51
|
Carrillo-Barragán P, Dolfing J, Sallis P, Gray N. The stability of ethanol production from organic waste by a mixed culture depends on inoculum transfer time. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
52
|
Microbial and Chemical Analysis of Non-Saccharomyces Yeasts from Chambourcin Hybrid Grapes for Potential Use in Winemaking. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Native microorganisms present on grapes can influence final wine quality. Chambourcin is the most abundant hybrid grape grown in Pennsylvania and is more resistant to cold temperatures and fungal diseases compared to Vitis vinifera. Here, non-Saccharomyces yeasts were isolated from spontaneously fermenting Chambourcin must from three regional vineyards. Using cultured-based methods and ITS sequencing, Hanseniaspora and Pichia spp. were the most dominant genus out of 29 fungal species identified. Five strains of Hanseniaspora uvarum, H. opuntiae, Pichia kluyveri, P. kudriavzevii, and Aureobasidium pullulans were characterized for the ability to tolerate sulfite and ethanol. Hanseniaspora opuntiae PSWCC64 and P. kudriavzevii PSWCC102 can tolerate 8–10% ethanol and were able to utilize 60–80% sugars during fermentation. Laboratory scale fermentations of candidate strain into sterile Chambourcin juice allowed for analyzing compounds associated with wine flavor. Nine nonvolatile compounds were conserved in inoculated fermentations. In contrast, Hanseniaspora strains PSWCC64 and PSWCC70 were positively correlated with 2-heptanol and ionone associated to fruity and floral odor and P. kudriazevii PSWCC102 was positively correlated with a group of esters and acetals associated to fruity and herbaceous aroma. Microbial and chemical characterization of non-Saccharomyces yeasts presents an exciting approach to enhance flavor complexity and regionality of hybrid wines.
Collapse
|
53
|
Deems A, Du Prey M, Dowd SE, McLaughlin RW. Characterization of the Biodiesel Degrading Acinetobacter oleivorans Strain PT8 Isolated from the Fecal Material of a Painted Turtle (Chrysemys picta). Curr Microbiol 2021; 78:522-527. [PMID: 33392672 DOI: 10.1007/s00284-020-02320-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/07/2020] [Indexed: 11/26/2022]
Abstract
Acinetobacter species are gram-negative, non-fermenting bacteria with coccobacilli morphology. The bacteria are found ubiquitously and have the ability to occupy niches which include environmental sites, animals, and humans. The original purpose of this study was to determine if painted turtles (Chrysemys picta) living in the wild in Western Wisconsin were colonized with carbapenem-resistant bacteria. Fecal samples from ten turtles were examined for carbapenem-resistant bacteria. None of the isolates were found to be carbapenem resistant by antimicrobial susceptibility testing. However, all the isolates were resistant to other β-lactams and chloramphenicol classes of antimicrobials. One isolate, Acinetobacter oleivorans strain PT8, was selected for additional characterization, including whole-genome sequencing (WGS). Strain PT8 is capable of degrading biodiesel, forming biofilms, and has a putative type 6 gene cluster. Finally, the taxonomic position of the available whole-genome sequences of 25 A. oleivorans genomes from purified isolates was determined.
Collapse
Affiliation(s)
- Amanda Deems
- General Studies, Gateway Technical College, 3520-30th Avenue, Kenosha, WI, 53144, USA
| | - Michael Du Prey
- General Studies, Gateway Technical College, 3520-30th Avenue, Kenosha, WI, 53144, USA
| | - Scot E Dowd
- MR DNA (Molecular Research LP), Shallowater, TX, USA
| | | |
Collapse
|
54
|
Mohamed AH, Balbool BA, Abdel-Azeem AM. Aspergillus from Different Habitats and Their Industrial Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
55
|
Ding Y, Niu Y, Chen Z, Dong S, Li H. Discovery of novel Lactobacillus plantarum co-existence-associated influencing factor(s) on Saccharomyces cerevisiae fermentation performance. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
56
|
Shi X, Li R, Zhang Z, Qiang S. Microstructure determines floating ability of weed seeds. PEST MANAGEMENT SCIENCE 2021; 77:440-454. [PMID: 32770647 DOI: 10.1002/ps.6037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Weed seeds in rice-wheat continuous cropping fields spread via flowing water during irrigation of the rice crop. However, the ability of their adaptation to water dispersal and their structural mechanisms remain unclear. One hundred and ten species of weed seeds from 35 families were selected for this study. Seed slices were made through freeze sectioning to observe and assess the proportions of parenchyma, aerenchyma and lignified tissue. Microstructure and morphological traits, such as relative size and appendages were integrated into an analysis. RESULTS Multivariate statistical analysis showed that floating time was significantly positively correlated with the shape, aerenchyma and parenchyma of the weed seeds and negatively with lignified tissue. Cluster analysis divided all the tested seeds into four categories. The first category was super floating weeds, which had a large proportion of parenchyma or air chamber and floated on water surfaces for > 400 h, including 16 species; the second category was strong floating weeds, which had a flat shape, parenchyma or air chamber structures and floated for 120 to 400 h, including 17 species; the third category was floating weeds, which were usually dense in structure with a floating time < 120 h, including 78 species; the fourth category showed no floating ability with a large size and mass, and dense structures including seven species. CONCLUSION Most weeds had floating ability, which was closely related to the adaptability of their anatomical structures. This study takes an insight into understanding ecological adaptation of weeds and the sustainable ecological weed control through removing floating weed seeds.
Collapse
Affiliation(s)
- Xinglei Shi
- Weed Research Laboratory, Nanjing Agricultural University, No. 6 Tongwei Road, Nanjing, 210095, China
| | - Ruhai Li
- Weed Research Laboratory, Nanjing Agricultural University, No. 6 Tongwei Road, Nanjing, 210095, China
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, No.18 Nanhu avenue, Wuhan, 430064, China
| | - Zheng Zhang
- Weed Research Laboratory, Nanjing Agricultural University, No. 6 Tongwei Road, Nanjing, 210095, China
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, No. 6 Tongwei Road, Nanjing, 210095, China
| |
Collapse
|
57
|
Ceccato-Antonini SR, Covre EA. From baker's yeast to genetically modified budding yeasts: the scientific evolution of bioethanol industry from sugarcane. FEMS Yeast Res 2020; 20:6021367. [PMID: 33406233 DOI: 10.1093/femsyr/foaa065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022] Open
Abstract
The peculiarities of Brazilian fuel ethanol fermentation allow the entry of native yeasts that may dominate over the starter strains of Saccharomyces cerevisiae and persist throughout the sugarcane harvest. The switch from the use of baker's yeast as starter to selected budding yeasts obtained by a selective pressure strategy was followed by a wealth of genomic information that enabled the understanding of the superiority of selected yeast strains. This review describes how the process of yeast selection evolved in the sugarcane-based bioethanol industry, the selection criteria and recent advances in genomics that could advance the fermentation process. The prospective use of genetically modified yeast strains, specially designed for increased robustness and product yield, with special emphasis on those obtained by the CRISPR (clustered regularly interspaced palindromic repeats)-Cas9 (CRISPR-associated protein 9) genome-editing approach, is discussed as a possible solution to confer higher performance and stability to the fermentation process for fuel ethanol production.
Collapse
Affiliation(s)
- Sandra Regina Ceccato-Antonini
- Laboratory of Agricultural and Molecular Microbiology, Dept Tecnologia Agroindustrial e Socioeconomia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Via Anhanguera, km 174, 13600-970 Araras, São Paulo State, Brazil
| | - Elizabete Aparecida Covre
- Laboratory of Agricultural and Molecular Microbiology, Dept Tecnologia Agroindustrial e Socioeconomia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Via Anhanguera, km 174, 13600-970 Araras, São Paulo State, Brazil
| |
Collapse
|
58
|
Pavankumar TL, Mittal P, Hallsworth JE. Molecular insights into the ecology of a psychrotolerant
Pseudomonas syringae. Environ Microbiol 2020; 23:3665-3681. [DOI: 10.1111/1462-2920.15304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Theetha L. Pavankumar
- Department of Microbiology and Molecular Genetics, Briggs Hall, One Shields Avenue University of California Davis CA USA
| | - Pragya Mittal
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine University of Edinburgh Crewe Road South, Edinburgh, EH42XU, Scotland UK
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences Queen's University Belfast 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland UK
| |
Collapse
|
59
|
Hall MA, Brettell LE, Liu H, Nacko S, Spooner-Hart R, Riegler M, Cook JM. Temporal changes in the microbiome of stingless bee foragers following colony relocation. FEMS Microbiol Ecol 2020; 97:5998223. [DOI: 10.1093/femsec/fiaa236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
ABSTRACT
Maintaining beneficial interactions with microbial symbionts is vital for animal health. Yet, for social insects, the stability of microbial associations within and between cohorts is largely unknown. We investigated temporal changes in the microbiomes of nine stingless bee (Tetragonula carbonaria) colonies at seven timepoints across a 10-month period when moved between two climatically and florally different sites. Bacterial 16S rRNA gene and fungal ITS amplicon sequencing confirmed that microbiomes varied considerably between colonies initially at site one. However, following relocation, considerable changes occurred in bacterial community composition within each colony, and the microbiome composition became more similar across colonies. Notably, Snodgrassella disappeared and Zymobacter appeared as relatively abundant taxa. Remarkably, bacterial communities within colonies continued to shift over time but remained similar across colonies, becoming dominated by Acinetobacter six months after returning to the original site. Our results indicate that the stingless bee microbiome can undergo major changes in response to the environment, and that these changes can be long-lasting. Such legacy effects have not been reported for corbiculate bees. Further understanding the microbial ecology of stingless bees will aid future management of colonies used in agricultural production.
