51
|
Wang Y, Liu Q, Cai J, Wu P, Wang D, Shi Y, Huyan T, Su J, Li X, Wang Q, Wang H, Zhang F, Bae ON, Tie L. Emodin prevents renal ischemia-reperfusion injury via suppression of CAMKII/DRP1-mediated mitochondrial fission. Eur J Pharmacol 2022; 916:174603. [PMID: 34793771 DOI: 10.1016/j.ejphar.2021.174603] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022]
Abstract
Acute kidney injury (AKI) is a serious threat to human health. Clinically, ischemia-reperfusion (I/R) injury is considered one of the most common contributors to AKI. Emodin has been reported to alleviate I/R injury in the heart, brain, and small intestine in rats and mice through its anti-inflammatory effects. The present study investigated whether emodin improved AKI induced by I/R and elucidated the molecular mechanisms. We used a mouse model of renal I/R injury and human renal tubular epithelial cell model of hypoxia/reoxygenation (H/R) injury. Ischemia/reperfusion resulted in renal dysfunction. Pretreatment with emodin ameliorated renal injury in mice following I/R injury. Emodin reduced mitochondrial-mediated apoptosis, suppressed the overproduction of mitochondrial reactive oxygen species and accelerated the recovery of adenosine triphosphate both in vivo and in vitro. Emodin prevented mitochondrial fission and restored the balance of mitochondrial dynamics. The phosphorylation of dynamin-related protein 1 (DRP1) at Ser616, a master regulator of mitochondrial fission, was upregulated in both models of I/R and H/R injury, and this upregulation was blocked by emodin. Using computational cognate protein kinase prediction and specific kinase inhibitors, we found that emodin inhibited the phosphorylation of calcium/calmodulin-dependent protein kinase II (https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1554), thereby inhibiting its kinase activity and reducing the phosphorylation of DRP1 at Ser616. The results demonstrated that emodin pretreatment could protect renal function by improving mitochondrial dysfunction induced by I/R.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China; Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Jiaying Cai
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Pin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Di Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Yundi Shi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Tianru Huyan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Jing Su
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xuejun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hong Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Fengxue Zhang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| |
Collapse
|
52
|
Packialakshmi B, Stewart IJ, Burmeister DM, Feng Y, McDaniel DP, Chung KK, Zhou X. Tourniquet-induced lower limb ischemia/reperfusion reduces mitochondrial function by decreasing mitochondrial biogenesis in acute kidney injury in mice. Physiol Rep 2022; 10:e15181. [PMID: 35146957 PMCID: PMC8831939 DOI: 10.14814/phy2.15181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023] Open
Abstract
The mechanisms by which lower limb ischemia/reperfusion induces acute kidney injury (AKI) remain largely uncharacterized. We hypothesized that tourniquet-induced lower limb ischemia/reperfusion (TILLIR) would inhibit mitochondrial function in the renal cortex. We used a murine model to show that TILLIR of the high thigh regions inflicted time-dependent AKI as determined by renal function and histology. This effect was associated with decreased activities of mitochondrial complexes I, II, V and citrate synthase in the kidney cortex. Moreover, TILLIR reduced mRNA levels of a master regulator of mitochondrial biogenesis PGC-1α, and its downstream genes NDUFS1 and ATP5o in the renal cortex. TILLIR also increased serum corticosterone concentrations. TILLIR did not significantly affect protein levels of the critical regulators of mitophagy PINK1 and PARK2, mitochondrial transport proteins Tom20 and Tom70, or heat-shock protein 27. TILLIR had no significant effect on mitochondrial oxidative stress as determined by mitochondrial ability to generate reactive oxygen species, protein carbonylation, or protein levels of MnSOD and peroxiredoxin1. However, TILLIR inhibited classic autophagic flux by increasing p62 protein abundance and preventing the conversion of LC3-I to LC3-II. TILLIR increased phosphorylation of cytosolic and mitochondrial ERK1/2 and mitochondrial AKT1, as well as mitochondrial SGK1 activity. In conclusion, lower limb ischemia/reperfusion induces distal AKI by inhibiting mitochondrial function through reducing mitochondrial biogenesis. This AKI occurs without significantly affecting PINK1-PARK2-mediated mitophagy or mitochondrial oxidative stress in the kidney cortex.
Collapse
Affiliation(s)
- Balamurugan Packialakshmi
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
- The Henry Jackson M. Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Ian J. Stewart
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - David M. Burmeister
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Yuanyi Feng
- Department of BiochemistryUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Dennis P. McDaniel
- Biomedical Instrumentation CenterUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Kevin K. Chung
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Xiaoming Zhou
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| |
Collapse
|
53
|
Wang JY, Li Y, Lv YY, Jiang L. Screening and identification of novel candidate biomarkers of focal cortical dysplasia type II via bioinformatics analysis. Childs Nerv Syst 2022; 38:953-960. [PMID: 35112146 PMCID: PMC8809227 DOI: 10.1007/s00381-022-05454-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Focal cortical dysplasia (FCD) is the most common developmental malformation that causes refractory epilepsy. FCD II is a common neuropathological finding in tissues resected therapeutically from patients with drug-resistant epilepsy. However, its molecular genetic etiology remains unclear. This study aimed to identify potential molecular markers of FCD II using bioinformatics analysis. METHODS We downloaded two datasets for FCD II from the Gene Expression Omnibus data repository. Differentially expressed genes (DEGs) between FCD II and normal brain tissues were identified, and functional enrichment analysis was performed. A protein-protein interaction network was constructed, and hub genes were identified from the DEGs. The hub gene expression was validated using WB in vitro. IHC staining was performed to verify the feasibility of the target molecular markers identified in the bioinformatics analysis. RESULTS One hundred sixty-seven common DEGs were identified between the datasets. The GO and KEGG analyses showed that variations were prominently enriched in some functions associated with gene expression. Five hub genes (i.e., FANCI, FANCA, BRCA2, RAD18, and KEAP1) were identified. Western blotting confirmed that all hub gene expressions were higher in the FCD II tissue than in the normal brain tissue. IHC staining showed that the FANCI expression significantly increased in the FCD II tissue. CONCLUSION There are DEGs between FCD II and normal brain tissues, which may be considered biomarkers for FCD II, along with FANCI. The DEGs and hub genes identified in the bioinformatics analysis could serve as candidate targets for diagnosing and treating FCD II.
