department of life sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
67
|
Yin J, Guan X, Zhang H, Wang L, Li H, Zhang Q, Chen T, Xu Z, Hong Z, Cao Y, Zhang Z. An MAP kinase interacts with LHK1 and regulates nodule organogenesis in Lotus japonicus. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1203-1217. [DOI: 10.1007/s11427-018-9444-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|
68
|
Nanda S, Wan PJ, Yuan SY, Lai FX, Wang WX, Fu Q. Differential Responses of OsMPKs in IR56 Rice to Two BPH Populations of Different Virulence Levels. Int J Mol Sci 2018; 19:E4030. [PMID: 30551584 PMCID: PMC6320944 DOI: 10.3390/ijms19124030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 01/27/2023] Open
Abstract
The conserved mitogen-activated protein kinase (MAPK) cascades play vital roles in plant defense responses against pathogens and insects. In the current study, the expression profiles of 17 OsMPKs were determined in the TN1 and IR56 rice varieties under the infestation of brown planthopper (BPH), one of the most destructive hemimetabolous rice pests. The virulent IR56 BPH population (IR56-BPH) and the avirulent TN1 BPH population (TN-BPH) were used to reveal the roles of OsMPKs in the compatible (IR56-BPH infested on the TN1 and IR56 rice varieties, and TN1-BPH infested on the TN1 rice variety) and the incompatible (TN1-BPH infested on the IR56 rice variety) interaction. The statistical analysis revealed that rice variety, BPH population type, and infestation period have significant effects on the transcription of OsMPKs. Out of these genes, five OsMPKs (OsMPK1, OsMPK3, OsMPK7, OsMPK14, and OsMPK16) were found to exhibit upregulated expression only during incompatible interaction. Six OsMPKs (OsMPK4, OsMPK5, OsMPK8, OsMPK9, OsMPK12, and OsMPK13) were associated with both incompatible and compatible interactions. The transcription analysis of salicylic acid, jasmonic acid, and ethylene phytohormone signaling genes revealed their roles during the rice⁻BPH interactions. The upregulated expression of OsC4H, OsCHS, and OsCHI in the incompatible interaction implied the potential defense regulatory roles of phenylpropanoids. In both varieties, the elevated transcript accumulations of OsGST and OsSOD, and the increased enzyme activities of POD, SOD, and GST at 1 day post-infestation (dpi), but not at 3 dpi, indicated that reactive oxygen species (ROS) signaling might be an early event in rice⁻BPH interactions. Furthermore, upregulated transcription of OsLecRK3 and OsLecRK4 was found only during an incompatible interaction, suggesting their involvement in the BPH resistance response in the IR56 rice variety. Lastly, based on the findings of this study, we have proposed a model of interactions of IR56 rice with TN1-BPH and IR56-BPH that depicts the resistance and susceptibility reactions, respectively.
Collapse
Affiliation(s)
- Satyabrata Nanda
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Pin-Jun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - San-Yue Yuan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Feng-Xiang Lai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Wei-Xia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
69
|
Medina-Castellanos E, Villalobos-Escobedo JM, Riquelme M, Read ND, Abreu-Goodger C, Herrera-Estrella A. Danger signals activate a putative innate immune system during regeneration in a filamentous fungus. PLoS Genet 2018; 14:e1007390. [PMID: 30500812 PMCID: PMC6291166 DOI: 10.1371/journal.pgen.1007390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/12/2018] [Accepted: 10/19/2018] [Indexed: 01/24/2023] Open
Abstract
The ability to respond to injury is a biological process shared by organisms of different kingdoms that can even result in complete regeneration of a part or structure that was lost. Due to their immobility, multicellular fungi are prey to various predators and are therefore constantly exposed to mechanical damage. Nevertheless, our current knowledge of how fungi respond to injury is scarce. Here we show that activation of injury responses and hyphal regeneration in the filamentous fungus Trichoderma atroviride relies on the detection of two danger or alarm signals. As an early response to injury, we detected a transient increase in cytosolic free calcium ([Ca2+]c) that was promoted by extracellular ATP, and which is likely regulated by a mechanism of calcium-induced calcium-release. In addition, we demonstrate that the mitogen activated protein kinase Tmk1 plays a key role in hyphal regeneration. Calcium- and Tmk1-mediated signaling cascades activated major transcriptional changes early following injury, including induction of a set of regeneration associated genes related to cell signaling, stress responses, transcription regulation, ribosome biogenesis/translation, replication and DNA repair. Interestingly, we uncovered the activation of a putative fungal innate immune response, including the involvement of HET domain genes, known to participate in programmed cell death. Our work shows that fungi and animals share danger-signals, signaling cascades, and the activation of the expression of genes related to immunity after injury, which are likely the result of convergent evolution.