Collapse
Affiliation(s)
- Mark A Hall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Laura E Brettell
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Scott Nacko
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Robert Spooner-Hart
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - James M Cook
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
60
|
Moopantakath J, Imchen M, Siddhardha B, Kumavath R. 16s rRNA metagenomic analysis reveals predominance of Crtl and CruF genes in Arabian Sea coast of India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140699. [PMID: 32679495 DOI: 10.1016/j.scitotenv.2020.140699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Microbial communities perform crucial biogeochemical cycles in distinct ecosystems. Halophilic microbial communities are enriched in the saline areas. Hence, haloarchaea have been primarily studied in salterns and marine biosystems with the aim to harness haloarcheal carotenoids biosynthesis. In this study, sediment from several distinct biosystems (mangrove, seashore, estuary, river, lake, salt pan and island) across the Arabian coastal region of India were collected and analyzed though 16s rRNA metagenomic and whole genome approach to elucidated the dominant representative genre, haloarcheal diversity, and the prevalence of Crtl and CruF genes. We found that the microbial diversity in mangrove sediment (794 OTUs) was highest and lowest in lake and river (558-560 OTUs). Moreover, the bacterial domain dominated in all biosystems (96.00-99.45%). Top 10 abundant genera were involved in biochemical cycles such as sulfur, methane, ammonia, hydrocarbon degradation, and antibiotics production. The Archaea was mainly composed of Haloarchaea, Methanobacteria, Methanococci, Methanomicrobia and Crenarchaeota. Carotenoid gene, Crtl, was observed in a major portion (abundance 60%; diversity 45%) of microbial community. Interestingly, we found that all species under haloarcheal class that were represented in fresh as well as marine biosystems encodes CruF gene (bacterioruberin carotenoid). Our study demonstrates the high microbial diversity in various ecosystems, enrichment of Crtl gene, and also shows that Crtl and CruF genes are highly abundant in haloarcheal genera. The finding of ecosystems specific Crtl and CruF encoding genera opens up a promising area in bioprospecting the carotenoid derivatives from the wide range of natural biosystems.
Collapse
Affiliation(s)
- Jamseel Moopantakath
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671320, Kerala, India
| | - Madangchanok Imchen
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671320, Kerala, India
| | - Busi Siddhardha
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Ranjith Kumavath
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671320, Kerala, India.
| |
Collapse
|
61
|
Abstract
Bioethanol is the largest biotechnology product and the most dominant biofuel globally. Saccharomyces cerevisiae is the most favored microorganism employed for its industrial production. However, obtaining maximum yields from an ethanol fermentation remains a technical challenge, since cellular stresses detrimentally impact on the efficiency of yeast cell growth and metabolism. Ethanol fermentation stresses potentially include osmotic, chaotropic, oxidative, and heat stress, as well as shifts in pH. Well-developed stress responses and tolerance mechanisms make S. cerevisiae industrious, with bioprocessing techniques also being deployed at industrial scale for the optimization of fermentation parameters and the effective management of inhibition issues. Overlap exists between yeast responses to different forms of stress. This review outlines yeast fermentation stresses and known mechanisms conferring stress tolerance, with their further elucidation and improvement possessing the potential to improve fermentation efficiency.
Collapse
|
62
|
Sinha RK, Krishnan KP, Kurian PJ. Complete genome sequence and comparative genome analysis of Alcanivorax sp. IO_7, a marine alkane-degrading bacterium isolated from hydrothermally-influenced deep seawater of southwest Indian ridge. Genomics 2020; 113:884-891. [PMID: 33096255 DOI: 10.1016/j.ygeno.2020.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Abstract
Genome of Alcanivorax sp. IO_7, an alkane degrading deep-sea bacteria isolated from hydrothermally-influenced Southwest Indian Ridge was sequenced and analysed. Genomic data mining revealed gene clusters for degrading n-alkane and cycloalkanes, including biosurfactant production. The strain was shown to grow on hexadecane as its sole carbon source, supporting the findings of genomic analysis. Presence of cyclohexanone monooxygenase among genomic islands suggest that this strain may have used gene transfer to enhance its hydrocarbon degradation ability. Genes encoding for heavy metal resistance, multidrug resistance and multiple natural product biosynthesis crucial for survival in the hydrothermally influenced deep sea environment were detected. In our comparative genome analysis, it was evident that marine Alcanivorax strains contain a suite of enzymes for n-alkane and haloalkanoate degradation. Comparative genome and genomic synteny analysis provided insights into the physiological features and adaptation strategies of Alcanivorax sp. IO_7 in the deep-sea hydrothermal environment.
Collapse
Affiliation(s)
- Rupesh Kumar Sinha
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama 403804, Goa, India.
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama 403804, Goa, India.
| | - P John Kurian
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama 403804, Goa, India.
| |
Collapse
|
63
|
Preliminary insights into the impact of primary radiochemotherapy on the salivary microbiome in head and neck squamous cell carcinoma. Sci Rep 2020; 10:16582. [PMID: 33024215 PMCID: PMC7538973 DOI: 10.1038/s41598-020-73515-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Squamous cell carcinoma is the most common type of throat cancer. Treatment options comprise surgery, radiotherapy, and/or chemo(immuno)therapy. The salivary microbiome is shaped by the disease, and likely by the treatment, resulting in side effects caused by chemoradiation that severely impair patients’ well-being. High-throughput amplicon sequencing of the 16S rRNA gene provides an opportunity to investigate changes in the salivary microbiome in health and disease. In this preliminary study, we investigated alterations in the bacterial, fungal, and archaeal components of the salivary microbiome between healthy subjects and patients with head and neck squamous cell carcinoma before and close to the end point of chemoradiation (“after”). We enrolled 31 patients and 11 healthy controls, with 11 patients providing samples both before and after chemoradiation. Analysis revealed an effect on the bacterial and fungal microbiome, with a partial antagonistic reaction but no effects on the archaeal microbial community. Specifically, we observed an individual increase in Candida signatures following chemoradiation, whereas the overall diversity of the microbial and fungal signatures decreased significantly after therapy. Thus, our study indicates that the patient microbiome reacts individually to chemoradiation but has potential for future optimization of disease diagnostics and personalized treatments.
Collapse
|
64
|
Khoshfarman-Borji H, Pahlavan Yali M, Bozorg-Amirkalaee M. Induction of resistance against Brevicoryne brassicae by Pseudomonas putida and salicylic acid in canola. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:597-610. [PMID: 32252840 DOI: 10.1017/s0007485320000097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The cabbage aphid, Brevicoryne brassicae L. (Hem: Aphididae), is one of the most serious pests of canola worldwide. In this research, the effects of Pseudomonas putida, salicylic acid (SA), and integrated application of both inducers were studied on the resistance of canola to B. brassicae. In free-choice situation, the number of B. brassicae attracted on canola plants under treatments containing P. putida and SA was significantly lower compared to control plants. In the life table study, pre-adult survival, longevity, reproductive period, and fecundity of this aphid were lowest on plants treated with P. putida + SA. The net reproductive rate (R0), intrinsic rate of population increase (r), and finite rate of increase (λ) of B. brassicae decreased significantly in the following order: control (47.19 offspring, 0.293 and 1.340 day-1), P. putida (16.7 offspring, 0.238 and 1.269 day-1), SA (6.37 offspring, 0.163 and 1.178 day-1), and P. putida + SA (3.24 offspring, 0.112 and 1.119 day-1). Moreover, the beneficial effect of the integrated application of P. putida and SA on plant growth parameters was significantly evident in our study. The highest values of glucosinolates, total phenol, and flavonoids were recorded in P. putida + SA treatment. We concluded that canola plants treated with P. putida + SA are more resistant to the cabbage aphid. These findings demonstrated that SA integrated with P. putida on canola plants act effectively for reducing the population of B. brassicae and can be used in integrated management programs of this pest.
Collapse
Affiliation(s)
- H Khoshfarman-Borji
- Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University, Iran
| | - M Pahlavan Yali
- Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University, Iran
| | - M Bozorg-Amirkalaee
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Mohaghegh Ardabili, Iran
| |
Collapse
|
65
|
Balsa-Canto E, Alonso-Del-Real J, Querol A. Temperature Shapes Ecological Dynamics in Mixed Culture Fermentations Driven by Two Species of the Saccharomyces Genus. Front Bioeng Biotechnol 2020; 8:915. [PMID: 32974297 PMCID: PMC7472092 DOI: 10.3389/fbioe.2020.00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
Mixed culture wine fermentations combining species within the Saccharomyces genus have the potential to produce new market tailored wines. They may also contribute to alleviating the effects of climate change in winemaking. Species, such as S. kudriavzevii, show good fermentative properties at low temperatures and produce wines with lower alcohol content, higher glycerol amounts and good aroma. However, the design of mixed culture fermentations combining S. cerevisiae and S. kudriavzevii species requires investigating their ecological interactions under cold temperature regimes. Here, we derived the first ecological model to predict individual and mixed yeast dynamics in cold fermentations. The optimal model combines the Gilpin-Ayala modification to the Lotka-Volterra competitive model with saturable competition and secondary models that account for the role of temperature. The nullcline analysis of the proposed model revealed how temperature shapes ecological dynamics in mixed co-inoculated cold fermentations. For this particular medium and species, successful mixed cultures can be achieved only at specific temperature ranges or by sequential inoculation. The proposed ecological model can be calibrated for different species and provide valuable insights into the functioning of alternative mixed wine fermentations.
