51
|
Evangelakou Z, Manola M, Gumeni S, Trougakos IP. Nutrigenomics as a tool to study the impact of diet on aging and age-related diseases: the Drosophila approach. GENES & NUTRITION 2019; 14:12. [PMID: 31073342 PMCID: PMC6498619 DOI: 10.1186/s12263-019-0638-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Aging is a complex phenomenon caused by the time-dependent loss of cellular homeodynamics and consequently of physiological organismal functions. This process is affected by both genetic and environmental (e.g., diet) factors, as well as by their constant interaction. Consistently, deregulation of nutrient sensing and signaling pathways is considered a hallmark of aging. Nutrigenomics is an emerging scientific discipline that studies changes induced by diet on the genome and thus it considers the intersection of three topics, namely health, diet, and genomics. Model organisms, such as the fruit fly Drosophila melanogaster, have been successfully used for in vivo modeling of higher metazoans aging and for nutrigenomic studies. Drosophila is a well-studied organism with sophisticated genetics and a fully annotated sequenced genome, in which ~ 75% of human disease-related genes have functional orthologs. Also, flies have organs/tissues that perform the equivalent functions of most mammalian organs, while discrete clusters of cells maintain insect carbohydrate homeostasis in a way similar to pancreatic cells. Herein, we discuss the mechanistic connections between nutrition and aging in Drosophila, and how this model organism can be used to study the effect of different diets (including natural products and/or their derivatives) on higher metazoans longevity.
Collapse
Affiliation(s)
- Zoi Evangelakou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Maria Manola
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
52
|
Tsakiri EN, Gumeni S, Iliaki KK, Benaki D, Vougas K, Sykiotis GP, Gorgoulis VG, Mikros E, Scorrano L, Trougakos IP. Hyperactivation of Nrf2 increases stress tolerance at the cost of aging acceleration due to metabolic deregulation. Aging Cell 2019; 18:e12845. [PMID: 30537423 PMCID: PMC6351879 DOI: 10.1111/acel.12845] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/20/2018] [Accepted: 08/26/2018] [Indexed: 12/22/2022] Open
Abstract
Metazoans viability depends on their ability to regulate metabolic processes and also to respond to harmful challenges by mounting anti‐stress responses; these adaptations were fundamental forces during evolution. Central to anti‐stress responses are a number of short‐lived transcription factors that by functioning as stress sensors mobilize genomic responses aiming to eliminate stressors. We show here that increased expression of nuclear factor erythroid 2‐related factor (Nrf2) in Drosophila activated cytoprotective modules and enhanced stress tolerance. However, while mild Nrf2 activation extended lifespan, high Nrf2 expression levels resulted in developmental lethality or, after inducible activation in adult flies, in altered mitochondrial bioenergetics, the appearance of Diabetes Type 1 hallmarks and aging acceleration. Genetic or dietary suppression of Insulin/IGF‐like signaling (IIS) titrated Nrf2 activity to lower levels, largely normalized metabolic pathways signaling, and extended flies’ lifespan. Thus, prolonged stress signaling by otherwise cytoprotective short‐lived stress sensors perturbs IIS resulting in re‐allocation of resources from growth and longevity to somatic preservation and stress tolerance. These findings provide a reasonable explanation of why most (if not all) cytoprotective stress sensors are short‐lived proteins, and it also explains the build‐in negative feedback loops (shown here for Nrf2); the low basal levels of these proteins, and why their suppressors were favored by evolution.
Collapse
Affiliation(s)
- Eleni N. Tsakiri
- Department of Cell Biology and Biophysics Faculty of Biology National & Kapodistrian University of Athens Athens Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics Faculty of Biology National & Kapodistrian University of Athens Athens Greece
| | - Kalliopi K. Iliaki
- Department of Cell Biology and Biophysics Faculty of Biology National & Kapodistrian University of Athens Athens Greece
| | - Dimitra Benaki
- Department of Pharmaceutical Chemistry Faculty of Pharmacy National & Kapodistrian University of Athens Athens Greece
| | | | - Gerasimos P. Sykiotis
- Service of Endocrinology, Diabetology and Metabolism Lausanne University Hospital Lausanne Switzerland
| | - Vassilis G. Gorgoulis
- Biomedical Research Foundation Academy of Athens Athens Greece
- Department of Histology and Embryology School of Medicine National & Kapodistrian University of Athens Athens Greece
- Faculty of Biology, Medicine and Health University of Manchester Manchester UK
| | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry Faculty of Pharmacy National & Kapodistrian University of Athens Athens Greece
| | - Luca Scorrano
- Department of Biology, Venetian Institute of Molecular Medicine, Dulbecco‐Telethon Institute University of Padua Padova Italy
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics Faculty of Biology National & Kapodistrian University of Athens Athens Greece
| |
Collapse
|
53
|
Nikou T, Liaki V, Stathopoulos P, Sklirou AD, Tsakiri EN, Jakschitz T, Bonn G, Trougakos IP, Halabalaki M, Skaltsounis LA. Comparison survey of EVOO polyphenols and exploration of healthy aging-promoting properties of oleocanthal and oleacein. Food Chem Toxicol 2019; 125:403-412. [PMID: 30677444 DOI: 10.1016/j.fct.2019.01.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 01/03/2023]
Abstract
Olive oil is widely accepted as a superior edible oil. Great attention has been given lately to olive oil polyphenols which are linked to significant health beneficial effects. Towards a survey of Greek olive oil focusing on polyphenols, representative extra virgin olive oils (EVOOs) from the main producing areas of the country and the same harvesting period have been collected and analyzed. Significant differences and interesting correlations have been identified connecting certain polyphenols namely hydroxytyrosol, tyrosol, oleacein and oleocanthal with specific parameters e.g. geographical origin, production procedure and cultivation practice. Selected EVOOs polyphenol extracts, with different oleacein and oleocanthal levels, as well as isolated oleacein and oleocanthal were bio-evaluated in mammalian cells and as a dietary supplement in the Drosophila in vivo model. We found that oleocanthal and oleacein activated healthy aging-promoting cytoprotective pathways and suppressed oxidative stress in both mammalian cells and in flies.
Collapse
Affiliation(s)
- Theodora Nikou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
| | - Vasiliki Liaki
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15784, Greece
| | - Panagiotis Stathopoulos
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
| | - Aimilia D Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15784, Greece
| | - Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15784, Greece
| | - Thomas Jakschitz
- Austrian Drug Screening Institute - ADSI, University of Innsbruck, Innrain 66, A-6020, Innsbruck, Austria
| | - Günther Bonn
- Austrian Drug Screening Institute - ADSI, University of Innsbruck, Innrain 66, A-6020, Innsbruck, Austria; Institute of Analytical Chemistry and Radiochemistry, CCB - Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15784, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
| | - Leandros A Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece.
| |
Collapse
|