Collapse
Affiliation(s)
- Elizabeth Medina-Castellanos
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav, Libramiento Norte Carretera Irapuato-León, Irapuato, Gto, Mexico
| | - José Manuel Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav, Libramiento Norte Carretera Irapuato-León, Irapuato, Gto, Mexico
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Ensenada, Baja California, Mexico
| | - Nick D. Read
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Cei Abreu-Goodger
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav, Libramiento Norte Carretera Irapuato-León, Irapuato, Gto, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav, Libramiento Norte Carretera Irapuato-León, Irapuato, Gto, Mexico
| |
Collapse
|
70
|
Li Y, Sui X, Hu X, Hu Z. Overexpression of KLF5 inhibits puromycin‑induced apoptosis of podocytes. Mol Med Rep 2018; 18:3843-3849. [PMID: 30106142 PMCID: PMC6131625 DOI: 10.3892/mmr.2018.9366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/28/2018] [Indexed: 02/01/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications associated with diabetes mellitus (DM); the incidence has been predicted to reach 7.7% by 2030 on a global scale. Krüppel-like factor 5 (KLF5) is involved in numerous important biological processes; however, the potential effects of KLF5 on podocytes in patients with diabetic nephrotic (DN) have not yet been investigated. In the present study, synaptopodin expression in podocytes was investigated using an immunofluorescence assay. Following this, the proliferation of podocytes was investigated using an MTT assay. In addition, KLF5 was overexpressed in podocytes, and cell cycle arrest and apoptosis was subsequently investigated using flow cytometry. Western blotting and reverse transcription-quantitative polymerase chain reaction assays were performed to detect the expression levels of genes involved in the cell cycle and apoptosis, and the extracellular signal-regulated protein kinase (ERK)/p38 mitogen-activated protein (MAP) kinase pathway. The results demonstrated that treatment with puromycin aminonucleoside (PAN) suppressed the proliferation of podocytes in a dose- and time-dependent manner, and overexpression of KLF5 induced cell cycle arrest of podocytes regulated by PAN. Furthermore, overexpression of KLF5 was revealed to have inhibited PAN-induced apoptosis of podocytes, and that overexpression of KLF5 suppressed the ERK/p38 MAP kinase pathway in podocytes induced by PAN. Therefore, the results of the present study suggested that KLF5 may represent a potential therapeutic target for treatment of patients with DN.
Collapse
Affiliation(s)
- Yang Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaoni Sui
- Department of Nephrology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Xueqing Hu
- Department of Nephrology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Zhao Hu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
71
|
Hu L, Ye M, Kuai P, Ye M, Erb M, Lou Y. OsLRR-RLK1, an early responsive leucine-rich repeat receptor-like kinase, initiates rice defense responses against a chewing herbivore. THE NEW PHYTOLOGIST 2018; 219:1097-1111. [PMID: 29878383 DOI: 10.1111/nph.15247] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/01/2018] [Indexed: 05/20/2023]
Abstract
Plants are constantly exposed to a variety of environmental stresses, including herbivory. How plants perceive herbivores on a molecular level is poorly understood. Leucine-rich repeat receptor-like kinases (LRR-RLKs), the largest subfamily of RLKs, are essential for plants to detect external stress signals, and may therefore also be involved in herbivore perception. Here, we employed RNA interference silencing, phytohormone profiling and complementation, as well as herbivore resistance assays, to investigate the requirement of an LRR-RLK for the initiation of rice (Oryza sativa) defenses against the chewing herbivore striped stem borer (SSB) Chilo suppressalis. We discovered a plasma membrane-localized LRR-RLK, OsLRR-RLK1, whose transcription is strongly up-regulated by SSB attack and treatment with oral secretions of Spodoptera frugiperda. OsLRR-RLK1 acts upstream of mitogen-activated protein kinase (MPK) cascades, and positively regulates defense-related MPKs and WRKY transcription factors. Moreover, OsLRR-RLK1 is a positive regulator of SSB-elicited, but not wound-elicited, levels of jasmonic acid and ethylene, trypsin protease inhibitor activity and plant resistance towards SSB. OsLRR-RLK1 therefore plays an important role in herbivory-induced defenses of rice. Given the well-documented role of LRR-RLKs in the perception of stress-related molecules, we speculate that OsLRR-RLK1 may be involved in the perception of herbivory-associated molecular patterns.
Collapse
Affiliation(s)
- Lingfei Hu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Meng Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Peng Kuai
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Miaofen Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
72
|
Qi J, Malook SU, Shen G, Gao L, Zhang C, Li J, Zhang J, Wang L, Wu J. Current understanding of maize and rice defense against insect herbivores. PLANT DIVERSITY 2018; 40:189-195. [PMID: 30740564 PMCID: PMC6137261 DOI: 10.1016/j.pld.2018.06.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 05/25/2023]
Abstract
Plants have sophisticated defense systems to fend off insect herbivores. How plants defend against herbivores in dicotyledonous plants, such as Arabidopsis and tobacco, have been relatively well studied, yet little is known about the defense responses in monocotyledons. Here, we review the current understanding of rice (Oryza sativa) and maize (Zea mays) defense against insects. In rice and maize, elicitors derived from insect herbivore oral secretions or oviposition fluids activate phytohormone signaling, and transcriptomic changes mediated mainly by transcription factors lead to accumulation of defense-related secondary metabolites. Direct defenses, such as trypsin protein inhibitors in rice and benzoxazinoids in maize, have anti-digestive or toxic effects on insect herbivores. Herbivory-induced plant volatiles, such as terpenes, are indirect defenses, which attract the natural enemies of herbivores. R gene-mediated defenses against herbivores are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
73
|
Drok S, Bandoly M, Stelzer S, Lortzing T, Steppuhn A. Moth oviposition shapes the species-specific transcriptional and phytohormonal response of Nicotiana attenuata to larval feeding. Sci Rep 2018; 8:10249. [PMID: 29980784 PMCID: PMC6035172 DOI: 10.1038/s41598-018-28233-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
Oviposition by lepidopteran herbivores on Nicotiana attenuata primes plant defence responses that are induced by the feeding larvae. While oviposition by both the generalist Spodoptera exigua and the specialist Manduca sexta primes the production of defensive phenylpropanoids, their larvae are differentially affected. We investigate here the impact of prior oviposition on the transcriptome and phytohormone levels of plants that were later attacked by larvae to find regulatory signals of this priming. In a full-factorial design, we evaluated the effects of oviposition and herbivory by both species. Oviposition alone had only subtle effects at the transcriptional level. Laval feeding alone induced species-specific plant responses. Larvae of the generalist regulated phytohormones and gene expression stronger than larvae of the specialist. A day after larvae started to feed, we detected no significant alterations of the plant's response to larval feeding due to prior oviposition by conspecific moths. Yet, oviposition by each of the species profoundly influenced the plant's transcriptional and phytohormonal response to feeding larvae of the other species. Remarkably, the species-specific plant responses to larval feeding shifted towards the response normally elicited by larvae of the ovipositing species. Thus, plants may already recognise an insect's identity upon its oviposition.