Collapse
Affiliation(s)
| | - Javier Alonso-Del-Real
- Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, IATA-CSIC, Valencia, Spain
| | - Amparo Querol
- Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, IATA-CSIC, Valencia, Spain
| |
Collapse
|
66
|
Kischkel B, Rossi SA, Santos SR, Nosanchuk JD, Travassos LR, Taborda CP. Therapies and Vaccines Based on Nanoparticles for the Treatment of Systemic Fungal Infections. Front Cell Infect Microbiol 2020; 10:463. [PMID: 33014889 PMCID: PMC7502903 DOI: 10.3389/fcimb.2020.00463] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment modalities for systemic mycoses are still limited. Currently, the main antifungal therapeutics include polyenes, azoles, and echinocandins. However, even in the setting of appropriate administration of antifungals, mortality rates remain unacceptably high. Moreover, antifungal therapy is expensive, treatment periods can range from weeks to years, and toxicity is also a serious concern. In recent years, the increased number of immunocompromised individuals has contributed to the high global incidence of systemic fungal infections. Given the high morbidity and mortality rates, the complexity of treatment strategies, drug toxicity, and the worldwide burden of disease, there is a need for new and efficient therapeutic means to combat invasive mycoses. One promising avenue that is actively being pursued is nanotechnology, to develop new antifungal therapies and efficient vaccines, since it allows for a targeted delivery of drugs and antigens, which can reduce toxicity and treatment costs. The goal of this review is to discuss studies using nanoparticles to develop new therapeutic options, including vaccination methods, to combat systemic mycoses caused by Candida sp., Cryptococcus sp., Paracoccidioides sp., Histoplasma sp., Coccidioides sp., and Aspergillus sp., in addition to providing important information on the use of different types of nanoparticles, nanocarriers and their corresponding mechanisms of action.
Collapse
Affiliation(s)
- Brenda Kischkel
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Suélen A Rossi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Samuel R Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine [Division of Infectious Diseases], Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
67
|
Timson DJ, Eardley J. Destressing Yeast for Higher Biofuel Yields: Can Excess Chaotropicity Be Mitigated? Appl Biochem Biotechnol 2020; 192:1368-1375. [PMID: 32803494 DOI: 10.1007/s12010-020-03406-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/12/2020] [Indexed: 11/24/2022]
Abstract
Biofuels have the capacity to contribute to carbon dioxide emission reduction and to energy security as oil reserves diminish and/or become concentrated in politically unstable regions. However, challenges exist in obtaining the maximum yield from industrial fermentations. One challenge arises from the nature of alcohols. These compounds are chaotropic (i.e. causes disorder in the system) which causes stress in the microbes producing the biofuel. Brewer's yeast (Saccharomyces cerevisiae) typically cannot grow at ethanol concentration much above 17% (v/v). Mitigation of these properties has the potential to increase yield. Previously, we have explored the effects of chaotropes on model enzyme systems and attempted (largely unsuccessfully) to offset these effects by kosmotropes (compounds which increase the order of the system, i.e. the "opposite" of chaotropes). Here we present some theoretical results which suggest that high molecular mass polyethylene glycols may be the most effective kosmotropic additives in terms of both efficacy and cost. The assumptions and limitations of these calculations are also presented. A deeper understanding of the effects of chaotropes on biofuel-producing microbes is likely to inform improvements in bioethanol yields and enable more rational approaches to the "neutralisation" of chaotropicity.
Collapse
Affiliation(s)
- David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK.
| | - Joshua Eardley
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK
| |
Collapse
|
68
|
Araújo WJ, Oliveira JS, Araújo SCS, Minnicelli CF, Silva-Portela RCB, da Fonseca MMB, Freitas JF, Silva-Barbalho KK, Napp AP, Pereira JES, Peralba MCR, Passaglia LMP, Vainstein MH, Agnez-Lima LF. Microbial Culture in Minimal Medium With Oil Favors Enrichment of Biosurfactant Producing Genes. Front Bioeng Biotechnol 2020; 8:962. [PMID: 32850771 PMCID: PMC7431673 DOI: 10.3389/fbioe.2020.00962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/24/2020] [Indexed: 11/29/2022] Open
Abstract
The waste produced by petrochemical industries has a significant environmental impact. Biotechnological approaches offer promising alternatives for waste treatment in a sustainable and environment-friendly manner. Microbial consortia potentially clean up the wastes through degradation of hydrocarbons using biosurfactants as adjuvants. In this work, microbial consortia were obtained from a production water (PW) sample from a Brazilian oil reservoir using enrichment and selection approaches in the presence of oil as carbon source. A consortium was obtained using Bushnell-Haas (BH) mineral medium with petroleum. In parallel, another consortium was obtained in yeast extract peptone dextrose (YPD)-rich medium and was subsequently compared to the BH mineral medium with petroleum. Metagenomic sequencing of these microbial communities showed that the BH consortium was less diverse and predominantly composed of Brevibacillus genus members, while the YPD consortium was taxonomically more diverse. Functional annotation revealed that the BH consortium was enriched with genes involved in biosurfactant synthesis, while the YPD consortium presented higher abundance of hydrocarbon degradation genes. The comparison of these two consortia against consortia available in public databases confirmed the enrichment of biosurfactant genes in the BH consortium. Functional assays showed that the BH consortium exhibits high cellular hydrophobicity and formation of stable emulsions, suggesting that oil uptake by microorganisms might be favored by biosurfactants. In contrast, the YPD consortium was more efficient than the BH consortium in reducing interfacial tension. Despite the genetic differences between the consortia, analysis by a gas chromatography-flame ionization detector showed few significant differences regarding the hydrocarbon degradation rates. Specifically, the YPD consortium presented higher degradation rates of C12 to C14 alkanes, while the BH consortium showed a significant increase in the degradation of some polycyclic aromatic hydrocarbons (PAHs). These data suggest that the enrichment of biosurfactant genes in the BH consortium could promote efficient hydrocarbon degradation, despite its lower taxonomical diversity compared to the consortium enriched in YPD medium. Together, these results showed that cultivation in a minimal medium supplemented with oil was an efficient strategy in selecting biosurfactant-producing microorganisms and highlighted the biotechnological potential of these bacterial consortia in waste treatment and bioremediation of impacted areas.
Collapse
Affiliation(s)
- W J Araújo
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazi
| | - J S Oliveira
- INESC-ID/IST - Instituto de Engenharia de Sistemas e Computadores/Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - S C S Araújo
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazi
| | - C F Minnicelli
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazi
| | - R C B Silva-Portela
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazi
| | - M M B da Fonseca
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazi
| | - J F Freitas
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazi
| | - K K Silva-Barbalho
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazi
| | - A P Napp
- Laboratório de Fungos de Importância Médica e Biotecnológica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - J E S Pereira
- Laboratório de Fungos de Importância Médica e Biotecnológica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - M C R Peralba
- Laboratório de Química Analítica e Ambiental, Departamento de Química, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - L M P Passaglia
- Laboratório de Genética Molecular Vegetal, Departamento de Genética, Instituto de Biociência, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - M H Vainstein
- Laboratório de Fungos de Importância Médica e Biotecnológica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - L F Agnez-Lima
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazi
| |
Collapse
|
69
|
Complete genome sequence of Alteromonas pelagimontana 5.12 T, a marine exopolysaccharide-producing bacterium isolated from hydrothermally influenced deep-sea sediment of eastern Southwest Indian Ridge. Mar Genomics 2020; 55:100804. [PMID: 32665084 DOI: 10.1016/j.margen.2020.100804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 11/21/2022]
Abstract
The whole genome of Alteromonas pelagimontana 5.12T, a psychrotolerant deep-sea bacterium isolated from the sediment sample of eastern Southwest Indian Ridge, was sequenced and analysed for understanding its metabolic capacities and biosynthesis potential of natural products. The circular genome contained 4.3 Mb with a GC content of 42.6 mol%. Genomic data mining revealed a gene cluster for heavy metal resistance (czcABC, acrB, arsR1, copA, nikA, mntH, mntP), exopolysaccharides (EPS; epsCDEFHLM) and polyhydroxyalkanoates (PHA; phbC) production, as well as genes involved in complex polysaccharide degradation. Genes that could allow strain 5.12T to cope with acid stress (ibaG) and heat shock (ibpA, hslR) were observed along with ten chaperone-encoding genes which could possibly play vital role in adaptability of this strain to the hydrothermally influenced environment. Gene clusters for secondary metabolite production such as bacteriocin and arylpolyene were also predicted. Thus, genome sequencing and data mining provided insights into the molecular mechanisms involved in the adaptation to hydrothermally influenced deep-sea environment that could promote further experimental exploration.
Collapse
|
70
|
Bioactive Metabolites and Potential Mycotoxins Produced by Cordyceps Fungi: A Review of Safety. Toxins (Basel) 2020; 12:toxins12060410. [PMID: 32575649 PMCID: PMC7354514 DOI: 10.3390/toxins12060410] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Ascomycete Cordyceps fungi such as C. militaris, C. cicadae, and C. guangdongensis have been mass produced on artificial media either as food supplements or health additives while the byproducts of culture substrates are largely used as animal feed. The safety concerns associated with the daily consumption of Cordyceps fungi or related products are still being debated. On the one hand, the known compounds from these fungi such as adenosine analogs cordycepin and pentostatin have demonstrated different beneficial or pharmaceutical activities but also dose-dependent cytotoxicities, neurological toxicities and or toxicological effects in humans and animals. On the other hand, the possibility of mycotoxin production by Cordyceps fungi has not been completely ruled out. In contrast to a few metabolites identified, an array of biosynthetic gene clusters (BGCs) are encoded in each genome of these fungi with the potential to produce a plethora of as yet unknown secondary metabolites. Conservation analysis of BGCs suggests that mycotoxin analogs of PR-toxin and trichothecenes might be produced by Cordyceps fungi. Future elucidation of the compounds produced by these functionally unknown BGCs, and in-depth assessments of metabolite bioactivity and chemical safety, will not only facilitate the safe use of Cordyceps fungi as human food or alternative medicine, but will also benefit the use of mass production byproducts as animal feed. To corroborate the long record of use as a traditional medicine, future efforts will also benefit the exploration of Cordyceps fungi for pharmaceutical purposes.
