51
|
Waghmode S, Suryavanshi M, Sharma D, Satpute SK. Planococcus Species - An Imminent Resource to Explore Biosurfactant and Bioactive Metabolites for Industrial Applications. Front Bioeng Biotechnol 2020; 8:996. [PMID: 32974318 PMCID: PMC7461981 DOI: 10.3389/fbioe.2020.00996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/30/2020] [Indexed: 11/13/2022] Open
Abstract
The marine environment represents a well-off and diverse group of microbes, which offers an enormous natural bioactive compounds of commercial importance. These natural products have expanded rigorous awareness due to their widespread stability and functionality under harsh environmental conditions. The genus Planococcus is a halophilic bacterium known for the production of diverse secondary metabolites such as 2-acetamido-2-deoxy-α-d-glucopyranosyl-(1, 2)-β-d-fructofuranose exhibiting stabilizing effect and methyl glucosyl-3,4-dehydro-apo-8-lycopenoate displaying antioxidant activity. The genus Planococcus is reported generally for hydrocarbon degradation in comparison with biosurfactant/bioemulsifier secretion. Although Planococcus was proposed in 1894, it seized long stretch (till 1970) to get accommodated under the genus Planococcus authentically. Large-scale biosurfactant production from Planococcus was reported in 2014 with partial characterization. For the first time in 2019, we documented genomic and functional analysis of Planococcus sp. along with the physico-chemical properties of its biosurfactant. In 2020, again we screened biosurfactant for pharmacological applications. The present review discusses the comprehensive genomic insights and physical properties of Planococcus-derived biosurfactant. Moreover, we also highlight the prospects and challenges in biosurfactant production from Planococcus sp. Among ∼102 reports on biosurfactant produced by marine bacteria, 43 were of glycolipid and 59 were non-glycolipid type. Under other biosurfactant type, they were identified as lipopeptide (20) like surfactin (5), glycolipoprotein/lipoprotein (12), and other non-glycolipid (22). Planococcus sp. generally produces glycolipid-type biosurfactant (4) and exopolysaccharides (2). The single report documented in the literature is on biosurfactant production (glycolipid +non glycolipid) by diverse marine microbes (39) suggesting their novelty and diversity for biosurfactant secretion.
Collapse
Affiliation(s)
| | - Mangesh Suryavanshi
- Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, India
| | - Deepansh Sharma
- Amity Institute of Microbial Technology, Amity University, Rajasthan, India
| | - Surekha K Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
52
|
Antunes JT, Sousa AGG, Azevedo J, Rego A, Leão PN, Vasconcelos V. Distinct Temporal Succession of Bacterial Communities in Early Marine Biofilms in a Portuguese Atlantic Port. Front Microbiol 2020; 11:1938. [PMID: 32849482 PMCID: PMC7432428 DOI: 10.3389/fmicb.2020.01938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Marine biofilms are known to influence the corrosion of metal surfaces in the marine environment. Despite some recent research, the succession of bacterial communities colonizing artificial surfaces remains uncharacterized in some temporal settings. More specifically, it is not fully known if bacterial colonizers of artificial surfaces are similar or distinct in the different seasons of the year. In particular the study of early biofilms, in which the bacterial cells communities first adhere to artificial surfaces, are crucial for the development of the subsequent biofilm communities. In this work, we used amplicon-based NGS (next-generation sequencing) and universal 16S rRNA bacterial primers to characterize the early biofilm bacterial communities growing on 316 L stainless steel surfaces in a Northern Portugal port. Sampling spanned 30-day periods in two distinct seasons (spring and winter). Biofilm communities growing in steel surfaces covered with an anti-corrosion paint and planktonic communities from the same location were also characterized. Our results demonstrated that distinct temporal patterns were observed in the sampled seasons. Specifically, a significantly higher abundance of Gammaproteobacteria and Mollicutes was found on the first days of biofilm growth in spring (day 1 to day 4) and a higher abundance of Alphaproteobacteria during the same days of biofilm growth in winter. In the last sampled day (day 30), the spring biofilms significantly shifted toward a dominance of photoautotrophic groups (mostly diatoms) and were also colonized by some macrofouling communities, something not observed during the winter sampling. Our results revealed that bacterial composition in the biofilms was particularly affected by the sampled day of the specific season, more so than the overall effect of the season or overall sampling day of both seasons. Additionally, the application of a non-fouling-release anti-corrosion paint in the steel plates resulted in a significantly lower diversity compared with plates without paint, but this was only observed during spring. We suggest that temporal succession of marine biofilm communities should be taken in consideration for future antifouling/anti-biofilm applications.