Collapse
Affiliation(s)
- Sylvia Drok
- Freie Universität of Berlin/Institute of Biology/Dahlem Centre of Plant Sciences, Laboratory of Molecular Ecology, Albrecht-Thaer Weg 6, Berlin, 14195, Germany
| | - Michele Bandoly
- Freie Universität of Berlin/Institute of Biology/Dahlem Centre of Plant Sciences, Laboratory of Molecular Ecology, Albrecht-Thaer Weg 6, Berlin, 14195, Germany
| | - Sandra Stelzer
- Freie Universität of Berlin/Institute of Biology/Dahlem Centre of Plant Sciences, Laboratory of Molecular Ecology, Albrecht-Thaer Weg 6, Berlin, 14195, Germany
| | - Tobias Lortzing
- Freie Universität of Berlin/Institute of Biology/Dahlem Centre of Plant Sciences, Laboratory of Molecular Ecology, Albrecht-Thaer Weg 6, Berlin, 14195, Germany
| | - Anke Steppuhn
- Freie Universität of Berlin/Institute of Biology/Dahlem Centre of Plant Sciences, Laboratory of Molecular Ecology, Albrecht-Thaer Weg 6, Berlin, 14195, Germany.
| |
Collapse
|
74
|
Expressing OsMPK4 Impairs Plant Growth but Enhances the Resistance of Rice to the Striped Stem Borer Chilo suppressalis. Int J Mol Sci 2018; 19:ijms19041182. [PMID: 29652796 PMCID: PMC5979284 DOI: 10.3390/ijms19041182] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/25/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Mitogen-activated protein kinases (MPKs) play a central role not only in plant growth and development, but also in plant responses to abiotic and biotic stresses, including pathogens. Yet, their role in herbivore-induced plant defenses and their underlying mechanisms remain largely unknown. Here, we cloned a rice MPK gene, OsMPK4, whose expression was induced by mechanical wounding, infestation of the striped stem borer (SSB) Chilo suppressalis, and treatment with jasmonic acid (JA), but not by treatment with salicylic acid (SA). The overexpression of OsMPK4 (oe-MPK4) enhanced constitutive and/or SSB-induced levels of JA, jasmonoyl-l-isoleucine (JA-Ile), ethylene (ET), and SA, as well as the activity of elicited trypsin proteinase inhibitors (TrypPIs), and reduced SSB performance. On the other hand, compared to wild-type plants, oe-MPK4 lines in the greenhouse showed growth retardation. These findings suggest that OsMPK4, by regulating JA-, ET-, and SA-mediated signaling pathways, functions as a positive regulator of rice resistance to the SSB and a negative regulator of rice growth.
Collapse
|
75
|
Bequette CJ, Hind SR, Pulliam S, Higgins R, Stratmann JW. MAP kinases associate with high molecular weight multiprotein complexes. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:643-654. [PMID: 29240956 PMCID: PMC5853780 DOI: 10.1093/jxb/erx424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/07/2017] [Indexed: 05/30/2023]
Abstract
Plant responses to the environment and developmental processes are mediated by a complex signaling network. The Arabidopsis thaliana mitogen-activated protein kinases (MAPKs) MPK3 and MPK6 and their orthologs in other plants are shared signal transducers that respond to many developmental and environmental signals and thus represent highly connected hubs in the cellular signaling network. In animals, specific MAPK signaling complexes are assembled which enable input-specific protein-protein interactions and thus specific signaling outcomes. In plants, not much is known about such signaling complexes. Here, we report that MPK3, MPK6, and MPK10 orthologs in tomato, tobacco, and Arabidopsis as well as tomato MAPK kinase 4 (MKK4) associate with high molecular weight (~250-550 kDa) multiprotein complexes. Elicitation by the defense-associated peptides flg22 and systemin resulted in phosphorylation and activation of the monomeric MAPKs, whereas the complex-associated MAPKs remained unphosphorylated and inactive. In contrast, treatment of tomato cells with a phosphatase inhibitor resulted in association of phosphorylated MPK1/2 with the complex. These results demonstrate that plant MAPKs and MAPKKs dynamically assemble into stable multiprotein complexes and this may depend on their phosphorylation status. Identification of the constituents of these multiprotein complexes promises a deeper understanding of signaling dynamics.