Collapse
|
71
|
Durán-Viseras A, Andrei AŞ, Vera-Gargallo B, Ghai R, Sánchez-Porro C, Ventosa A. Culturomics-based genomics sheds light on the ecology of the new haloarchaeal genus Halosegnis. Environ Microbiol 2020; 23:3418-3434. [PMID: 32410366 DOI: 10.1111/1462-2920.15082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
The development of culture-independent techniques has revolutionized our understanding of microbial ecology, especially through the illustration of the vast gap between the environmentally abundant microbial diversity and that accessible through cultivation. However, culture-based approaches are not only crucial for understanding the evolutionary, metabolic and ecological milieu of microbial diversity but also for the development of novel biotechnological applications. In this study, we used a culturomics-based approach in order to isolate novel microbial taxa from hypersaline environments (i.e. Isla Cristina and Isla Bacuta salterns in Huelva, Spain). We managed to obtain axenic cultures of four haloarchaeal strains that belong to a new haloarchaeal genus and to obtain their genomic sequences. The phylogenomic and phylogenetic analyses (together with AAI, ANI and digital DDH indices) showed that the isolates constitute two new species, for which we propose the names Halosegnis longus sp. nov. and Halosegnis rubeus sp. nov. The genomic-based metabolic reconstructions indicated that members of this new haloarchaeal genus have photoheterotrophic aerobic lifestyle with a typical salt-in signature. 16S rRNA gene sequence reads abundance profiles and genomic recruitment analyses revealed that the Halosegnis genus has a worldwide geographical distribution, reaching high abundance (up to 8%) in habitats with intermediate salinities.
Collapse
Affiliation(s)
- Ana Durán-Viseras
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, 41012, Spain
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Blanca Vera-Gargallo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, 41012, Spain
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, 41012, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, 41012, Spain
| |
Collapse
|
72
|
Xia Y, Farooq MA, Javed MT, Kamran MA, Mukhtar T, Ali J, Tabassum T, Rehman SU, Hussain Munis MF, Sultan T, Chaudhary HJ. Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum L.) red rot disease resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:640-649. [PMID: 32339911 DOI: 10.1016/j.plaphy.2020.04.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 05/18/2023]
Abstract
Sustainability in crop production has emerged as one of the most important concerns of present era's agricultural systems. Plant growth promoting bacteria (PGPB) has been characterized as a set of microorganisms used for enhancing plant growth and a tool for biological control of phytopathogens. However, the inconsistent performance of these bacteria from laboratory/greenhouse to field level has emerged due to prevailing abiotic stresses in fields. Sugarcane crop encounters a combination of biotic and abiotic stresses during its long developmental stages. Nevertheless, the selection of antagonistic PGPB with abiotic stress tolerance would be beneficial for end-user by the successful establishment of product with required effects under field conditions. Stress tolerant Bacillus xiamenensis strain (PM14) isolated from the sugarcane rhizosphere grown in the fields was examined for various PGP activities, enzyme assays, and antibiotic resistance. Strain was screened for in vitro tolerance against drought, salinity, heat stress, and heavy metal toxicity. Inhibition co-efficient of B. xiamenensis PM14 was also calculated against six phyto-pathogenic fungi, including Colletotrichum falcatum (53.81), Fusarium oxysporum (68.24), Fusarium moniliforme (69.70), Rhizoctonia solani (71.62), Macrophomina phaseolina (67.50), and Pythium splendens (77.58). B. xiamenensis is reported here for the first time as the rhizospheric bacterium which possesses resistance against 12 antibiotics and positive results for all in vitro PGP traits except HCN production. Role of 1-aminocyclopropane-1-carboxylate deaminase in the amelioration of biotic and abiotic stress was also supported by the amplification of acds gene. Moreover, in vitro and in vivo experiments revealed B. xiamenensis as the potential antagonistic PGPR and bio-control agent. Results of greenhouse experiment against sugarcane red rot indicated that inoculation of B. xiamenensis to sugarcane plants could suppress the disease symptoms and enhance plant growth. Augmented production of antioxidative enzymes and proline content may lead to the induced systemic resistance against red rot disease of sugarcane. Thus, the future application of native multi-stress tolerant bacteria as bio-control agents in combination with current heat, drought, salinity, and heavy metal tolerance strategy could contribute towards the global food security.
Collapse
Affiliation(s)
- Ye Xia
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Muhammad Asad Farooq
- Crop Disease Research Institute, Department of Plant and Environmental Protection, NARC, Islamabad, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Government College University, 38000, Faisalabad, Pakistan
| | - Muhammad Aqeel Kamran
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Tehmeena Mukhtar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Javed Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | | | | | - Tariq Sultan
- Land Resource Research Institute, NARC, Islamabad, Pakistan
| | | |
Collapse
|
73
|
Long-Term Adaption to High Osmotic Stress as a Tool for Improving Enological Characteristics in Industrial Wine Yeast. Genes (Basel) 2020; 11:genes11050576. [PMID: 32443892 PMCID: PMC7288280 DOI: 10.3390/genes11050576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/28/2022] Open
Abstract
Industrial wine yeasts owe their adaptability in constantly changing environments to a long evolutionary history that combines naturally occurring evolutionary events with human-enforced domestication. Among the many stressors associated with winemaking processes that have potentially detrimental impacts on yeast viability, growth, and fermentation performance are hyperosmolarity, high glucose concentrations at the beginning of fermentation, followed by the depletion of nutrients at the end of this process. Therefore, in this study, we subjected three widely used industrial wine yeasts to adaptive laboratory evolution under potassium chloride (KCl)-induced osmotic stress. At the end of the evolutionary experiment, we evaluated the tolerance to high osmotic stress of the evolved strains. All of the analyzed strains improved their fitness under high osmotic stress without worsening their economic characteristics, such as growth rate and viability. The evolved derivatives of two strains also gained the ability to accumulate glycogen, a readily mobilized storage form of glucose conferring enhanced viability and vitality of cells during prolonged nutrient deprivation. Moreover, laboratory-scale fermentation in grape juice showed that some of the KCl-evolved strains significantly enhanced glycerol synthesis and production of resveratrol-enriched wines, which in turn greatly improved the wine sensory profile. Altogether, these findings showed that long-term adaptations to osmotic stress can be an attractive approach to develop industrial yeasts.
Collapse
|
74
|
Martí-Quijal FJ, Príncep A, Tornos A, Luz C, Meca G, Tedeschi P, Ruiz MJ, Barba FJ, Mañes J. Isolation, Identification and Investigation of Fermentative Bacteria from Sea Bass ( Dicentrarchus labrax): Evaluation of Antifungal Activity of Fermented Fish Meat and By-Products Broths. Foods 2020; 9:foods9050576. [PMID: 32375408 PMCID: PMC7278823 DOI: 10.3390/foods9050576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
During fish production processes, great amounts of by-products are generated, representing ≈30–70% of the initial weight. Thus, this research study is investigating 30 lactic acid bacteria (LAB) derived from the sea bass gastrointestinal tract, for anti-fungal activity. It has been previously suggested that LAB showing high proteolitic activity are the most suitable candidates for such an investigation. The isolation was made using a MRS (Man Rogosa Sharpe) broth cultivation medium at 37 ºC under anaerobiosis conditions, while the evaluation of the enzymatic activity was made using the API® ZYM kit. Taking into account the selected bacteria, a growing research was made fermenting two kinds of broths: (i) by-products (WB), and (ii) meat (MB). Both were fermented at three different times (24, 48 and 72 h). Then, the antifungal activities of both fermented by-products and meat broths were determined qualitatively and quantitatively in solid and liquid medium against two different strains of the genera Penicillium, Aspergillus and Fusarium. After the experiments, a total of 30 colonies were isolated, observing a proteolytic activity in 7 of the isolated strains, which belong to Lactobacillus genus, and the two more active strains were identified by polymerase chain reaction (PCR) as L. plantarum. Several strains evidenced antifungal activity showing an inhibition halo and Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) values between 1–32 g/L and 8–32 g/L, respectively. In conclusion, the isolated bacteria of sea bass had the ability to promote the antifungal activity after the fermentation process, thus being a useful tool to give an added value to fish industry by-products.
Collapse
Affiliation(s)
- Francisco J. Martí-Quijal
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (F.J.M.-Q.); (A.P.); (A.T.); (C.L.); (G.M.); (M.-J.R.); (J.M.)
| | - Andrea Príncep
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (F.J.M.-Q.); (A.P.); (A.T.); (C.L.); (G.M.); (M.-J.R.); (J.M.)
| | - Adrián Tornos
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (F.J.M.-Q.); (A.P.); (A.T.); (C.L.); (G.M.); (M.-J.R.); (J.M.)
| | - Carlos Luz
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (F.J.M.-Q.); (A.P.); (A.T.); (C.L.); (G.M.); (M.-J.R.); (J.M.)
| | - Giuseppe Meca
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (F.J.M.-Q.); (A.P.); (A.T.); (C.L.); (G.M.); (M.-J.R.); (J.M.)
| | - Paola Tedeschi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy;
| | - María-José Ruiz
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (F.J.M.-Q.); (A.P.); (A.T.); (C.L.); (G.M.); (M.-J.R.); (J.M.)
| | - Francisco J. Barba
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (F.J.M.-Q.); (A.P.); (A.T.); (C.L.); (G.M.); (M.-J.R.); (J.M.)
- Correspondence:
| | - Jordi Mañes
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (F.J.M.-Q.); (A.P.); (A.T.); (C.L.); (G.M.); (M.-J.R.); (J.M.)
| |
Collapse
|
75
|
Kristensen JM, Nierychlo M, Albertsen M, Nielsen PH. Bacteria from the Genus Arcobacter Are Abundant in Effluent from Wastewater Treatment Plants. Appl Environ Microbiol 2020; 86:e03044-19. [PMID: 32111585 PMCID: PMC7170470 DOI: 10.1128/aem.03044-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Pathogenic bacteria in wastewater are generally considered to be efficiently removed in biological wastewater treatment plants. This understanding is almost solely based on culture-based control measures, and here we show, by applying culture-independent methods, that the removal of species in the genus Arcobacter was less effective than for many other abundant genera in the influent wastewater. Arcobacter was one of the most abundant genera in influent wastewater at 14 municipal wastewater treatment plants and was also abundant in the "clean" effluent from all the plants, reaching up to 30% of all bacteria as analyzed by 16S rRNA gene amplicon sequencing. Metagenomic analyses, culturing, genome sequencing of Arcobacter isolates, and visualization by fluorescent in situ hybridization (FISH) confirmed the presence of the human-pathogenic Arcobacter cryaerophilus and A. butzleri in both influent and effluent. The main reason for the high relative abundance in the effluent was probably that Arcobacter cells, compared to those of other abundant genera in the influent, did not flocculate and attach well to the activated sludge flocs, leaving a relatively large fraction dispersed in the water phase. The study shows there is an urgent need for new standardized culture-independent measurements of pathogens in effluent wastewaters, e.g., amplicon sequencing, and an investigation of the problem on a global scale to quantify the risk for humans and livestock.IMPORTANCE The genus Arcobacter was unexpectedly abundant in the effluent from 14 Danish wastewater treatment plants treating municipal wastewater, and the species included the human-pathogenic A. cryaerophilus and A. butzleri Recent studies have shown that Arcobacter is common in wastewater worldwide, so the study indicates that discharge of members of the genus Arcobacter may be a global problem, and further studies are needed to quantify the risk and potentially minimize the discharge. The study also shows that culture-based analyses are insufficient for proper effluent quality control, and new standardized culture-independent measurements of effluent quality encompassing most pathogens should be considered.