Collapse
Affiliation(s)
- Jorge T. Antunes
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - António G. G. Sousa
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Joana Azevedo
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Adriana Rego
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Pedro N. Leão
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Vitor Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
53
|
Azevedo J, Antunes JT, Machado AM, Vasconcelos V, Leão PN, Froufe E. Monitoring of biofouling communities in a Portuguese port using a combined morphological and metabarcoding approach. Sci Rep 2020; 10:13461. [PMID: 32778680 PMCID: PMC7417558 DOI: 10.1038/s41598-020-70307-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/15/2020] [Indexed: 01/01/2023] Open
Abstract
Marine biofouling remains an unsolved problem with a serious economic impact on several marine associated industries and constitutes a major vector for the spread of non-indigenous species (NIS). The implementation of biofouling monitoring programs allows for better fouling management and also for the early identification of NIS. However, few monitoring studies have used recent methods, such as metabarcoding, that can significantly enhance the detection of those species. Here, we employed monthly monitoring of biofouling growth on stainless steel plates in the Atlantic Port of Leixões (Northern Portugal), over one year to test the effect of commercial anti-corrosion paint in the communities. Fouling organisms were identified by combining morpho-taxonomy identification with community DNA metabarcoding using multiple markers (16S rRNA, 18S rRNA, 23S rRNA, and COI genes). The dominant colonizers found at this location were hard foulers, namely barnacles and mussels, while other groups of organisms such as cnidarians, bryozoans, and ascidians were also abundant. Regarding the temporal dynamics of the fouling communities, there was a progressive increase in the colonization of cyanobacteria, green algae, and red algae during the sampled period with the replacement of less abundant groups. The tested anticorrosion paint demonstrated to have a significant prevention effect against the biofouling community resulting in a biomass reduction. Our study also reports, for the first time, 29 NIS in this port, substantiating the need for the implementation of recurring biofouling monitoring programs in ports and harbours.
Collapse
Affiliation(s)
- Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jorge T Antunes
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - André M Machado
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.
| | - Elsa Froufe
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.
| |
Collapse
|
54
|
Almeida JR, Palmeira A, Campos A, Cunha I, Freitas M, Felpeto AB, Turkina MV, Vasconcelos V, Pinto M, Correia-da-Silva M, Sousa E. Structure-Antifouling Activity Relationship and Molecular Targets of Bio-Inspired(thio)xanthones. Biomolecules 2020; 10:E1126. [PMID: 32751491 PMCID: PMC7463931 DOI: 10.3390/biom10081126] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
The development of alternative ecological and effective antifouling technologies is still challenging. Synthesis of nature-inspired compounds has been exploited, given the potential to assure commercial supplies of potential ecofriendly antifouling agents. In this direction, the antifouling activity of a series of nineteen synthetic small molecules, with chemical similarities with natural products, were exploited in this work. Six (4, 5, 7, 10, 15 and 17) of the tested xanthones showed in vivo activity toward the settlement of Mytilus galloprovincialis larvae (EC50: 3.53-28.60 µM) and low toxicity to this macrofouling species (LC50 > 500 µM and LC50/EC50: 17.42-141.64), and two of them (7 and 10) showed no general marine ecotoxicity (<10% of Artemia salina mortality) after 48 h of exposure. Regarding the mechanism of action in mussel larvae, the best performance compounds 4 and 5 might be acting by the inhibition of acetylcholinesterase activity (in vitro and in silico studies), while 7 and 10 showed specific targets (proteomic studies) directly related with the mussel adhesive structure (byssal threads), given by the alterations in the expression of Mytilus collagen proteins (PreCols) and proximal thread proteins (TMPs). A quantitative structure-activity relationship (QSAR) model was built with predictive capacity to enable speeding the design of new potential active compounds.