Collapse
Affiliation(s)
- Carlton J Bequette
- Department of Biological Sciences, University of South Carolina, Columbia, USA
| | - Sarah R Hind
- Department of Biological Sciences, University of South Carolina, Columbia, USA
| | - Sarah Pulliam
- Department of Biological Sciences, University of South Carolina, Columbia, USA
| | - Rebecca Higgins
- Department of Biological Sciences, University of South Carolina, Columbia, USA
| | | |
Collapse
|
76
|
Jagodzik P, Tajdel-Zielinska M, Ciesla A, Marczak M, Ludwikow A. Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:1387. [PMID: 30349547 PMCID: PMC6187979 DOI: 10.3389/fpls.2018.01387] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/31/2018] [Indexed: 05/02/2023]
Abstract
Mitogen-activated protein kinase (MAPK) modules play key roles in the transduction of environmental and developmental signals through phosphorylation of downstream signaling targets, including other kinases, enzymes, cytoskeletal proteins or transcription factors, in all eukaryotic cells. A typical MAPK cascade consists of at least three sequentially acting serine/threonine kinases, a MAP kinase kinase kinase (MAPKKK), a MAP kinase kinase (MAPKK) and finally, the MAP kinase (MAPK) itself, with each phosphorylating, and hence activating, the next kinase in the cascade. Recent advances in our understanding of hormone signaling pathways have led to the discovery of new regulatory systems. In particular, this research has revealed the emerging role of crosstalk between the protein components of various signaling pathways and the involvement of this crosstalk in multiple cellular processes. Here we provide an overview of current models and mechanisms of hormone signaling with a special emphasis on the role of MAPKs in cell signaling networks. One-sentence summary: In this review we highlight the mechanisms of crosstalk between MAPK cascades and plant hormone signaling pathways and summarize recent findings on MAPK regulation and function in various cellular processes.
Collapse
Affiliation(s)
- Przemysław Jagodzik
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Małgorzata Tajdel-Zielinska
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Agata Ciesla
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Małgorzata Marczak
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Agnieszka Ludwikow
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
- *Correspondence: Agnieszka Ludwikow,
| |
Collapse
|
77
|
Luo S, Zhang X, Wang J, Jiao C, Chen Y, Shen Y. Plant ion channels and transporters in herbivory-induced signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:111-131. [PMID: 32291026 DOI: 10.1071/fp16318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/06/2016] [Indexed: 06/11/2023]
Abstract
In contrast to many biotic stresses that plants face, feeding by herbivores produces unique mechanical and chemical signatures. Plants have evolved effective systems to recognise these mechanical stimuli and chemical elicitors at the plasma membrane (PM), where this recognition generates ion fluxes, including an influx of Ca2+ that elicits cellular Ca2+ signalling, production of reactive oxygen species (ROS), and variation in transmembrane potential. These signalling events also function in propagation of long-distance signals (Ca2+ waves, ROS waves, and electrical signals), which contribute to rapid, systemic induction of defence responses. Recent studies have identified several candidate channels or transporters that likely produce these ion fluxes at the PM. Here, we describe the important roles of these channels/transporters in transduction or transmission of herbivory-induced early signalling events, long-distance signals, and jasmonic acid and green leaf volatile signalling in plants.
Collapse
Affiliation(s)
- Shuitian Luo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinfei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunyang Jiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
78
|
Guo H, Peng X, Gu L, Wu J, Ge F, Sun Y. Up-regulation of MPK4 increases the feeding efficiency of the green peach aphid under elevated CO2 in Nicotiana attenuata. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5923-5935. [PMID: 29140446 DOI: 10.1093/jxb/erx394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Previous research has shown that elevated CO2 reduces plant resistance against insects and enhances the water use efficiency of C3 plants, which improves the feeding efficiency of aphids. Although plant mitogen-activated protein kinases (MAPKs) are known to regulate water relations and phytohormone-mediated resistance, little is known about the effect of elevated CO2 on MAPKs and the cascading effects on aphids. By using stably transformed Nicotiana attenuata plants silenced in MPK4, wound-induced protein kinase (WIPK), or salicylic acid-induced protein kinase (SIPK), we determined the functions of MAPKs in plant-aphid interactions and their responses to elevated CO2. The results showed that among all plant genotypes, inverted repeat MPK4 plants had the largest stomatal apertures, the lowest water content, the strongest jasmonic acid (JA)-dependent resistance, and the lowest aphid numbers, suggesting that MPK4 affects plant responses to aphids by regulating stomatal aperture and JA-dependent resistance. Regardless of aphid infestation, elevated CO2 up-regulated MPK4, but not WIPK or SIPK, in wild-type plants. Elevated CO2 increased the number, mean relative growth rate, and feeding efficiency of aphids on all plant genotypes except inverted repeat MPK4. We conclude that MPK4 is a CO2-responsive plant determinant that regulates the molecular interaction between plants and aphids.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinhong Peng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liyuan Gu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
79
|
Kamatham S, Pallu R, Pasupulati AK, Singh SS, Gudipalli P. Benzoylsalicylic acid derivatives as defense activators in tobacco and Arabidopsis. PHYTOCHEMISTRY 2017; 143:160-169. [PMID: 28818753 DOI: 10.1016/j.phytochem.2017.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Systemic acquired resistance (SAR) is a long lasting inducible whole plant immunity often induced by either pathogens or chemical elicitors. Salicylic acid (SA) is a known SAR signal against a broad spectrum of pathogens in plants. In a recent study, we have reported that benzoylsalicylic acid (BzSA) is a SAR inducer in tobacco and Arabidopsis plants. Here, we have synthesized BzSA derivatives using SA and benzoyl chlorides of various moieties as substrates. The chemical structures of BzSA derivatives were elucidated using Infrared spectroscopy (IR), Nuclear magnetic spectroscopy (NMR) and High-resolution mass spectrometer (HRMS) analysis. The bioefficacy of BzSA derivatives in inducing defense response against tobacco mosaic virus (TMV) was investigated in tobacco and SA abolished transgenic NahG Arabidopsis plants. Interestingly, pre-treatment of local leaves of tobacco with BzSA derivatives enhanced the expression of SAR genes such as NPR1 [Non-expressor of pathogenesis-related (PR) genes 1], PR and other defense marker genes (HSR203, SIPK, WIPK) in systemic leaves. Pre-treatment of BzSA derivatives reduced the spread of TMV infection to uninfected areas by restricting lesion number and diameter both in local and systemic leaves of tobacco in a dose-dependent manner. Furthermore, pre-treatment of BzSA derivatives in local leaves of SA deficient Arabidopsis NahG plants induced SAR through AtPR1 and AtPR5 gene expression and reduced leaf necrosis and curling symptoms in systemic leaves as compared to BzSA. These results suggest that BzSA derivatives are potent SAR inducers against TMV in tobacco and Arabidopsis.