Collapse
Affiliation(s)
- Jannie Munk Kristensen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
76
|
Microbiome and ecology of a hot spring-microbialite system on the Trans-Himalayan Plateau. Sci Rep 2020; 10:5917. [PMID: 32246033 PMCID: PMC7125080 DOI: 10.1038/s41598-020-62797-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/17/2020] [Indexed: 11/30/2022] Open
Abstract
Little is known about life in the boron-rich hot springs of Trans-Himalayas. Here, we explore the geomicrobiology of a 4438-m-high spring which emanates ~70 °C-water from a boratic microbialite called Shivlinga. Due to low atmospheric pressure, the vent-water is close to boiling point so can entropically destabilize biomacromolecular systems. Starting from the vent, Shivlinga’s geomicrobiology was revealed along the thermal gradients of an outflow-channel and a progressively-drying mineral matrix that has no running water; ecosystem constraints were then considered in relation to those of entropically comparable environments. The spring-water chemistry and sinter mineralogy were dominated by borates, sodium, thiosulfate, sulfate, sulfite, sulfide, bicarbonate, and other macromolecule-stabilizing (kosmotropic) substances. Microbial diversity was high along both of the hydrothermal gradients. Bacteria, Eukarya and Archaea constituted >98%, ~1% and <1% of Shivlinga’s microbiome, respectively. Temperature constrained the biodiversity at ~50 °C and ~60 °C, but not below 46 °C. Along each thermal gradient, in the vent-to-apron trajectory, communities were dominated by Aquificae/Deinococcus-Thermus, then Chlorobi/Chloroflexi/Cyanobacteria, and finally Bacteroidetes/Proteobacteria/Firmicutes. Interestingly, sites of >45 °C were inhabited by phylogenetic relatives of taxa for which laboratory growth is not known at >45 °C. Shivlinga’s geomicrobiology highlights the possibility that the system’s kosmotrope-dominated chemistry mitigates against the biomacromolecule-disordering effects of its thermal water.
Collapse
|
77
|
Bacterial dominance is due to effective utilisation of secondary metabolites produced by competitors. Sci Rep 2020; 10:2316. [PMID: 32047185 PMCID: PMC7012823 DOI: 10.1038/s41598-020-59048-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/08/2020] [Indexed: 12/23/2022] Open
Abstract
Interactions between bacteria govern the progression of respiratory infections; however, the mechanisms underpinning these interactions are still unclear. Understanding how a bacterial species comes to dominate infectious communities associated with respiratory infections has direct relevance to treatment. In this study, Burkholderia, Pseudomonas, and Staphylococcus species were isolated from the sputum of an individual with Cystic Fibrosis and assembled in a fully factorial design to create simple microcosms. Measurements of growth and habitat modification were recorded over time, the later using proton Nuclear Magnetic Resonance spectra. The results showed interactions between the bacteria became increasingly neutral over time. Concurrently, the bacteria significantly altered their ability to modify the environment, with Pseudomonas able to utilise secondary metabolites produced by the other two isolates, whereas the reverse was not observed. This study indicates the importance of including data about the habitat modification of a community, to better elucidate the mechanisms of bacterial interactions.
Collapse
|
78
|
Alperstein L, Gardner JM, Sundstrom JF, Sumby KM, Jiranek V. Yeast bioprospecting versus synthetic biology-which is better for innovative beverage fermentation? Appl Microbiol Biotechnol 2020; 104:1939-1953. [PMID: 31953561 DOI: 10.1007/s00253-020-10364-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 01/08/2023]
Abstract
Producers often utilise some of the many available yeast species and strains in the making of fermented alcoholic beverages in order to augment flavours, aromas, acids and textural properties. But still, the demand remains for more yeasts with novel phenotypes that not only impact sensory characteristics but also offer process and engineering advantages. Two strategies for finding such yeasts are (i) bioprospecting for novel strains and species and (ii) genetic modification of known yeasts. The latter enjoys the promise of the emerging field of synthetic biology, which, in principle, would enable scientists to create yeasts with the exact phenotype desired for a given fermentation. In this mini review, we compare and contrast advances in bioprospecting and in synthetic biology as they relate to alcoholic fermentation in brewing and wine making. We explore recent advances in fermentation-relevant recombinant technologies and synthetic biology including the Yeast 2.0 Consortium, use of environmental yeasts, challenges, constraints of law and consumer acceptance.
Collapse
Affiliation(s)
- Lucien Alperstein
- Department of Wine & Food Science, The University of Adelaide, PMB1, Glen Osmond, 5064, South Australia, Australia
| | - Jennifer M Gardner
- Department of Wine & Food Science, The University of Adelaide, PMB1, Glen Osmond, 5064, South Australia, Australia
| | - Joanna F Sundstrom
- Department of Wine & Food Science, The University of Adelaide, PMB1, Glen Osmond, 5064, South Australia, Australia.,Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia, Australia
| | - Krista M Sumby
- Department of Wine & Food Science, The University of Adelaide, PMB1, Glen Osmond, 5064, South Australia, Australia.,Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia, Australia
| | - Vladimir Jiranek
- Department of Wine & Food Science, The University of Adelaide, PMB1, Glen Osmond, 5064, South Australia, Australia. .,Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia, Australia.
| |
Collapse
|
79
|
Shotwell RF, Hays LE, Beaty DW, Goreva Y, Kieft TL, Mellon MT, Moridis G, Peterson LD, Spycher N. Can an Off-Nominal Landing by an MMRTG-Powered Spacecraft Induce a Special Region on Mars When No Ice Is Present? ASTROBIOLOGY 2019; 19:1315-1338. [PMID: 31657948 DOI: 10.1089/ast.2017.1688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work aims at addressing whether a catastrophic failure of an entry, descent, and landing event of a Multimission Radioisotope Thermoelectric Generator-based lander could embed the heat sources into the martian subsurface and create a local environment that (1) would temporarily satisfy the conditions for a martian Special Region and (2) could establish a transport mechanism through which introduced terrestrial organisms could be mobilized to naturally occurring Special Regions elsewhere on Mars. Two models were run, a primary model by researchers at the Lawrence Berkeley National Laboratory and a secondary model by researchers at the Jet Propulsion Laboratory, both of which were based on selected starting conditions for various surface composition cases that establish the worst-case scenario, including geological data collected by the Mars Science Laboratory at Gale Crater. The summary outputs of both modeling efforts showed similar results: that the introduction of the modeled heat source could temporarily create the conditions established for a Special Region, but that there would be no transport mechanism by which an introduced terrestrial microbe, even if it was active during the temporarily induced Special Region conditions, could be transported to a naturally occurring Special Region of Mars.
Collapse
Affiliation(s)
- Robert F Shotwell
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - Lindsay E Hays
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - David W Beaty
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - Yulia Goreva
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - Thomas L Kieft
- Biology Department, New Mexico Tech, Socorro, New Mexico
| | - Michael T Mellon
- The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
| | - George Moridis
- Lawrence Berkeley National Laboratory, Berkeley, California
| | - Lee D Peterson
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | | |
Collapse
|
80
|
Viver T, Orellana LH, Díaz S, Urdiain M, Ramos‐Barbero MD, González‐Pastor JE, Oren A, Hatt JK, Amann R, Antón J, Konstantinidis KT, Rosselló‐Móra R. Predominance of deterministic microbial community dynamics in salterns exposed to different light intensities. Environ Microbiol 2019; 21:4300-4315. [DOI: 10.1111/1462-2920.14790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity Mediterranean Institute for Advanced Studies (IMEDEA, CSIC‐UIB) Esporles Spain
| | - Luis H. Orellana
- School of Civil and Environmental Engineering Georgia Institute of Technology Atlanta GA USA
| | - Sara Díaz
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity Mediterranean Institute for Advanced Studies (IMEDEA, CSIC‐UIB) Esporles Spain
| | - Mercedes Urdiain
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity Mediterranean Institute for Advanced Studies (IMEDEA, CSIC‐UIB) Esporles Spain
| | | | - José E. González‐Pastor
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología Consejo Superior de Investigaciones Científicas – Instituto Nacional de Técnica Aeroespacial Madrid Spain
| | - Aharon Oren
- Department of Plant and Environmental Sciences The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Jerusalem 9190401 Israel
| | - Janet K. Hatt
- School of Civil and Environmental Engineering Georgia Institute of Technology Atlanta GA USA
| | - Rudolf Amann
- Department of Molecular Ecology Max‐Planck‐Institut für Marine Mikrobiologie Bremen D‐28359 Germany
| | - Josefa Antón
- Department of Physiology, Genetics and Microbiology University of Alicante Alicante Spain
| | | | - Ramon Rosselló‐Móra
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity Mediterranean Institute for Advanced Studies (IMEDEA, CSIC‐UIB) Esporles Spain
| |
Collapse
|
81
|
Hart RS, Jolly NP, Ndimba BK. Characterisation of hybrid yeasts for the production of varietal Sauvignon blanc wine – A review. J Microbiol Methods 2019; 165:105699. [DOI: 10.1016/j.mimet.2019.105699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
|
82
|
Osmotolerance as a determinant of microbial ecology: A study of phylogenetically diverse fungi. Fungal Biol 2019; 124:273-288. [PMID: 32389289 DOI: 10.1016/j.funbio.2019.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Osmotic stress induced by high solute concentration can prevent fungal metabolism and growth due to alterations in properties of the cytosol, changes in turgor, and the energy required to synthesize and retain compatible solutes. We used germination to quantify tolerance/sensitivity to the osmolyte KCl (0.1-4.5 M, in 0.1 M increments) for 71 strains (40 species) of ecologically diverse fungi. These include 11 saprotrophic species (17 strains, including two xerophilic species), five mycoparasitic species (five strains), six plant-pathogenic species (13 strains), and 19 entomopathogenic species (36 strains). A dendrogram obtained from cluster analyses, based on KCl inhibitory concentrations 50 % and 90 % calculated by Probit Analysis, revealed three groups of fungal isolates accordingly to their osmotolerance. The most-osmotolerant group (Group 3) contained the majority of saprotrophic fungi, and Aspergillus niger (F19) was the most tolerant. The highly xerophilic Aspergillus montevidense and Aspergillus pseudoglaucus were the second- and third-most tolerant species, respectively. All Aspergillus and Cladosporium species belonged to Group 3, followed by the entomopathogens Colletotrichum fioriniae, Simplicillium lanosoniveum, and Trichothecium roseum. Group 2 exhibited a moderate osmotolerance, and included plant-pathogens such as Colletotrichum and Fusarium, mycoparasites such as Clonostachys spp, some saprotrophs such as Mucor and Penicillium spp., and some entomopathogens such as Isaria, Lecanicillium, Mariannaea, Simplicillium, and Torrubiella. Group 1 contained the osmo-sensitive strains: the rest of the entomopathogens and the mycoparasitic Gliocladium and Trichoderma. Although stress tolerance did not correlate with their primary ecological niche, classification of these 71 fungal strains was more closely aligned with their ecology than with their phylogenetic relatedness. We discuss the implications for both microbial ecology and fungal taxonomy.