Collapse
Affiliation(s)
- Jiang-ya Wang
- Department of Pediatrics, Hebei Medical University, Shijiazhuang, China ,Department of Pediatrics, Hebei General Hospital, Shijiazhuang, China
| | - Yang Li
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Chang’an district, Shijiazhuang, 050000 China
| | - Yuan-yuan Lv
- Department of Pediatrics, Baoding First Central Hospital, Baoding, China
| | - Lian Jiang
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Chang'an district, Shijiazhuang, 050000, China.
| |
Collapse
|
54
|
Shi Q, Zhao G, Wei S, Guo C, Wu X, Zhao RC, Di G. Pterostilbene alleviates liver ischemia/reperfusion injury via PINK1-mediated mitophagy. J Pharmacol Sci 2022; 148:19-30. [PMID: 34924126 DOI: 10.1016/j.jphs.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury contributes to morbidity and mortality during liver resection or transplantation, with limited effective treatments available. Here, we investigated the potential benefits and underlying mechanisms of pterostilbene (Pt), a natural component of blueberries and grapes, in preventing hepatic I/R injury. Male C57BL/6 mice subjected to partial warm hepatic I/R and human hepatocyte cell line L02 cells exposed to anoxia/reoxygenation (A/R) were used as in vivo and in vitro models, respectively. Our findings showed that pretreatment with Pt ameliorated hepatic I/R injury by improving liver histology, decreasing hepatocyte apoptosis, and reducing plasma ALT and AST levels. Likewise, cell apoptosis, mitochondrial membrane dysfunction, and mitochondrial ROS overproduction in L02 cells triggered by the A/R challenge in vitro were reduced due to Pt administration. Mechanistically, Pt treatment efficiently enhanced mitophagy and upregulated PINK1, Parkin, and LC3B expression. Notably, the protective effect of Pt was largely abrogated after cells were transfected with PINK1 siRNA. Moreover, Pt pretreatment promoted hepatocyte proliferation and liver regeneration in the late phase of hepatic I/R. In conclusion, our findings provide evidence that Pt exerts hepatoprotective effects in hepatic I/R injury by upregulating PINK1-mediated mitophagy.
Collapse
Affiliation(s)
- Qiangqiang Shi
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Guangfen Zhao
- Department of Medicine, The Liaocheng Third People's Hospital, Liaocheng, China
| | - Susu Wei
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | | | - Guohu Di
- College of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
55
|
Isoform-selective HDAC Inhibitor Mocetinostat (MGCD0103) Alleviates Myocardial Ischemia/Reperfusion Injury via Mitochondrial Protection through the HDACs/CREB/PGC-1α Signaling Pathway. J Cardiovasc Pharmacol 2021; 79:217-228. [PMID: 34983914 DOI: 10.1097/fjc.0000000000001174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Over the past decade, histone deacetylases (HDACs) has been proven to manipulate development and exacerbation of cardiovascular diseases, including myocardial ischemia/reperfusion injury (MIRI), cardiac hypertrophy, ventricular remodeling, myocardial fibrosis. Inhibition of histone deacetylases, especially class-I HDACs, is potent to protection of ischemic myocardium after ischemia/reperfusion. Herein, we examine whether mocetinostat (MGCD0103, MOCE), a class-I selective HDAC inhibitor in phase-II clinical trial, conducts cardioprotection under ischemia/reperfusion (I/R) in vivo and vitro, if so, reveal its potential pharmacological mechanism to provide an experimental and theoretical basis for mocetinostat usage in a clinical setting. HCMs were exposed to hypoxia and reoxygenation (H/R), with or without mocetinostat treatment. H/R reduced mitochondrial membrane potential (MMP) and induced HCMs apoptosis. Mocetinostat pre-treatment reversed these H/R-induced mitochondrial damage and cellular apoptosis and upregulated CREB, p-CREB and PGC-1α in HCMs during H/R. Transfection with siRNA against PGC-1α or CREB abolished the protective effects of mocetinostat on cardiomyocytes undergoing H/R. In vivo, mocetinostat was demonstrated to protect myocardial injury posed by myocardial ischemia/reperfusion (I/R) via activation of CREB and upregulation of PGC-1α. Mocetinostat (MGCD0103) can protect myocardium from ischemia/reperfusion injury through mitochondrial protection mediated by CREB/PGC-1α pathway. Therefore, activation of the CREB/PGC-1α signaling pathway via inhibition of Class-I HDACs may be a promising new therapeutic strategy for alleviating myocardial reperfusion injury.