Collapse
Affiliation(s)
- Samuel Kamatham
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Reddanna Pallu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Anil Kumar Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | | | - Padmaja Gudipalli
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
80
|
Upasani ML, Limaye BM, Gurjar GS, Kasibhatla SM, Joshi RR, Kadoo NY, Gupta VS. Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defense strategies. Sci Rep 2017; 7:7746. [PMID: 28798320 PMCID: PMC5552786 DOI: 10.1038/s41598-017-07114-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/21/2017] [Indexed: 12/22/2022] Open
Abstract
Fusarium wilt is one of the major biotic stresses reducing chickpea productivity. The use of wilt-resistant cultivars is the most appropriate means to combat the disease and secure productivity. As a step towards understanding the molecular basis of wilt resistance in chickpea, we investigated the transcriptomes of wilt-susceptible and wilt-resistant cultivars under both Fusarium oxysporum f.sp. ciceri (Foc) challenged and unchallenged conditions. Transcriptome profiling using LongSAGE provided a valuable insight into the molecular interactions between chickpea and Foc, which revealed several known as well as novel genes with differential or unique expression patterns in chickpea contributing to lignification, hormonal homeostasis, plant defense signaling, ROS homeostasis, R-gene mediated defense, etc. Similarly, several Foc genes characteristically required for survival and growth of the pathogen were expressed only in the susceptible cultivar with null expression of most of these genes in the resistant cultivar. This study provides a rich resource for functional characterization of the genes involved in resistance mechanism and their use in breeding for sustainable wilt-resistance. Additionally, it provides pathogen targets facilitating the development of novel control strategies.
Collapse
Affiliation(s)
- Medha L Upasani
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.,Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India
| | - Bhakti M Limaye
- HPC-Medical and Bioinformatics Applications Group, Center for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, 411007, India
| | - Gayatri S Gurjar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sunitha M Kasibhatla
- HPC-Medical and Bioinformatics Applications Group, Center for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, 411007, India
| | - Rajendra R Joshi
- HPC-Medical and Bioinformatics Applications Group, Center for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, 411007, India
| | - Narendra Y Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| | - Vidya S Gupta
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
81
|
Effect of elevated CO 2 and O 3 on phytohormone-mediated plant resistance to vector insects and insect-borne plant viruses. SCIENCE CHINA-LIFE SCIENCES 2017; 60:816-825. [PMID: 28785951 DOI: 10.1007/s11427-017-9126-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Climatic variations are becoming important limiting factors for agriculture productivity, as they not only directly affect the plant net primary productivity but can also modulate the outbreak of plant diseases and pests. Elevated CO2 and O3 are two important climatic factors that have been widely studied before. Elevated CO2 or O3 alters the host plant physiology and affects the vector insects and plant viruses via bottom-up effects of the host plants. Many studies have shown that elevated CO2 or O3 decreases the plant nitrogen content, which modulates the characteristics of vector insects. Recent evidence also reveals that hormone-dependent signaling pathways play a critical role in regulating the response of insects and plant viruses to elevated CO2 or O3. In the current review, we describe how elevated CO2 or O3 affects the vector insects and plant viruses by altering the SA and JA signaling pathways. We also discuss how changes in the feeding behavior of vector insects or the occurrence of plant viruses affects the interactions between vector insects and plant viruses under elevated CO2 or O3. We suggest that new insights into the upstream network that regulates hormone signaling and top-down effects of natural enemies would provide a comprehensive understanding of the complex interactions taking place under elevated CO2 or O3.