Collapse
Affiliation(s)
- Joana R. Almeida
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
| | - Andreia Palmeira
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alexandre Campos
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
| | - Isabel Cunha
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
| | - Micaela Freitas
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal
- ISPSO—Institut des Sciences Pharmaceutiques de Suisse Occidentale, University of Geneva, 1205 Geneva, Switzerland
| | - Aldo Barreiro Felpeto
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
| | - Maria V. Turkina
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden;
| | - Vitor Vasconcelos
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal
| | - Madalena Pinto
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Marta Correia-da-Silva
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.R.A.); (A.P.); (A.C.); (I.C.); (M.F.); (A.B.F.); (V.V.); (M.P.); (E.S.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
55
|
Preparation and synergistic antifouling effect of self-renewable coatings containing quaternary ammonium-functionalized SiO2 nanoparticles. J Colloid Interface Sci 2020; 563:261-271. [DOI: 10.1016/j.jcis.2019.12.086] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
|
56
|
Microbial Colonization in Marine Environments: Overview of Current Knowledge and Emerging Research Topics. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8020078] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial biofilms are biological structures composed of surface-attached microbial communities embedded in an extracellular polymeric matrix. In aquatic environments, the microbial colonization of submerged surfaces is a complex process involving several factors, related to both environmental conditions and to the physical-chemical nature of the substrates. Several studies have addressed this issue; however, more research is still needed on microbial biofilms in marine ecosystems. After a brief report on environmental drivers of biofilm formation, this study reviews current knowledge of microbial community attached to artificial substrates, as obtained by experiments performed on several material types deployed in temperate and extreme polar marine ecosystems. Depending on the substrate, different microbial communities were found, sometimes highlighting the occurrence of species-specificity. Future research challenges and concluding remarks are also considered. Emphasis is given to future perspectives in biofilm studies and their potential applications, related to biofouling prevention (such as cell-to-cell communication by quorum sensing or improved knowledge of drivers/signals affecting biological settlement) as well as to the potential use of microbial biofilms as sentinels of environmental changes and new candidates for bioremediation purposes.
Collapse
|
57
|
Dobretsov S, Rittschof D. Love at First Taste: Induction of Larval Settlement by Marine Microbes. Int J Mol Sci 2020; 21:ijms21030731. [PMID: 31979128 PMCID: PMC7036896 DOI: 10.3390/ijms21030731] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Marine biofilms are composed of many species of bacteria, unicellular algae, and protozoa. Biofilms can induce, inhibit, or have no effect on settlement of larvae and spores of algae. In this review, we focus on induction of larval settlement by marine bacteria and unicellular eukaryotes and review publications from 2010 to September 2019. This review provides insights from meta-analysis on what is known about the effect of marine biofilms on larval settlement. Of great interest is the impact of different components of marine biofilms, such as bacteria and diatoms, extracellular polymeric substances, quorum sensing signals, unique inductive compounds, exoenzymes, and structural protein degradation products on larval settlement and metamorphosis. Molecular aspects of larval settlement and impact of climate change are reviewed and, finally, potential areas of future investigations are provided.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Centre of Excellence in Marine Biotechnology, Sultan Qaboos University, Al Khoud 123 P.O. Box 50, Muscat 123, Oman
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 P.O. Box 34, Muscat 123, Oman
- Correspondence:
| | - Daniel Rittschof
- Marine Science and Conservation, Marine Laboratory, Nicholas School, Duke University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA;
| |
Collapse
|
58
|
Neves AR, Almeida JR, Carvalhal F, Câmara A, Pereira S, Antunes J, Vasconcelos V, Pinto M, Silva ER, Sousa E, Correia-da-Silva M. Overcoming environmental problems of biocides: Synthetic bile acid derivatives as a sustainable alternative. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109812. [PMID: 31669574 DOI: 10.1016/j.ecoenv.2019.109812] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Marine biofouling represents a global economic and ecological challenge. Some marine organisms produce bioactive metabolites, such as steroids, that inhibit the settlement and growth of fouling organisms. The aim of this work was to explore bile acids as a new scaffold with antifouling (AF) activity by using chemical synthesis to produce a series of bile acid derivatives with optimized AF performance and understand their structure-activity relationships. Seven bile acid derivatives were successfully synthesized in moderate to high yields, and their structures were elucidated through spectroscopic methods. Their AF activities were tested against both macro- and microfouling communities. The most potent bile acid against the settlement of Mytilus galloprovincialis larvae was the methyl ester derivative of cholic acid (10), which showed an EC50 of 3.7 μM and an LC50/EC50 > 50 (LC50 > 200 μM) in AF effectiveness vs toxicity studies. Two derivatives of deoxycholic acid (5 and 7) potently inhibited the growth of biofilm-forming marine bacteria with EC50 values < 10 μM, and five bile acids (1, 5, and 7-9) potently inhibited the growth of diatoms, showing EC50 values between 3 and 10 μM. Promising AF profiles were achieved with some of the synthesized bile acids by combining antimacrofouling and antimicrofouling activities. Initial studies on the incorporation of one of these promising bile acid derivatives in polymeric coatings, such as a marine paint, demonstrated the ability of these compounds to generate coatings with antimacrofouling activity.