Collapse
|
56
|
Han S, Liu M, Liu S, Li Y. Transcriptomic analysis of human endometrial stromal cells during early embryo invasion. Ann Med 2021; 53:1758-1771. [PMID: 34643467 PMCID: PMC8519554 DOI: 10.1080/07853890.2021.1988139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/27/2021] [Indexed: 01/20/2023] Open
Abstract
PURPOSE During early embryo invasion (48 h after embryo attachment), what functional changes accompany dynamic gene expression alterations in human endometrial stromal cells? METHOD In the present study, primary human endometrial stromal cells (phESCs) were cultured. After in vitro decidualization, primary human endometrial stromal cells (phESCs) were cultured with blastocysts for 48 h. During this process, blastocysts attached and invaded the phESCs (embryo-invaded primary human endometrial stromal cells, ehESCs). We performed comprehensive transcriptomic profiling of phESCs (two replicates) and ehESCs (five replicates) and analyzed the differentially expressed gene (DEGs) sets for gene ontology (GO) terms and Kyoto encyclopaedia of genes and genomes (KEGG) pathway enrichment. To analyse potential connectivity patterns between the transcripts in these DEG sets, a protein-protein interaction (PPI) network was constructed using the STRING database. RESULTS A total of 592 DEGs were identified between phESCs and ehESCs after embryo invasion. Primary human endometrial stromal cells underwent significant transcriptomic changes that occur in a stepwise fashion. Oxidative phosphorylation, mitochondrial organization, and P53 signalling pathways were significantly altered in phESCs after embryo invasion. EP300 may play a key role in regulating transcription via chromatin remodelling to facilitate the adaptive gene expression changes that occur during embryo invasion. CONCLUSIONS Our data identify dynamic transcriptome changes that occur in endometrial stromal cells within 48 h after embryo invasion. The pathways that we found to be enriched in phESCs after embryo invasion (oxidative phosphorylation, mitochondrial organization, and P53 signalling) may represent novel mechanisms underlying embryo implantation, and may illuminate the reasons that some women experience reproductive failure.Key messagesHuman endometrial stromal cells have undergone changes in gene expression regulation and signalling pathways during the embryo invasion.Mitochondrial-oxidative phosphorylation changes in human stromal cells manifested as down-regulation of gene expression in the electron transport chain.TP53 signalling pathway and transcriptional regulator EP300 assist stromal cells to get adaptive changes during embryo invasion phase.
Collapse
Affiliation(s)
- Shuo Han
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Minghui Liu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shan Liu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuan Li
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
57
|
Silencing LINC00294 Restores Mitochondrial Function and Inhibits Apoptosis of Glioma Cells under Hypoxia via the miR-21-5p/CASKIN1/cAMP Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8240015. [PMID: 34777696 PMCID: PMC8580631 DOI: 10.1155/2021/8240015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022]
Abstract
Glioma is a type of malignant intracranial tumor. Extensive research has identified the participation of long noncoding RNAs (lncRNAs) in glioma progression. This study investigated the mechanism of LINC00294 in mitochondrial function and glioma cell apoptosis. Glioma miRNA and mRNA microarray datasets were obtained, and differentially expressed lncRNAs in glioma were screened through various databases. The LINC00294 expression in glioma patients and glioma cells was detected. Glioma cells were treated under hypoxic conditions and transfected with LINC00294 silencing. The apoptosis and mitochondrial function of glioma cells were measured. The expressions of and relations among miR-21-5p, CASKIN1, and cAMP in glioma cells were analyzed. Under hypoxic conditions and LINC00294 silencing, the apoptosis and mitochondrial function of glioma cells were detected after inhibiting miR-21-5p or overexpressing CASKIN1. Our results indicated that LINC00294 was downregulated in glioma. LINC00294 silencing inhibited glioma cell apoptosis under hypoxia. LINC00294 silencing reversed the inhibition of hypoxia on mitochondrial function under hypoxia. LINC00294 promoted the CASKIN1 expression by sponging miR-21-5p and activated the cAMP pathway. Inhibition of miR-21-5p or overexpression of CASKIN1 annulled the effects of LINC00294 silencing on mitochondrial function and glioma cell apoptosis under hypoxia. In conclusion, LINC00294 elevated the CASKIN1 expression by sponging miR-21-5p and activating the cAMP signaling pathway, thus inhibiting mitochondrial function and facilitating glioma cell apoptosis.
Collapse
|
58
|
Zhang Q, Piao C, Ma H, Xu J, Wang Y, Liu T, Liu G, Wang H. Exosomes from adipose-derived mesenchymal stem cells alleviate liver ischaemia reperfusion injury subsequent to hepatectomy in rats by regulating mitochondrial dynamics and biogenesis. J Cell Mol Med 2021; 25:10152-10163. [PMID: 34609057 PMCID: PMC8572784 DOI: 10.1111/jcmm.16952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatic ischaemia reperfusion injury (HIRI) is a major factor leading to liver dysfunction after liver resection and liver transplantation. Adipose-derived mesenchymal stem cells (ADSCs) have potential therapeutic effects on HIRI. Exosomes derived from ADSCs (ADSCs-exo) have been widely studied as an alternative of ADSCs therapy. Thus, the aim of this study was to evaluate the potential protective effect and related mechanism of ADSCs-exo on HIRI subsequent to hepatectomy. Rats were randomly divided into four groups: Sham, I30R+PH, ADSCs and ADSCs-exo group. After 24 h of reperfusion, liver and serum of the rats were immediately collected. ADSCs-exo improved liver function, inhibited oxidative stress and reduced apoptosis of hepatocytes in HIRI subsequent to hepatectomy in rats. ADSCs-exo significantly promoted the recovery of mitochondrial function, markedly increased the content of ATP in the liver tissue, and improved the ultrastructure of mitochondria in hepatocytes. Moreover, ADSCs-exo significantly increased the expression of OPA-1, MFN-1 and MFN-2 proteins related to mitochondrial fusion, while DRP-1 and Fis-1 mRNA and protein expression associated with mitochondrial fission were significantly decreased after the treatment with ADSCs-exo. In addition, ADSCs-exo significantly increased the expression of PGC-1α, NRF-1 and TFAM genes and proteins related to mitochondrial biogenesis. ADSCs-exo improves liver function induced by HIRI subsequent to hepatectomy in rats and maintains mitochondrial homeostasis by inhibiting mitochondrial fission, promoting mitochondrial fusion and promoting mitochondrial biogenesis. Therefore, ADSCs-exo may be considered as a potential promising alternative to ADSCs in the treatment of HIRI subsequent to hepatectomy.