Collapse
|
82
|
Chung HH, Chen MK, Chang YC, Yang SF, Lin CC, Lin CW. Inhibitory effects of Leucaena leucocephala on the metastasis and invasion of human oral cancer cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:1765-1774. [PMID: 28181379 DOI: 10.1002/tox.22399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/10/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Oral cancer is one of the most common cancers worldwide, and metastasis is recognized as a major factor causing its low survival rate. The inhibition of metastasis progress and the improvement of the survival rate for oral cancer are critical research objectives. Leucaena leucocephala from the mimosa branch Leucaena genus is native to Central and South America and has been used as a traditional remedy for treating various disorders. Previous studies have demonstrated antioxidant, anti-inflammatory as well as anticancer properties of L. leucocephala plant materials. However, the molecular mechanism underlying the anticancer effect induced by L. leucocephala remains unclear. In this study, we investigated the effect of L. leucocephala extract (LLE) on SCC-9 and SAS oral cancer cells and examined the potential inhibitory mechanisms involved. The results indicated that LLE attenuated the migration and invasion abilities of both SCC-9 and SAS cells by reducing the activity and protein expression of matrix metalloproteinases-2 (MMP-2). Regarding mitogen-activated protein kinase (MAPK) pathways, the phosphorylation of ERK1/2 and p38 exhibited a significant inhibitory effect in the presence of LLE. The application of ERK inhibitor and p38 inhibitor confirmed that both signalling transduction pathways were involved in the inhibition of cell metastasis. These data indicate that L. leucocephala could be a potent therapeutic agent for the prevention and treatment of oral cancer and a prominent plant source for anticancer research in the future.
Collapse
Affiliation(s)
- Hsiao-Hang Chung
- Department of Horticulture, National Ilan University, Yilan, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Chieh Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
83
|
|
84
|
Liu Y, He C. A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biol 2016; 11:192-204. [PMID: 27984790 PMCID: PMC5157795 DOI: 10.1016/j.redox.2016.12.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/08/2016] [Indexed: 02/02/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved modules among eukaryotic species that range from yeast, plants, flies to mammals. In eukaryotic cells, reactive oxygen species (ROS) has both physiological and toxic effects. Both MAPK cascades and ROS signaling are involved in plant response to various biotic and abiotic stresses. It has been observed that not only can ROS induce MAPK activation, but also that disturbing MAPK cascades can modulate ROS production and responses. This review will discuss the potential mechanisms by which ROS may activate and/or regulate MAPK cascades in plants. The role of MAPK cascades and ROS signaling in regulating gene expression, stomatal function, and programmed cell death (PCD) is also discussed. In addition, the relationship between Rboh-dependent ROS production and MAPK activation in PAMP-triggered immunity will be reviewed.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China.
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China
| |
Collapse
|
85
|
Li J, Zhu L, Hull JJ, Liang S, Daniell H, Jin S, Zhang X. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1956-75. [PMID: 26923339 PMCID: PMC5042180 DOI: 10.1111/pbi.12554] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 05/19/2023]
Abstract
The whitefly (Bemisia tabaci) causes tremendous damage to cotton production worldwide. However, very limited information is available about how plants perceive and defend themselves from this destructive pest. In this study, the transcriptomic differences between two cotton cultivars that exhibit either strong resistance (HR) or sensitivity (ZS) to whitefly were compared at different time points (0, 12, 24 and 48 h after infection) using RNA-Seq. Approximately one billion paired-end reads were obtained by Illumina sequencing technology. Gene ontology and KEGG pathway analysis indicated that the cotton transcriptional response to whitefly infestation involves genes encoding protein kinases, transcription factors, metabolite synthesis, and phytohormone signalling. Furthermore, a weighted gene co-expression network constructed from RNA-Seq datasets showed that WRKY40 and copper transport protein are hub genes that may regulate cotton defenses to whitefly infestation. Silencing GhMPK3 by virus-induced gene silencing (VIGS) resulted in suppression of the MPK-WRKY-JA and ET pathways and lead to enhanced whitefly susceptibility, suggesting that the candidate insect resistant genes identified in this RNA-Seq analysis are credible and offer significant utility. Taken together, this study provides comprehensive insights into the cotton defense system to whitefly infestation and has identified several candidate genes for control of phloem-feeding pests.
Collapse
Affiliation(s)
- Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lizhen Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - J Joe Hull
- USDA-ARS, Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Sijia Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
86
|
Koch KG, Chapman K, Louis J, Heng-Moss T, Sarath G. Plant Tolerance: A Unique Approach to Control Hemipteran Pests. FRONTIERS IN PLANT SCIENCE 2016; 7:1363. [PMID: 27679643 PMCID: PMC5020058 DOI: 10.3389/fpls.2016.01363] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/29/2016] [Indexed: 05/20/2023]
Abstract
Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant's ability to withstand or recover from herbivore injury through growth and compensatory physiological processes. Because plant tolerance involves plant compensatory characteristics, the plant is able to harbor large numbers of herbivores without interfering with the insect pest's physiology or behavior. Some studies have observed that tolerant plants can compensate photosynthetically by avoiding feedback inhibition and impaired electron flow through photosystem II that occurs as a result of insect feeding. Similarly, the up-regulation of peroxidases and other oxidative enzymes during insect feeding, in conjunction with elevated levels of phytohormones can play an important role in providing plant tolerance to insect pests. Hemipteran insects comprise some of the most economically important plant pests (e.g., aphids, whiteflies), due to their ability to achieve high population growth and their potential to transmit plant viruses. In this review, results from studies on plant tolerance to hemipterans are summarized, and potential models to understand tolerance are presented.