Collapse
|
83
|
Shuryak I, Tkavc R, Matrosova VY, Volpe RP, Grichenko O, Klimenkova P, Conze IH, Balygina IA, Gaidamakova EK, Daly MJ. Chronic gamma radiation resistance in fungi correlates with resistance to chromium and elevated temperatures, but not with resistance to acute irradiation. Sci Rep 2019; 9:11361. [PMID: 31388021 PMCID: PMC6684587 DOI: 10.1038/s41598-019-47007-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Exposure to chronic ionizing radiation (CIR) from nuclear power plant accidents, acts of terrorism, and space exploration poses serious threats to humans. Fungi are a group of highly radiation-resistant eukaryotes, and an understanding of fungal CIR resistance mechanisms holds the prospect of protecting humans. We compared the abilities of 95 wild-type yeast and dimorphic fungal isolates, representing diverse Ascomycota and Basidiomycota, to resist exposure to five environmentally-relevant stressors: CIR (long-duration growth under 36 Gy/h) and acute (10 kGy/h) ionizing radiation (IR), heavy metals (chromium, mercury), elevated temperature (up to 50 °C), and low pH (2.3). To quantify associations between resistances to CIR and these other stressors, we used correlation analysis, logistic regression with multi-model inference, and customized machine learning. The results suggest that resistance to acute IR in fungi is not strongly correlated with the ability of a given fungal isolate to grow under CIR. Instead, the strongest predictors of CIR resistance in fungi were resistance to chromium (III) and to elevated temperature. These results suggest fundamental differences between the mechanisms of resistance to chronic and acute radiation. Convergent evolution towards radioresistance among genetically distinct groups of organisms is considered here.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA.
| | - Rok Tkavc
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
| | - Vera Y Matrosova
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Robert P Volpe
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Olga Grichenko
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Polina Klimenkova
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Isabel H Conze
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
- Department of Biology, University of Bielefeld, Bielefeld, Germany
| | - Irina A Balygina
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
- Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Elena K Gaidamakova
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michael J Daly
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
| |
Collapse
|
84
|
Ramos‐Barbero MD, Martínez JM, Almansa C, Rodríguez N, Villamor J, Gomariz M, Escudero C, Rubin SDC, Antón J, Martínez‐García M, Amils R. Prokaryotic and viral community structure in the singular chaotropic salt lake Salar de Uyuni. Environ Microbiol 2019; 21:2029-2042. [DOI: 10.1111/1462-2920.14549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/19/2019] [Accepted: 01/29/2019] [Indexed: 02/01/2023]
Affiliation(s)
| | - José M. Martínez
- Department of Virology and Microbiology, Centro de Biología Molecular Severo OchoaUniversidad Autónoma de Madrid (CBMSO, CSIC‐UAM) Cantoblanco, 28049 Madrid Spain
| | - Cristina Almansa
- Department of Physiology, Genetics and MicrobiologyUniversidad de Alicante Alicante Spain
| | - Nuria Rodríguez
- Department of Planetology and HabitabilityCentro de Astrobiología (CAB, INTA‐CSIC) 28055 Torrejón de Ardoz Spain
| | - Judith Villamor
- Department of Physiology, Genetics and MicrobiologyUniversidad de Alicante Alicante Spain
| | - María Gomariz
- Department of Physiology, Genetics and MicrobiologyUniversidad de Alicante Alicante Spain
| | - Cristina Escudero
- Department of Virology and Microbiology, Centro de Biología Molecular Severo OchoaUniversidad Autónoma de Madrid (CBMSO, CSIC‐UAM) Cantoblanco, 28049 Madrid Spain
| | - Sergio dC Rubin
- Department of Virology and Microbiology, Centro de Biología Molecular Severo OchoaUniversidad Autónoma de Madrid (CBMSO, CSIC‐UAM) Cantoblanco, 28049 Madrid Spain
- Université catholique de LouvainEarth and Life Institute, Georges Lemaître Centre for Earth and Climate Research Belgium
| | - Josefa Antón
- Department of Physiology, Genetics and MicrobiologyUniversidad de Alicante Alicante Spain
| | - Manuel Martínez‐García
- Department of Physiology, Genetics and MicrobiologyUniversidad de Alicante Alicante Spain
| | - Ricardo Amils
- Department of Virology and Microbiology, Centro de Biología Molecular Severo OchoaUniversidad Autónoma de Madrid (CBMSO, CSIC‐UAM) Cantoblanco, 28049 Madrid Spain
- Department of Planetology and HabitabilityCentro de Astrobiología (CAB, INTA‐CSIC) 28055 Torrejón de Ardoz Spain
| |
Collapse
|
85
|
McLellan SL, Roguet A. The unexpected habitat in sewer pipes for the propagation of microbial communities and their imprint on urban waters. Curr Opin Biotechnol 2019; 57:34-41. [PMID: 30682717 DOI: 10.1016/j.copbio.2018.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/26/2018] [Accepted: 12/16/2018] [Indexed: 12/22/2022]
Abstract
Modern urban sewer pipe infrastructure is a unique niche where microbes can thrive. Arcobacter, Acinetobacter, Aeromonas, and Trichococcus are among the organisms that dominate the microbial community of sewage influent, but are not major members of human fecal microbiome, drinking water, or groundwater. Pipe resident communities in untreated sewage are distinct from sewer biofilm communities. Because of their high biomass, these organisms likely have a role in biotransformation of waste during conveyance and could represent an important inoculum for treatment plants. Studies demonstrate stormwater systems act as direct conduits for sewage to surface waters, releasing organisms propagated in sewer pipes. Frequent occurrence of these pipe residents, in particular Arcobacter, demonstrates the extent that urban infrastructure impacts rivers, lakes, and urban coasts worldwide.
Collapse
Affiliation(s)
- Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA.
| | - Adélaïde Roguet
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA
| |
Collapse
|
86
|
Lee CJD, McMullan PE, O'Kane CJ, Stevenson A, Santos IC, Roy C, Ghosh W, Mancinelli RL, Mormile MR, McMullan G, Banciu HL, Fares MA, Benison KC, Oren A, Dyall-Smith ML, Hallsworth JE. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol Rev 2018; 42:672-693. [PMID: 29893835 DOI: 10.1093/femsre/fuy026] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/08/2018] [Indexed: 11/12/2022] Open
Abstract
NaCl-saturated brines such as saltern crystalliser ponds, inland salt lakes, deep-sea brines and liquids-of-deliquescence on halite are commonly regarded as a paradigm for the limit of life on Earth. There are, however, other habitats that are thermodynamically more extreme. Typically, NaCl-saturated environments contain all domains of life and perform complete biogeochemical cycling. Despite their reduced water activity, ∼0.755 at 5 M NaCl, some halophiles belonging to the Archaea and Bacteria exhibit optimum growth/metabolism in these brines. Furthermore, the recognised water-activity limit for microbial function, ∼0.585 for some strains of fungi, lies far below 0.755. Other biophysical constraints on the microbial biosphere (temperatures of >121°C; pH > 12; and high chaotropicity; e.g. ethanol at >18.9% w/v (24% v/v) and MgCl2 at >3.03 M) can prevent any cellular metabolism or ecosystem function. By contrast, NaCl-saturated environments contain biomass-dense, metabolically diverse, highly active and complex microbial ecosystems; and this underscores their moderate character. Here, we survey the evidence that NaCl-saturated brines are biologically permissive, fertile habitats that are thermodynamically mid-range rather than extreme. Indeed, were NaCl sufficiently soluble, some halophiles might grow at concentrations of up to 8 M. It may be that the finite solubility of NaCl has stabilised the genetic composition of halophile populations and limited the action of natural selection in driving halophile evolution towards greater xerophilicity. Further implications are considered for the origin(s) of life and other aspects of astrobiology.