Collapse
Affiliation(s)
- Qianzhen Zhang
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Chenxi Piao
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Haiyang Ma
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Jiayuan Xu
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Yue Wang
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Tao Liu
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Guodong Liu
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Hongbin Wang
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
59
|
Peng D, Wei C, Zhang X, Li S, Liang H, Zheng X, Jiang S, Han L. Pan-cancer analysis combined with experiments predicts CTHRC1 as a therapeutic target for human cancers. Cancer Cell Int 2021; 21:566. [PMID: 34702252 PMCID: PMC8549344 DOI: 10.1186/s12935-021-02266-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The function of collagen triple helix repeat containing 1 (CTHRC1) as an oncogene has been reported in a growing number of publications. Bioinformatics methods represent a beneficial approach to examine the mechanism and function of the CTHRC1 gene in the disease process of cancers from a pan-cancer perspective. METHODS In this study, using the online databases UCSC, NCBI, HPA, TIMER2, Oncomine, GEPIA, UALCAN, cBioPortal, COSMIC, MEXPRESS, STRING, CCLE, LinkedOmics, GTEx, TCGA, CGGA, and SangerBox, we focused on the relationship between CTHRC1 and tumorigenesis, progression, methylation, immunity, and prognosis. qPCR was used to detect CTHRC1 expression in glioma tissues and cell lines. RESULTS The pan-cancer analysis showed that CTHRC1 was overexpressed in most tumors, and a significant correlation was observed between CTHRC1 expression and the prognosis of patients with cancer. CTHRC1 genetic alterations occur in diverse tumors and are associated with tumor progression. Levels of CTHRC1 promoter methylation were decreased in most cancer tissues compared with normal tissues. In addition, CTHRC1 coordinated the activity of ICP genes through diverse signal transduction pathways, was also associated with immune cell infiltration and the tumor microenvironment, and potentially represented a promising immunotherapy target. We identified CTHRC1-related genes across cancers using the GEPIA2 tool. The single-gene GO analysis of CTHRC1 across cancers showed that it was involved in some signaling pathways and biological processes, such as the Wnt signaling pathway, cell migration, and positive regulation of protein binding. The expression and function of CTHRC1 were also further verified in glioma tissues and cell lines. CONCLUSIONS CTHRC1 is overexpressed in various cancer types and functions as an important oncogene that may promote tumorigenesis and development through different mechanisms. CTHRC1 may represent an important therapeutic target for human cancers.
Collapse
Affiliation(s)
- Dazhao Peng
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Xiaoyang Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Shenghui Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Hao Liang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Xingyu Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jiankang Road, Jining, Shandong 272000 People’s Republic of China
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| |
Collapse
|
60
|
García-Niño WR, Zazueta C, Buelna-Chontal M, Silva-Palacios A. Mitochondrial Quality Control in Cardiac-Conditioning Strategies against Ischemia-Reperfusion Injury. Life (Basel) 2021; 11:1123. [PMID: 34832998 PMCID: PMC8620839 DOI: 10.3390/life11111123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the central target of ischemic preconditioning and postconditioning cardioprotective strategies, which consist of either the application of brief intermittent ischemia/reperfusion (I/R) cycles or the administration of pharmacological agents. Such strategies reduce cardiac I/R injury by activating protective signaling pathways that prevent the exacerbated production of reactive oxygen/nitrogen species, inhibit opening of mitochondrial permeability transition pore and reduce apoptosis, maintaining normal mitochondrial function. Cardioprotection also involves the activation of mitochondrial quality control (MQC) processes, which replace defective mitochondria or eliminate mitochondrial debris, preserving the structure and function of the network of these organelles, and consequently ensuring homeostasis and survival of cardiomyocytes. Such processes include mitochondrial biogenesis, fission, fusion, mitophagy and mitochondrial-controlled cell death. This review updates recent advances in MQC mechanisms that are activated in the protection conferred by different cardiac conditioning interventions. Furthermore, the role of extracellular vesicles in mitochondrial protection and turnover of these organelles will be discussed. It is concluded that modulation of MQC mechanisms and recognition of mitochondrial targets could provide a potential and selective therapeutic approach for I/R-induced mitochondrial dysfunction.
Collapse
|
61
|
Insulin Signal Transduction Perturbations in Insulin Resistance. Int J Mol Sci 2021; 22:ijms22168590. [PMID: 34445300 PMCID: PMC8395322 DOI: 10.3390/ijms22168590] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus is a widespread medical condition, characterized by high blood glucose and inadequate insulin action, which leads to insulin resistance. Insulin resistance in insulin-responsive tissues precedes the onset of pancreatic β-cell dysfunction. Multiple molecular and pathophysiological mechanisms are involved in insulin resistance. Insulin resistance is a consequence of a complex combination of metabolic disorders, lipotoxicity, glucotoxicity, and inflammation. There is ample evidence linking different mechanistic approaches as the cause of insulin resistance, but no central mechanism is yet described as an underlying reason behind this condition. This review combines and interlinks the defects in the insulin signal transduction pathway of the insulin resistance state with special emphasis on the AGE-RAGE-NF-κB axis. Here, we describe important factors that play a crucial role in the pathogenesis of insulin resistance to provide directionality for the events. The interplay of inflammation and oxidative stress that leads to β-cell decline through the IAPP-RAGE induced β-cell toxicity is also addressed. Overall, by generating a comprehensive overview of the plethora of mechanisms involved in insulin resistance, we focus on the establishment of unifying mechanisms to provide new insights for the future interventions of type 2 diabetes mellitus.