Collapse
Affiliation(s)
- Kyle G. Koch
- Department of Entomology, University of Nebraska–Lincoln, LincolnNE, USA
| | - Kaitlin Chapman
- Department of Entomology, University of Nebraska–Lincoln, LincolnNE, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska–Lincoln, LincolnNE, USA
- Department of Biochemistry, University of Nebraska–Lincoln, LincolnNE, USA
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska–Lincoln, LincolnNE, USA
| | - Gautam Sarath
- Department of Entomology, University of Nebraska–Lincoln, LincolnNE, USA
- Grain, Forage, and Bioenergy Research Unit, United States Department of Agriculture – Agricultural Research Service, LincolnNE, USA
| |
Collapse
|
87
|
Yamaguchi T, Noge K, Asano Y. Cytochrome P450 CYP71AT96 catalyses the final step of herbivore-induced phenylacetonitrile biosynthesis in the giant knotweed, Fallopia sachalinensis. PLANT MOLECULAR BIOLOGY 2016; 91:229-239. [PMID: 26928800 DOI: 10.1007/s11103-016-0459-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
The giant knotweed Fallopia sachalinensis (Polygonaceae) synthesizes phenylacetonitrile (PAN) from L-phenylalanine when infested by the Japanese beetle Popillia japonica or treated with methyl jasmonate (MeJA). Here we identified (E/Z)-phenylacetaldoxime (PAOx) as the biosynthetic precursor of PAN and identified a cytochrome P450 that catalysed the conversion of (E/Z)-PAOx to PAN. Incorporation of deuterium-labelled (E/Z)-PAOx into PAN emitted from the leaves of F. sachalinensis was detected using gas chromatography-mass spectrometry. Further, using liquid chromatography-tandem mass spectrometry, we detected the accumulation of (E/Z)-PAOx in MeJA-treated leaves. These results showed that (E/Z)-PAOx is the biosynthetic precursor of PAN. MeJA-induced mRNAs were analysed by differential expression analysis using a next-generation sequencer. Of the 74,329 contigs obtained from RNA-seq and de novo assembly, 252 contigs were induced by MeJA treatment. Full-length cDNAs encoding MeJA-induced cytochrome P450s CYP71AT96, CYP82AN1, CYP82D125 and CYP715A35 were cloned using 5'- and 3'-RACE and were expressed using a baculovirus expression system. Among these cytochrome P450s, CYP71AT96 catalysed the conversion of (E/Z)-PAOx to PAN in the presence of NADPH and a cytochrome P450 reductase. It also acted on (E/Z)-4-hydroxyphenylacetaldoxime and (E/Z)-indole-3-acetaldoxime. The broad substrate specificity of CYP71AT96 was similar to that of aldoxime metabolizing cytochrome P450s. Quantitative RT-PCR analysis showed that CYP71AT96 expression was highly induced because of treatment with MeJA as well as feeding by the Japanese beetle. These results indicate that CYP71AT96 likely contributes the herbivore-induced PAN biosynthesis in F. sachalinensis.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Koji Noge
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
- Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
88
|
Sun J, Manmathan H, Sun C, Peebles CAM. Examining the transcriptional response of overexpressing anthranilate synthase in the hairy roots of an important medicinal plant Catharanthus roseus by RNA-seq. BMC PLANT BIOLOGY 2016; 16:108. [PMID: 27154243 PMCID: PMC4859987 DOI: 10.1186/s12870-016-0794-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/29/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Clinically important anti-cancer drugs vinblastine and vincristine are solely synthesized by the terpenoid indole alkaloid (TIA) pathway in Catharanthus roseus. Anthranilate synthase (AS) is a rate-limiting enzyme in the TIA pathway. The transgenic C. roseus hairy root line overexpressing a feedback insensitive ASα subunit under the control of an inducible promoter and the ASβ subunit constitutively was previously created for the overproduction of TIAs. However, both increases and decreases in TIAs were detected after overexpressing ASα. Although genetic modification is targeted to one gene in the TIA pathway, it could trigger global transcriptional changes that can directly or indirectly affect TIA biosynthesis. In this study, Illumina sequencing and RT-qPCR were used to detect the transcriptional responses to overexpressing AS, which can increase understanding of the complex regulation of the TIA pathway and further inspire rational metabolic engineering for enhanced TIA production in C. roseus hairy roots. RESULTS Overexpressing AS in C. roseus hairy roots altered the transcription of most known TIA pathway genes and regulators after 12, 24, and 48 h induction detected by RT-qPCR. Changes in the transcriptome of C. roseus hairy roots was further investigated 18 hours after ASα induction and compared to the control hairy roots using RNA-seq. A unigene set of 30,281 was obtained by de novo assembly of the sequencing reads. Comparison of the differentially expressed transcriptional profiles resulted in 2853 differentially expressed transcripts. Functional annotation of these transcripts revealed a complex and systematically transcriptome change in ASαβ hairy roots. Pathway analysis shows alterations in many pathways such as aromatic amino acid biosynthesis, jasmonic acid (JA) biosynthesis and other secondary metabolic pathways after perturbing AS. Moreover, many genes in overall stress response were differentially expressed after overexpressing ASα. CONCLUSION The transcriptomic analysis illustrates overexpressing AS stimulates the overall stress response and affects the metabolic networks in C. roseus hairy roots. The up-regulation of endogenous JA biosynthesis pathway indicates the involvement of JA signal transduction to regulate TIA biosynthesis in ASαβ engineered roots and explained why many of the transcripts for TIA genes and regulators are seen to increase with AS overexpression.