Collapse
Affiliation(s)
- Callum J D Lee
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Phillip E McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Callum J O'Kane
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Inês C Santos
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Chayan Roy
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Rocco L Mancinelli
- BAER Institute, Mail Stop 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Melanie R Mormile
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Geoffrey McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Horia L Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Mario A Fares
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de Valencia (CSIC-UV), Valencia, 46980, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV 26506-6300, USA
| | - Aharon Oren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem 9190401, Israel
| | - Mike L Dyall-Smith
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| |
Collapse
|
87
|
Improvement of thermotolerance in Lachancea thermotolerans using a bacterial selection pressure. J Ind Microbiol Biotechnol 2018; 46:133-145. [PMID: 30488364 PMCID: PMC6373274 DOI: 10.1007/s10295-018-2107-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
The use of thermotolerant yeast strains is an important attribute for a cost-effective high temperature biofermentation processes. However, the availability of thermotolerant yeast strains remains a major challenge. Isolation of temperature resistant strains from extreme environments or the improvements of current strains are two major strategies known to date. We hypothesised that bacteria are potential “hurdles” in the life cycle of yeasts, which could influence the evolution of extreme phenotypes, such as thermotolerance. We subjected a wild-type yeast, Lachancea thermotolerans to six species of bacteria sequentially for several generations. After coevolution, we observed that three replicate lines of yeasts grown in the presence of bacteria grew up to 37 °C whereas the controls run in parallel without bacteria could only grow poorly at 35 °C retaining the ancestral mesophilic trait. In addition to improvement of thermotolerance, our results show that the fermentative ability was also elevated, making the strains more ideal for the alcoholic fermentation process because the overall productivity and ethanol titers per unit volume of substrate consumed during the fermentation process was increased. Our unique method is attractive for the development of thermotolerant strains or to augment the available strain development approaches for high temperature industrial biofermentation.
Collapse
|
88
|
Gómez-Villegas P, Vigara J, León R. Characterization of the Microbial Population Inhabiting a Solar Saltern Pond of the Odiel Marshlands (SW Spain). Mar Drugs 2018; 16:md16090332. [PMID: 30213145 PMCID: PMC6164061 DOI: 10.3390/md16090332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
Abstract
The solar salterns located in the Odiel marshlands, in southwest Spain, are an excellent example of a hypersaline environment inhabited by microbial populations specialized in thriving under conditions of high salinity, which remains poorly explored. Traditional culture-dependent taxonomic studies have usually under-estimated the biodiversity in saline environments due to the difficulties that many of these species have to grow at laboratory conditions. Here we compare two molecular methods to profile the microbial population present in the Odiel saltern hypersaline water ponds (33% salinity). On the one hand, the construction and characterization of two clone PCR amplified-16S rRNA libraries, and on the other, a high throughput 16S rRNA sequencing approach based on the Illumina MiSeq platform. The results reveal that both methods are comparable for the estimation of major genera, although massive sequencing provides more information about the less abundant ones. The obtained data indicate that Salinibacter ruber is the most abundant genus, followed by the archaea genera, Halorubrum and Haloquadratum. However, more than 100 additional species can be detected by Next Generation Sequencing (NGS). In addition, a preliminary study to test the biotechnological applications of this microbial population, based on its ability to produce and excrete haloenzymes, is shown.
Collapse
Affiliation(s)
- Patricia Gómez-Villegas
- Laboratory of Biochemistry and Molecular Biology, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 21071 Huelva, Spain.
| | - Javier Vigara
- Laboratory of Biochemistry and Molecular Biology, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 21071 Huelva, Spain.
| | - Rosa León
- Laboratory of Biochemistry and Molecular Biology, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 21071 Huelva, Spain.
| |
Collapse
|
89
|
Cevallos S, Herrera P, Sánchez-Rodríguez A, Declerck S, Suárez JP. Untangling factors that drive community composition of root associated fungal endophytes of Neotropical epiphytic orchids. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
90
|
Abstract
Stress is an inextricable aspect of life, and stress biology has been a field of intensive study over the last 200-300 years. In human psychology, we consider a stress-free condition to be one of relaxation or happiness, yet with respect to microbial cells we do not have a concept that describes being non-stressed. Stresses within, and stress tolerance of, microbial systems lie at the crux of critical global challenges, such as optimising soil- and plant-health and crop yields; reducing food spoilage; bioremediation of polluted environments; effective biological control and biofuel production; gaining insight into aging processes in humans; and understanding astrobiology. There is no consensus on how to measure cellular stress, or even how we define it. 'Stress' implies that physical forces act on the microbial system in such a way that impairs its ability to function. Ironically, however, a cell that exhibits optimal growth also has reduced energy generation, is less resilient to change, and can have poor competitive ability. Furthermore, rapid growth is associated with a high level of oxidative damage and compromised vitality of the system. Stresses induced by temperature, pH, water activity, chaotropicity, reactive oxygen species, dehydration-rehydration cycles, ionizing radiation, and changes in turgor or other mechanical forces are well-known. Our knowledge of cellular stress responses, such as signal-transduction pathways, compatible-solute metabolism, protein-stabilization proteins, and plasma-membrane adaptations, is also considerable. However, we have limited understanding of the complex and dynamic stresses that typically occur in microbial habitats or industrial systems, and how these impact the biophysics, cellular biology and evolutionary trajectories of microbes. There is also a paucity of information on why the cellular system ultimately fails under extremes of stress, and it is even debatable whether any microbe can ever be completely stress-free. However, cells that exhibit optimal rates of biotic activity are likely to exhibit low ecological fitness compared with those that are moderately stressed; in other words, stress can enhance microbial vitality, vigour and resilience. 'Stress' is sometimes applied mistakenly to describe the effects of toxic substances that have target site-specific modes-of-action (e.g. antibiotics) rather than and do not inhibit the cell via any type of stress-mediated mechanism. Whereas terms such as 'rapid-growth stress', 'nutrient stress' and 'biotic stress' span a range of logical categories, their modes-of-action do usually involve a biophysical component. Stress can impact all levels of biology (from biomacromolecules to ecosystems), is a potent driver for evolutionary processes and - it could be argued - is an inherent property of life itself. The published articles that follow include a number of unprecedented findings and were compiled for this special issue Biology of Fungal Systems under Stress. Collectively, they are testament to the breadth and importance of the stress-biology field.
Collapse
Affiliation(s)
- John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
91
|
Paulino de Souza J, Dias do Prado C, Eleutherio EC, Bonatto D, Malavazi I, Ferreira da Cunha A. Improvement of Brazilian bioethanol production – Challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process. Fungal Biol 2018; 122:583-591. [DOI: 10.1016/j.funbio.2017.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022]
|
92
|
Gougoulias C, Meade A, Shaw LJ. Apportioning bacterial carbon source utilization in soil using 14 C isotope analysis of FISH-targeted bacterial populations sorted by fluorescence activated cell sorting (FACS): 14 C-FISH-FACS. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:245-254. [PMID: 29457691 DOI: 10.1111/1758-2229.12631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/13/2018] [Indexed: 05/25/2023]
Abstract
An unresolved need in microbial ecology is methodology to enable quantitative analysis of in situ microbial substrate carbon use at the population level. Here, we evaluated if a novel combination of radiocarbon-labelled substrate tracing, fluorescence in situ hybridisation (FISH) and fluorescence-activated cell sorting (FACS) to sort the FISH-targeted population for quantification of incorporated radioactivity (14 C-FISH-FACS) can address this need. Our test scenario used FISH probe PSE1284 targeting Pseudomonas spp. (and some Burkholderia spp.) and salicylic acid added to rhizosphere soil. We examined salicylic acid-14 C fate (mineralized, cell-incorporated, extractable and non-extractable) and mass balance (0-24 h) and show that the PSE1284 population captured ∼ 50% of the Nycodenz extracted biomass 14 C. Analysis of the taxonomic distribution of the salicylic acid biodegradation trait suggested that PSE1284 population success was not due to conservation of this trait but due to competitiveness for the added carbon. Adding 50KBq of 14 C sample-1 enabled detection of 14 C in the sorted population at ∼ 60-600 times background; a sensitivity which demonstrates potential extension to analysis of rarer/less active populations. Given its sensitivity and compatibility with obtaining a C mass balance, 14 C-FISH-FACS allows quantitative dissection of C flow within the microbial biomass that has hitherto not been achieved.
Collapse
Affiliation(s)
- Christos Gougoulias
- Soil Research Centre, Department of Geography and Environmental Science, School of Archaeology, Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6DW, UK
| | - Andrew Meade
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6BX, UK
| | - Liz J Shaw
- Soil Research Centre, Department of Geography and Environmental Science, School of Archaeology, Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6DW, UK
| |
Collapse
|
93
|
Genome dynamics and evolution in yeasts: A long-term yeast-bacteria competition experiment. PLoS One 2018; 13:e0194911. [PMID: 29624585 PMCID: PMC5889060 DOI: 10.1371/journal.pone.0194911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/13/2018] [Indexed: 11/29/2022] Open
Abstract
There is an enormous genetic diversity evident in modern yeasts, but our understanding of the ecological basis of such diversifications in nature remains at best fragmented so far. Here we report a long-term experiment mimicking a primordial competitive environment, in which yeast and bacteria co-exist and compete against each other. Eighteen yeasts covering a wide phylogenetic background spanning approximately 250 million years of evolutionary history were used to establish independent evolution lines for at most 130 passages. Our collection of hundreds of modified strains generated through such a rare two-species cross-kingdom competition experiment re-created the appearance of large-scale genomic rearrangements and altered phenotypes important in the diversification history of yeasts. At the same time, the methodology employed in this evolutionary study would also be a non-gene-technological method of reprogramming yeast genomes and then selecting yeast strains with desired traits. Cross-kingdom competition may therefore be a method of significant value to generate industrially useful yeast strains with new metabolic traits.