Collapse
|
62
|
Ramírez-Sagredo A, Quiroga C, Garrido-Moreno V, López-Crisosto C, Leiva-Navarrete S, Norambuena-Soto I, Ortiz-Quintero J, Díaz-Vesga MC, Perez W, Hendrickson T, Parra V, Pedrozo Z, Altamirano F, Chiong M, Lavandero S. Polycystin-1 regulates cardiomyocyte mitophagy. FASEB J 2021; 35:e21796. [PMID: 34324238 DOI: 10.1096/fj.202002598r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022]
Abstract
Polycystin-1 (PC1) is a transmembrane protein found in different cell types, including cardiomyocytes. Alterations in PC1 expression have been linked to mitochondrial damage in renal tubule cells and in patients with autosomal dominant polycystic kidney disease. However, to date, the regulatory role of PC1 in cardiomyocyte mitochondria is not well understood. The analysis of mitochondrial morphology from cardiomyocytes of heterozygous PC1 mice (PDK1+/- ) using transmission electron microscopy showed that cardiomyocyte mitochondria were smaller with increased mitochondria density and circularity. These parameters were consistent with mitochondrial fission. We knocked-down PC1 in cultured rat cardiomyocytes and human-induced pluripotent stem cells (iPSC)-derived cardiomyocytes to evaluate mitochondrial function and morphology. The results showed that downregulation of PC1 expression results in reduced protein levels of sub-units of the OXPHOS complexes and less functional mitochondria (reduction of mitochondrial membrane potential, mitochondrial respiration, and ATP production). This mitochondrial dysfunction activates the elimination of defective mitochondria by mitophagy, assessed by an increase of autophagosome adapter protein LC3B and the recruitment of the Parkin protein to the mitochondria. siRNA-mediated PC1 knockdown leads to a loss of the connectivity of the mitochondrial network and a greater number of mitochondria per cell, but of smaller sizes, which characterizes mitochondrial fission. PC1 silencing also deregulates the AKT-FoxO1 signaling pathway, which is involved in the regulation of mitochondrial metabolism, mitochondrial morphology, and processes that are part of cell quality control, such as mitophagy. Together, these data provide new insights about the controls that PC1 exerts on mitochondrial morphology and function in cultured cardiomyocytes dependent on the AKT-FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Andrea Ramírez-Sagredo
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Clara Quiroga
- Advanced Center for Chronic Diseases (ACCDiS), División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria Garrido-Moreno
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Camila López-Crisosto
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastian Leiva-Navarrete
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Autophagy Research Center, Universidad de Chile, Santiago, Chile.,Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jafet Ortiz-Quintero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Bioanálisis e Inmunología, Escuela de Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Magda C Díaz-Vesga
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Grupo de Investigación en Ciencias Básicas y Clínicas de la Salud, Pontificia Universidad Javeriana de Cali, Cali, Colombia
| | - William Perez
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Troy Hendrickson
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.,Texas A&M MD/PhD Program, Texas A&M Health Science Center, College Station, TX, USA
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Autophagy Research Center, Universidad de Chile, Santiago, Chile.,Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Zully Pedrozo
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile.,Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisco Altamirano
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.,Department of Cardiothoracic Surgery, Weill Cornell Medical College, Cornell University, Ithaca, NY, USA
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile.,Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
63
|
Cui G, Wang C, Lin Z, Feng X, Wei M, Miao Z, Sun Z, Wei F. Prognostic and immunological role of Ras-related protein Rap1b in pan-cancer. Bioengineered 2021; 12:4828-4840. [PMID: 34346294 PMCID: PMC8806554 DOI: 10.1080/21655979.2021.1955559] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ras-related Protein Rap1b, a GTP-binding protein belonging to the proximal RAS, which affects tumor progression through regulating tumor cell proliferation, invasion and participates in the functions of various immune cells. However, the potential roles and mechanisms of Rap1b in tumor progression and immunology remains unclear. In this study, we systematically analyzed the pan-cancer expression and prognostic correlation of Rap1b based on GTEX, CCLE, Oncomine, PrognoScan, Kaplan–Meier plotters and TCGA databases. The potential correlations of Rap1b with immune infiltration were revealed via TIMER and TCGA database. SangerBox database was used to analyzed the correlations between Rap1b expression and immune checkpoint (ICP), tumor mutational burden (TMB), microsatellite instability (MSI), mismatch repairs (MMRs) and DNA methylation. The results indicated that the expression level of Rap1b varies in different tumors. Meanwhile, the expression level of Rap1b strongly correlated with prognosis in patients with tumors, higher expression of Rap1b usually was linked to poor prognosis in different datasets. Rap1b was correlated closely with tumor immunity and interacted with various immune cells in different types of cancers. In addition, there were significant positive correlations between Rap1b expression and ICP, TMB, MSI, MMRs and DNA methylation. In conclusion, the results of pan-cancer analysis showed that the abnormal Rap1b expression was related to poor prognosis and tumor immune infiltration in different cancers. Furthermore, Rap1b gene may be used as a potential biomarker of clinical tumor prognosis.
Collapse
Affiliation(s)
- Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Can Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenyan Lin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Muxin Wei
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Zhengyue Miao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing, China
| | - Zhiguang Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Wei
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
64
|
Li Z, Lu S, Li X. The role of metabolic reprogramming in tubular epithelial cells during the progression of acute kidney injury. Cell Mol Life Sci 2021; 78:5731-5741. [PMID: 34185125 PMCID: PMC11073237 DOI: 10.1007/s00018-021-03892-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is one of the most common clinical syndromes. AKI is associated with significant morbidity and subsequent chronic kidney disease (CKD) development. Thus, it is urgent to develop a strategy to hinder AKI progression. Renal tubules are responsible for the reabsorption and secretion of various solutes and the damage to this part of the nephron is a key mediator of AKI. As we know, many common renal insults primarily target the highly metabolically active proximal tubular cells (PTCs). PTCs are the most energy-demanding cells in the kidney. The ATP that they use is mostly produced in their mitochondria by fatty acid β-oxidation (FAO). But, when PTCs face various biological stresses, FAO will shut down for a time that outlives injury. Recent studies have suggested that surviving PTCs can adapt to FAO disruption by increasing glycolysis when facing metabolic constraints, although PTCs do not perform glycolysis in a normal physiological state. Enhanced glycolysis in a short period compensates for impaired energy production and exerts partial renal-protective effects, but its long-term effect on renal function and AKI progression is not promising. Deranged FAO and enhanced glycolysis may contribute to the AKI to CKD transition through different molecular biological mechanisms. In this review, we concentrate on the recent pathological findings of AKI with regards to the metabolic reprogramming in PTCs, confirming that targeting metabolic reprogramming represents a potentially effective therapeutic strategy for the progression of AKI.