Collapse
Affiliation(s)
- Jiayi Sun
- Chemical and Biological Engineering Department, Colorado State University, Campus delivery 1370, Fort Collins, 80523, USA
| | - Harish Manmathan
- Soil and Crop Sciences Department, Colorado State University, Campus deliver 1170, Fort Collins, Colorado, 80523, USA
| | - Cheng Sun
- Department of biology, Colorado State University, 1878 Campus Delivery, Fort Collins, Colorado, 80521, USA
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agriculture Science, Beijing, 10093, China
| | - Christie A M Peebles
- Chemical and Biological Engineering Department, Colorado State University, Campus delivery 1370, Fort Collins, 80523, USA.
| |
Collapse
|
89
|
Liu Y, He C. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. PLANT CELL REPORTS 2016; 35:995-1007. [PMID: 26883222 DOI: 10.1007/s00299-016-1950-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are constantly produced in plants, as the metabolic by-products or as the signaling components in stress responses. High levels of ROS are harmful to plants. In contrast, ROS play important roles in plant physiology, including abiotic and biotic tolerance, development, and cellular signaling. Therefore, ROS production needs to be tightly regulated to balance their function. Respiratory burst oxidase homologue (RBOH) proteins, also known as plant nicotinamide adenine dinucleotide phosphate oxidases, are well studied enzymatic ROS-generating systems in plants. The regulatory mechanisms of RBOH-dependent ROS production in stress responses have been intensively studied. This has greatly advanced our knowledge of the mechanisms that regulate plant ROS production. This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance. AtRBOHD-dependent ROS production could provide a valuable reference for studying ROS production in plant stress responses.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China.
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China.
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China
| |
Collapse
|
90
|
Sun Y, Guo H, Ge F. Plant-Aphid Interactions Under Elevated CO2: Some Cues from Aphid Feeding Behavior. FRONTIERS IN PLANT SCIENCE 2016; 7:502. [PMID: 27148325 PMCID: PMC4829579 DOI: 10.3389/fpls.2016.00502] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/29/2016] [Indexed: 05/18/2023]
Abstract
Although the increasing concentration of atmospheric carbon dioxide (CO2) accelerates the accumulation of carbohydrates and increases the biomass and yield of C3 crop plants, it also reduces their nitrogen concentration. The consequent changes in primary and secondary metabolites affect the palatability of host plants and the feeding of herbivorous insects. Aphids are phloem feeders and are considered the only feeding guild that positively responds to elevated CO2. In this review, we consider how elevated CO2 modifies host defenses, nutrients, and water-use efficiency by altering concentrations of the phytohormones jasmonic acid, salicylic acid, ethylene, and abscisic acid. We will describe how these elevated CO2-induced changes in defenses, nutrients, and water statusfacilitate specific stages of aphid feeding, including penetration, phloem-feeding, and xylem absorption. We conclude that a better understanding of the effects of elevated CO2 on aphids and on aphid damage to crop plants will require research on the molecular aspects of the interaction between plant and aphid but also research on aphid interactions with their intra- and inter-specific competitors and with their natural enemies.
Collapse
Affiliation(s)
| | | | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
91
|
Medina-Castellanos E, Esquivel-Naranjo EU, Heil M, Herrera-Estrella A. Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride. FRONTIERS IN PLANT SCIENCE 2014; 5:659. [PMID: 25484887 PMCID: PMC4240048 DOI: 10.3389/fpls.2014.00659] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 11/04/2014] [Indexed: 05/17/2023]
Abstract
The response to mechanical damage is crucial for the survival of multicellular organisms, enabling their adaptation to hostile environments. Trichoderma atroviride, a filamentous fungus of great importance in the biological control of plant diseases, responds to mechanical damage by activating regenerative processes and asexual reproduction (conidiation). During this response, reactive oxygen species (ROS) are produced by the NADPH oxidase complex. To understand the underlying early signaling events, we evaluated molecules such as extracellular ATP (eATP) and Ca(2+) that are known to trigger wound-induced responses in plants and animals. Concretely, we investigated the activation of mitogen-activated protein kinase (MAPK) pathways by eATP, Ca(2+), and ROS. Indeed, application of exogenous ATP and Ca(2+) triggered conidiation. Furthermore, eATP promoted the Nox1-dependent production of ROS and activated a MAPK pathway. Mutants in the MAPK-encoding genes tmk1 and tmk3 were affected in wound-induced conidiation, and phosphorylation of both Tmk1 and Tmk3 was triggered by eATP. We conclude that in this fungus, eATP acts as a damage-associated molecular pattern (DAMP). Our data indicate the existence of an eATP receptor and suggest that in fungi, eATP triggers pathways that converge to regulate asexual reproduction genes that are required for injury-induced conidiation. By contrast, Ca(2+) is more likely to act as a downstream second messenger. The early steps of mechanical damage response in T. atroviride share conserved elements with those known from plants and animals.
Collapse
Affiliation(s)
| | | | - Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV-IrapuatoIrapuato, México
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodeversidad, CINVESTAV-IrapuatoIrapuato, México
- *Correspondence: Alfredo Herrera-Estrella, Laboratorio Nacional de Genómica para la Biodeversidad, CINVESTAV-Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato 36821, Guanajuato, México e-mail:
| |
Collapse
|