Collapse
|
94
|
An Increase of Abundance and Transcriptional Activity for Acinetobacter junii Post Wastewater Treatment. WATER 2018. [DOI: 10.3390/w10040436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
95
|
Caballero Ortiz S, Trienens M, Pfohl K, Karlovsky P, Holighaus G, Rohlfs M. Phenotypic responses to microbial volatiles render a mold fungus more susceptible to insect damage. Ecol Evol 2018; 8:4328-4339. [PMID: 29721301 PMCID: PMC5916272 DOI: 10.1002/ece3.3978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 01/07/2023] Open
Abstract
In decomposer systems, fungi show diverse phenotypic responses to volatile organic compounds of microbial origin (volatiles). The mechanisms underlying such responses and their consequences for the performance and ecological success of fungi in a multitrophic community context have rarely been tested explicitly. We used a laboratory‐based approach in which we investigated a tripartite yeast–mold–insect model decomposer system to understand the possible influence of yeast‐borne volatiles on the ability of a chemically defended mold fungus to resist insect damage. The volatile‐exposed mold phenotype (1) did not exhibit protein kinase A‐dependent morphological differentiation, (2) was more susceptible to insect foraging activity, and (3) had reduced insecticidal properties. Additionally, the volatile‐exposed phenotype was strongly impaired in secondary metabolite formation and unable to activate “chemical defense” genes upon insect damage. These results suggest that volatiles can be ecologically important factors that affect the chemical‐based combative abilities of fungi against insect antagonists and, consequently, the structure and dynamics of decomposer communities.
Collapse
Affiliation(s)
- Silvia Caballero Ortiz
- J.F. Blumenbach Institute of Zoology and Anthropology Animal Ecology Group University of Goettingen Goettingen Germany
| | - Monika Trienens
- J.F. Blumenbach Institute of Zoology and Anthropology Animal Ecology Group University of Goettingen Goettingen Germany.,Present address: Institute for Evolution and Biodiversity University of Muenster Muenster Germany
| | - Katharina Pfohl
- Molecular Phytopathology and Mycotoxin Research University of Goettingen Goettingen Germany
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research University of Goettingen Goettingen Germany
| | - Gerrit Holighaus
- J.F. Blumenbach Institute of Zoology and Anthropology Animal Ecology Group University of Goettingen Goettingen Germany.,Forest Zoology and Forest Conservation University of Goettingen Goettingen Germany
| | - Marko Rohlfs
- J.F. Blumenbach Institute of Zoology and Anthropology Animal Ecology Group University of Goettingen Goettingen Germany.,Institute of Ecology, Population and Evolutionary Ecology Group University of Bremen Bremen Germany
| |
Collapse
|
96
|
Kulikova-Borovikova D, Lisi S, Dauss E, Alamae T, Buzzini P, Hallsworth JE, Rapoport A. Activity of the α-glucoside transporter Agt1 in Saccharomyces cerevisiae cells during dehydration-rehydration events. Fungal Biol 2018; 122:613-620. [PMID: 29801806 DOI: 10.1016/j.funbio.2018.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 11/26/2022]
Abstract
Microbial cells can enter a state of anhydrobiosis under desiccating conditions. One of the main determinants of viability during dehydration-rehydration cycles is structural integrity of the plasma membrane. Whereas much is known about phase transitions of the lipid bilayer, there is a paucity of information on changes in activity of plasma membrane proteins during dehydration-rehydration events. We selected the α-glucoside transporter Agt1 to gain insights into stress mechanisms/responses and ecophysiology during anhydrobiosis. As intracellular water content of S. cerevisiae strain 14 (a strain with moderate tolerance to dehydration-rehydration) was reduced to 1.5 g water/g dry weight, the activity of the Agt1 transporter decreased by 10-15 %. This indicates that functionality of this trans-membrane and relatively hydrophobic protein depends on water. Notably, however, levels of cell viability were retained. Prior incubation in the stress protectant xylitol increased stability of the plasma membrane but not Agt1. Studies were carried out using a comparator yeast which was highly resistant to dehydration-rehydration (S. cerevisiae strain 77). By contrast to S. cerevisiae strain 14, there was no significant reduction of Agt1 activity in S. cerevisiae strain 77 cells. These findings have implications for the ecophysiology of S. cerevisiae strains in natural and industrial systems.
Collapse
Affiliation(s)
- Diana Kulikova-Borovikova
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - Silvia Lisi
- Department of Agricultural, Food and Environmental Science & Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, I-06121, Perugia, Italy
| | - Edgars Dauss
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - Tiina Alamae
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Science & Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, I-06121, Perugia, Italy
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia.
| |
Collapse
|
97
|
Jacquiod S, Cyriaque V, Riber L, Al-Soud WA, Gillan DC, Wattiez R, Sørensen SJ. Long-term industrial metal contamination unexpectedly shaped diversity and activity response of sediment microbiome. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:299-307. [PMID: 29055834 DOI: 10.1016/j.jhazmat.2017.09.046] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/11/2017] [Accepted: 09/25/2017] [Indexed: 05/19/2023]
Abstract
Metal contamination poses serious biotoxicity and bioaccumulation issues, affecting both abiotic conditions and biological activity in ecosystem trophic levels, especially sediments. The MetalEurop foundry released metals directly into the French river "la Deûle" during a century, contaminating sediments with a 30-fold increase compared to upstream unpolluted areas (Férin, Sensée canal). Previous metaproteogenomic work revealed phylogenetically analogous, but functionally different microbial communities between the two locations. However, their potential activity status in situ remains unknown. The present study respectively compares the structures of both total and active fractions of sediment prokaryotic microbiomes by coupling DNA and RNA-based sequencing approaches at the polluted MetalEurop site and its upstream control. We applied the innovative ecological concept of Functional Response Groups (FRGs) to decipher the adaptive tolerance range of the communities through characterization of microbial lifestyles and strategists. The complementing use of DNA and RNA sequencing revealed indications that metals selected for mechanisms such as microbial facilitation via "public-good" providing bacteria, Horizontal Gene Transfer (HGT) and community coalescence, overall resulting in an unexpected higher microbial diversity at the polluted site.
Collapse
Affiliation(s)
- Samuel Jacquiod
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark.
| | - Valentine Cyriaque
- Proteomics and Microbiology Lab, Research Institute for Biosciences, UMONS, avenue du Champs de Mars 6, 7000 Mons, Belgium.
| | - Leise Riber
- Section of Functional Genomics, Department of Biology, University of Copenhagen, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark.
| | - Waleed Abu Al-Soud
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark.
| | - David C Gillan
- Proteomics and Microbiology Lab, Research Institute for Biosciences, UMONS, avenue du Champs de Mars 6, 7000 Mons, Belgium.
| | - Ruddy Wattiez
- Proteomics and Microbiology Lab, Research Institute for Biosciences, UMONS, avenue du Champs de Mars 6, 7000 Mons, Belgium.
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark.
| |
Collapse
|
98
|
Ghaderiardakani F, Coates JC, Wichard T. Bacteria-induced morphogenesis of Ulva intestinalis and Ulva mutabilis (Chlorophyta): a contribution to the lottery theory. FEMS Microbiol Ecol 2017; 93:3966711. [PMID: 28810708 PMCID: PMC5812546 DOI: 10.1093/femsec/fix094] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/12/2017] [Indexed: 01/20/2023] Open
Abstract
The green marine macroalgae of the class Ulvophyceae (Ulvophytes) are common algae distributed worldwide particularly in intertidal areas, which play a key role in aquatic ecosystems. They are potentially valuable resources for food, animal feed and fuel but can also cause massive nuisance blooms. Members of Ulvaceae, like many other seaweeds, harbour a rich diversity of epiphytic bacteria with functions related to host growth and morphological development. In the absence of appropriate bacterially derived signals, germ cells of the genus Ulva develop into ‘atypical’ colonies consisting of undifferentiated cells with abnormal cell walls. This paper examines the specificity of bacteria-induced morphogenesis in Ulva, by cross-testing bacteria isolated from several Ulva species on two Ulva species, the emerging model system Ulva mutabilis and the prominent biofouler species Ulva intestinalis. We show that pairs of bacterial strains isolated from species other than U. mutabilis and U. intestinalis can fully rescue axenic plantlets generated either from U. mutabilis or U. intestinalis gametes. This laboratory-based study demonstrates that different compositions of microbial communities with similar functional characteristics can enable complete algal morphogenesis and thus supports the ‘competitive lottery’ theory for how symbiotic bacteria drive algal development.
Collapse
Affiliation(s)
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| |
Collapse
|
99
|
Insights into Hydrocarbon Assimilation by Eurotialean and Hypocrealean Fungi: Roles for CYP52 and CYP53 Clans of Cytochrome P450 Genes. Appl Biochem Biotechnol 2017; 184:1047-1060. [DOI: 10.1007/s12010-017-2608-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/13/2017] [Indexed: 01/20/2023]
|
100
|
dC Rubin SS, Marín I, Gómez MJ, Morales EA, Zekker I, San Martín-Uriz P, Rodríguez N, Amils R. Prokaryotic diversity and community composition in the Salar de Uyuni, a large scale, chaotropic salt flat. Environ Microbiol 2017; 19:3745-3754. [DOI: 10.1111/1462-2920.13876] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/16/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Sergio S. dC Rubin
- Centro Nacional de Investigaciones Biotecnológicas; CNIB; Bolivia
- Departamento de Biología Molecular; Universidad Autónoma de Madrid, Cantoblanco; Madrid 28049 Spain
| | - Irma Marín
- Departamento de Biología Molecular; Universidad Autónoma de Madrid, Cantoblanco; Madrid 28049 Spain
| | - Manuel J. Gómez
- Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3; Madrid 28029 Spain
| | - Eduardo A. Morales
- Centro Nacional de Investigaciones Biotecnológicas; CNIB; Bolivia
- Herbario Criptogámico; Universidad Católica Boliviana; Cochabamba Bolivia
| | - Ivar Zekker
- Institute of Chemistry; University of Tartu; Tartu Estonia
| | | | - Nuria Rodríguez
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz; Madrid 28055 Spain
| | - Ricardo Amils
- Centro Nacional de Investigaciones Biotecnológicas; CNIB; Bolivia
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz; Madrid 28055 Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM); Universidad Autónoma de Madrid; Madrid 28049 Spain
| |
Collapse
|