Collapse
Affiliation(s)
- Zhenzhen Li
- Medicial Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Shan Lu
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaobing Li
- College of Basic Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| |
Collapse
|
65
|
Menez S, Ju W, Menon R, Moledina DG, Thiessen Philbrook H, McArthur E, Jia Y, Obeid W, Mansour SG, Koyner JL, Shlipak MG, Coca SG, Garg AX, Bomback AS, Kellum JA, Kretzler M, Parikh CR. Urinary EGF and MCP-1 and risk of CKD after cardiac surgery. JCI Insight 2021; 6:147464. [PMID: 33974569 PMCID: PMC8262289 DOI: 10.1172/jci.insight.147464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/05/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUNDAssessment of chronic kidney disease (CKD) risk after acute kidney injury (AKI) is based on limited markers primarily reflecting glomerular function. We evaluated markers of cell integrity (EGF) and inflammation (monocyte chemoattractant protein-1, MCP-1) for predicting long-term kidney outcomes after cardiac surgery.METHODSWe measured EGF and MCP-1 in postoperative urine samples from 865 adults who underwent cardiac surgery at 2 sites in Canada and the United States and assessed EGF and MCP-1's associations with the composite outcome of CKD incidence or progression. We used single-cell RNA-Seq (scRNA-Seq) of AKI patient biopsies to perform transcriptomic analysis of programs corregulated with the associated genes.RESULTSOver a median (IQR) follow-up of 5.8 (4.2-7.1) years, 266 (30.8%) patients developed the composite CKD outcome. Postoperatively, higher levels of urinary EGF were protective and higher levels of MCP-1 were associated with the composite CKD outcome (adjusted HR 0.83, 95% CI 0.73-0.95 and 1.10, 95% CI 1.00-1.21, respectively). Intrarenal scRNA-Seq transcriptomes in patients with AKI-defined cell populations revealed concordant changes in EGF and MCP-1 levels and underlying molecular processes associated with loss of EGF expression and gain of CCL2 (encoding MCP-1) expression.CONCLUSIONUrinary EGF and MCP-1 were each independently associated with CKD after cardiac surgery. These markers may serve as noninvasive indicators of tubular damage, supported by tissue transcriptomes, and provide an opportunity for novel interventions in cardiac surgery.TRIAL REGISTRATIONClinicalTrials.gov NCT00774137.FUNDINGThe NIH funded the TRIBE-AKI Consortium and Kidney Precision Medicine Project. Yale O'Brien Kidney Center, American Heart Association, Patterson Trust Fund, Dr. Adam Linton Chair in Kidney Health Analytics, Canadian Institutes of Health Research, ICES, Ontario Ministry of Health and Long-Term Care, Academic Medical Organization of Southwestern Ontario, Schulich School of Medicine & Dentistry, Western University, Lawson Health Research Institute, Chan Zuckerberg Initiative Human Cell Atlas Kidney Seed Network.
Collapse
Affiliation(s)
- Steven Menez
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Rajasree Menon
- Division of Nephrology, Department of Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Dennis G. Moledina
- Section of Nephrology and
- Clinical and Translational Research Accelerator, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Heather Thiessen Philbrook
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Yaqi Jia
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wassim Obeid
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sherry G. Mansour
- Section of Nephrology and
- Clinical and Translational Research Accelerator, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jay L. Koyner
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Michael G. Shlipak
- Kidney Health Research Collaborative and Division of General Internal Medicine, San Francisco Veterans Affairs Medical Center, University of California San Francisco, San Francisco, California, USA
| | - Steven G. Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amit X. Garg
- ICES, Ontario, Canada
- Division of Nephrology, Department of Medicine, and
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Andrew S. Bomback
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - John A. Kellum
- The Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Chirag R. Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
66
|
Hu J, Qiu D, Yu A, Hu J, Deng H, Li H, Yi Z, Chen J, Zu X. YTHDF1 Is a Potential Pan-Cancer Biomarker for Prognosis and Immunotherapy. Front Oncol 2021; 11:607224. [PMID: 34026603 PMCID: PMC8134747 DOI: 10.3389/fonc.2021.607224] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) has been indicated proven to participate in the cross-presentation of tumor antigens in dendritic cells and the cross-priming of CD8+ T cells. However, the role of YTHDF1 in prognosis and immunology in human cancers remains largely unknown. METHODS All original data were downloaded from TCGA and GEO databases and integrated via R 3.2.2. YTHDF1 expression was explored with the Oncomine, TIMER, GEPIA, and BioGPS databases. The effect of YTHDF1 on prognosis was analyzed via GEPIA, Kaplan-Meier plotter, and the PrognoScan database. The TISIDB database was used to determine YTHDF1 expression in different immune and molecular subtypes of human cancers. The correlations between YTHDF1 expression and immune checkpoints (ICP), tumor mutational burden (TMB), microsatellite instability (MSI), and neoantigens in human cancers were analyzed via the SangerBox database. The relationships between YTHDF1 expression and tumor-infiltrated immune cells were analyzed via the TIMER and GEPIA databases. The relationships between YTHDF1 and marker genes of tumor-infiltrated immune cells in urogenital cancers were analyzed for confirmation. The genomic alterations of YTHDF1 were investigated with the c-BioPortal database. The differential expression of YTHDF1 in urogenital cancers with different clinical characteristics was analyzed with the UALCAN database. YTHDF1 coexpression networks were studied by the LinkedOmics database. RESULTS In general, YTHDF1 expression was higher in tumors than in paired normal tissue in human cancers. YTHDF1 expression had strong relationships with prognosis, ICP, TMB, MSI, and neoantigens. YTHDF1 plays an essential role in the tumor microenvironment (TME) and participates in immune regulation. Furthermore, significant strong correlations between YTHDF1 expression and tumor immune-infiltrated cells (TILs) existed in human cancers, and marker genes of TILs were significantly related to YTHDF expression in urogenital cancers. TYHDF1 coexpression networks mostly participated in the regulation of immune response and antigen processing and presentation. CONCLUSION YTHDF1 may serve as a potential prognostic and immunological pan-cancer biomarker. Moreover, YTHDF1 could be a novel target for tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
67
|
Li W, Zhu Q, Xu X, Hu X. MiR-27a-3p suppresses cerebral ischemia-reperfusion injury by targeting FOXO1. Aging (Albany NY) 2021; 13:11727-11737. [PMID: 33875617 PMCID: PMC8109123 DOI: 10.18632/aging.202866] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Cerebral ischemia-reperfusion (CI/R) injury is a serious complication when treating patients experiencing ischemic stroke. Although the microRNA miR-27a-3p reportedly participates in ischemia/reperfusion (I/R) injury, its actions in CI/R remain unclear. To mimic CI/R in vitro, HT22 cells were subjected to oxygen glucose deprivation/reoxygenation (OGD/R). The results indicate that OGD inhibited growth and induced apoptosis among HT22 cells. The apoptosis was accompanied by increases in activated caspases 3 and 9 and decreases in Bcl-2. Oxidative stress was also increased, as indicated by increases in ROS and malondialdehyde and decreases in glutathione and superoxide dismutase. In addition, OGD induced G1 arrest in HT22 cells with corresponding upregulation of FOXO1 and p27 Kip1, suggesting the cell cycle arrest was mediated by FOXO1/p27 Kip1 signaling. Notably, FOXO1 was found to be the direct target of miR-27a-3p in HT22 cells. MiR-27a-3p was downregulated in OGD/R-treated HT22 cells, and miR-27a-3p mimics partially or entirely reversed all of the in vitro effects of OGD. Moreover, miR-27a-3p agomir significantly alleviated the symptoms of CI/R in vivo in a rat model of CI/R. Thus, MiR-27a-3p appears to suppress CI/R injury by targeting FOXO1.