Collapse
Affiliation(s)
- Ana R Neves
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Joana R Almeida
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Francisca Carvalhal
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Amadeu Câmara
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Sandra Pereira
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Jorge Antunes
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007, Porto, Portugal
| | - Madalena Pinto
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Elisabete R Silva
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande C8 bdg, Lisboa, 1749-016 Portugal; CERENA - Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| | - Emília Sousa
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Marta Correia-da-Silva
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General, Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
59
|
Abstract
Seventy-one marine organisms representing different classes of marine fauna and flora were collected from the Red Sea. They include sponges, hydrozoan, soft corals, sea cucumber, ascidian, cyanobacteria, and macroalgae. The methanolic extracts were evaluated for their toxicity and settlement inhibition effects by using cultured Balanus amphitrite. Thirty-three extracts displayed antifouling effects: four samples were highly potent at 1 μg/mL with a percentage of settlement inhibition above 31%, twenty-two were potent at 10 μg/mL with a percentage of settlement inhibition between 16 and 30%, and seven were active at 10 μg/mL with a percentage of settlement inhibition between 0 and 15%. Two promising extracts were purified by employing several chromatographic techniques, leading to the isolation of 12 known compounds. The isolated compounds were evaluated for their antifouling activities and demonstrated potent antifouling effects with EC50 values of less than 10 μg/mL.
Collapse
|
60
|
Antunes J, Pereira S, Ribeiro T, Plowman JE, Thomas A, Clerens S, Campos A, Vasconcelos V, Almeida JR. A Multi-Bioassay Integrated Approach to Assess the Antifouling Potential of the Cyanobacterial Metabolites Portoamides. Mar Drugs 2019; 17:E111. [PMID: 30759807 PMCID: PMC6410096 DOI: 10.3390/md17020111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
The cyclic peptides portoamides produced by the cyanobacterium Phormidium sp. LEGE 05292 were previously isolated and their ability to condition microcommunities by allelopathic effect was described. These interesting bioactive properties are, however, still underexplored as their biotechnological applications may be vast. This study aims to investigate the antifouling potential of portoamides, given that a challenge in the search for new environmentally friendly antifouling products is to find non-toxic natural alternatives with the ability to prevent colonization of different biofouling species, from bacteria to macroinvertebrates. A multi-bioassay approach was applied to assess portoamides antifouling properties, marine ecotoxicity and molecular mode of action. Results showed high effectiveness in the prevention of mussel larvae settlement (EC50 = 3.16 µM), and also bioactivity towards growth and biofilm disruption of marine biofouling bacterial strains, while not showing toxicity towards both target and non-target species. Antifouling molecular targets in mussel larvae include energy metabolism modifications (failure in proton-transporting ATPases activity), structural alterations of the gills and protein and gene regulatory mechanisms. Overall, portoamides reveal a broad-spectrum bioactivity towards diverse biofouling species, including a non-toxic and reversible effect towards mussel larvae, showing potential to be incorporated as an active ingredient in antifouling coatings.
Collapse
Affiliation(s)
- Jorge Antunes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal.
| | - Sandra Pereira
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Tiago Ribeiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | | | - Ancy Thomas
- AgResearch Ltd., 1365 Springs Rd, Lincoln 7674, New Zealand.
| | - Stefan Clerens
- AgResearch Ltd., 1365 Springs Rd, Lincoln 7674, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch P 8140, New Zealand.
- Riddet Institute, Massey University, Palmerston North P 4442, New Zealand.
| | - Alexandre Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Vitor Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal.
| | - Joana R Almeida
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|