Collapse
Affiliation(s)
- Wenyu Li
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 133000, Zhejiang, China
| | - Qiongbin Zhu
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 133000, Zhejiang, China
| | - Xiaoyan Xu
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 133000, Zhejiang, China
| | - Xingyue Hu
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 133000, Zhejiang, China
| |
Collapse
|
68
|
Zhang M, Dong W, Li Z, Xiao Z, Xie Z, Ye Z, Liu S, Li R, Chen Y, Zhang L, Wang M, Liang H, Baihetiyaer R, Apaer R, Dong Z, Liang X. Effect of forkhead box O1 in renal tubular epithelial cells on endotoxin-induced acute kidney injury. Am J Physiol Renal Physiol 2021; 320:F262-F272. [PMID: 33356954 DOI: 10.1152/ajprenal.00289.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial damage in renal tubular epithelial cells (RTECs) is a hallmark of endotoxin-induced acute kidney injury (AKI). Forkhead box O1 (FOXO1) is responsible for regulating mitochondrial function and is involved in several kidney diseases. Here, we investigated the effect of FOXO1 on endotoxin-induced AKI and the related mechanism. In vivo, FOXO1 downregulation in mouse RTECs and mitochondrial damage were found in endotoxin-induced AKI. Overexpression of FOXO1 by kidney focal adeno-associated virus (AAV) delivery improved renal function and reduced mitochondrial damage. Peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1-α), a master regulator of mitochondrial biogenesis and function, was reduced in endotoxin-induced AKI, but the reduction was reversed by FOXO1 overexpression. In vitro, exposure to LPS led to a decline in HK-2 cell viability, mitochondrial fragmentation, and mitochondrial superoxide accumulation, as well as downregulation of FOXO1, PGC1-α, and mitochondrial complex I/V. Moreover, overexpression of FOXO1 in HK-2 cells increased HK-2 cell viability and PGC1-α expression, and it alleviated the mitochondrial injury and superoxide accumulation induced by LPS. Meanwhile, inhibition of FOXO1 in HK-2 cells by siRNA treatment decreased PGC1-α expression and HK-2 cell viability. Chromatin immunoprecipitation assays and PCR analysis confirmed that FOXO1 bound to the PGC1-α promoter in HK-2 cells. In conclusion, downregulation of FOXO1 in RTECs mediated endotoxin-induced AKI and mitochondrial damage. Overexpression of FOXO1 could improve renal injury and mitochondrial dysfunction, and this effect occurred at least in part as a result of PGC1-α signaling. FOXO1 might be a potential target for the prevention and treatment of endotoxin-induced AKI.
Collapse
Affiliation(s)
- Mengxi Zhang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Dong
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhilian Li
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhenmeng Xiao
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiyong Xie
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhiming Ye
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shuangxin Liu
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ruizhao Li
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuanhan Chen
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li Zhang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mengjie Wang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Huaban Liang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | - Rizvangul Apaer
- Division of Nephrology, First People's Hospital of Kasha, Foshan, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Medical Research, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Xinling Liang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
69
|
Wang J, Bai J, Duan P, Wang H, Li Y, Zhu Q. Kir6.1 improves cardiac dysfunction in diabetic cardiomyopathy via the AKT-FoxO1 signalling pathway. J Cell Mol Med 2021; 25:3935-3949. [PMID: 33547878 PMCID: PMC8051713 DOI: 10.1111/jcmm.16346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/07/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Previous studies have shown that the expression of inwardly rectifying potassium channel 6.1 (Kir6.1) in heart mitochondria is significantly reduced in type 1 diabetes. However, whether its expression and function are changed and what role it plays in type 2 diabetic cardiomyopathy (DCM) have not been reported. This study investigated the role and mechanism of Kir6.1 in DCM. We found that the cardiac function and the Kir6.1 expression in DCM mice were decreased. We generated mice overexpressing or lacking Kir6.1 gene specifically in the heart. Kir6.1 overexpression improved cardiac dysfunction in DCM. Cardiac‐specific Kir6.1 knockout aggravated cardiac dysfunction. Kir6.1 regulated the phosphorylation of AKT and Foxo1 in DCM. We further found that Kir6.1 overexpression also improved cardiomyocyte dysfunction and up‐regulated the phosphorylation of AKT and FoxO1 in neonatal rat ventricular cardiomyocytes with insulin resistance. Furthermore, FoxO1 activation down‐regulated the expression of Kir6.1 and decreased the mitochondrial membrane potential (ΔΨm) in cardiomyocytes. FoxO1 inactivation up‐regulated the expression of Kir6.1 and increased the ΔΨm in cardiomyocytes. Chromatin immunoprecipitation assay demonstrated that the Kir6.1 promoter region contains a functional FoxO1‐binding site. In conclusion, Kir6.1 improves cardiac dysfunction in DCM, probably through the AKT‐FoxO1 signalling pathway.
Collapse
Affiliation(s)
- Jinxin Wang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China.,Department of Geriatric Cardiology, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jing Bai
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Peng Duan
- Department of Cardiology, Chinese PLA No. 371 Hospital, Henan, China
| | - Hao Wang
- Department of Geriatric Cardiology, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yang Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qinglei Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
70
|
Chen YQ, Yang X, Xu W, Yan Y, Chen XM, Huang ZQ. Knockdown of lncRNA TTTY15 alleviates myocardial ischemia-reperfusion injury through the miR-374a-5p/FOXO1 axis. IUBMB Life 2020; 73:273-285. [PMID: 33296140 DOI: 10.1002/iub.2428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 01/11/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury greatly contributes to myocardial tissue damage in patients with coronary disease, which eventually leads to heart failure. Long noncoding RNAs (lncRNAs) have an emerging role in the process of myocardial I/R injury. Our previous work revealed the protective role of miR-374a-5p against myocardial I/R injury. In this study, we explored the role of lncRNA TTTY15 and its potential interaction mechanisms with miR-374a-5p in myocardial I/R injury. The expression of TTTY15 was increased both in vitro and in vivo after myocardial I/R injury models according to quantitative real-time polymerase chain reaction. Various assays were conducted to evaluate the regulatory relationship among TTTY15, miR-374a-5p, FOXO1, and autophagy in H9c2 and HL-1 cells. The results showed that TTTY15 suppresses autophagy and myocardial I/R injury by targeting miR-374a-5p. We found that TTTY15 regulates miR-374a-5p, thus affecting FOXO1 expression and autophagy in myocytes during I/R. Furthermore, in an in vivo mouse model of myocardial I/R injury, suppression of TTTY15 successfully alleviated myocardial I/R injury. Our results reveal a novel feedback mechanism in which TTTY15 regulates miRNA processing and a potential target in myocardial I/R injury. TTTY15 is a promising therapeutic target for treating myocardial I/R injury.
Collapse
Affiliation(s)
- Yong-Quan Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Xin Yang
- Department of Geriatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Wei Xu
- Department of Cardiology, Huadu District People's Hospital of Guangzhou, Guangzhou, PR China
| | - Yi Yan
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Xi-Ming Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Zhao-Qi Huang
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
71
|
Xu D, Shen L, Zhou L, Sha W, Yang J, Lu G. Upregulation of FABP7 inhibits acute kidney injury-induced TCMK-1 cell apoptosis via activating the PPAR gamma signalling pathway. Mol Omics 2020; 16:533-542. [PMID: 33315023 DOI: 10.1039/d0mo00056f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acute kidney injury (AKI) is a frequently seen critical disorder in the clinic. The current research aimed to examine the role of hydroxyacid oxidase 2 (FABP7) in AKI-induced cell apoptosis. A total of 289 overlapping genes were used to perform gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and to construct a protein-protein interaction (PPI) network using the DAVID database and Cytoscape software. The 10 hub genes of the PPI network were screened out using the cytohubba plug-in of Cytoscape software. FABP7 represented both the differentially expressed gene (DEG) from the GSE44925 and GSE62732 datasets and the top hub gene of the PPI network. The results of the PAS assay showed that FABP7 knockout in vivo aggravated lipopolysaccharide (LPS)-induced AKI. Meanwhile, LPS inhibited cell viability and the expression of FABP7, PPARγ, PPARα, PTEN and p27kip1, and increased the TNF-α level, and cleaved caspase-3/-9 expression and the phosphorylation of PTEN in vitro. FABP7 overexpression reversed the effects of LPS on inhibiting cell viability and proliferation, promoting cell apoptosis, increasing the expression of FABP7, PPARγ, PTEN and p27kip1, and reducing cleaved caspase-3/-9 expression and the phosphorylation of PTEN, but had no influence on PPARα expression. The PPARγ signal pathway inhibitors blocked the protective effect of FABP7 overexpression in LPS-treated TCMK-1 cells, while the PPARγ signal pathway activator inhibited the harmful effect of FABP7 inhibition in LPS-treated TCMK-1 cells. In conclusion, FABP7 overexpression inhibited the AKI-induced cell apoptosis and promoted the proliferation through activating the PPARγ signal pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Deyu Xu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Suzhou, Jiangsu Province 215006, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
72
|
Davinelli S, De Stefani D, De Vivo I, Scapagnini G. Polyphenols as Caloric Restriction Mimetics Regulating Mitochondrial Biogenesis and Mitophagy. Trends Endocrinol Metab 2020; 31:536-550. [PMID: 32521237 DOI: 10.1016/j.tem.2020.02.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
The tight coordination between mitochondrial biogenesis and mitophagy can be dysregulated during aging, critically influencing whole-body metabolism, health, and lifespan. To date, caloric restriction (CR) appears to be the most effective intervention strategy to improve mitochondrial turnover in aging organisms. The development of pharmacological mimetics of CR has gained attention as an attractive and potentially feasible approach to mimic the CR phenotype. Polyphenols, ubiquitously present in fruits and vegetables, have emerged as well-tolerated CR mimetics that target mitochondrial turnover. Here, we discuss the molecular mechanisms that orchestrate mitochondrial biogenesis and mitophagy, and we summarize the current knowledge of how CR promotes mitochondrial maintenance and to what extent different polyphenols may mimic CR and coordinate mitochondrial biogenesis and clearance.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy. @hsph.harvard.edu
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy
| |
Collapse
|
73
|
Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 2020; 23:299-314. [PMID: 32246225 DOI: 10.1007/s10456-020-09720-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
As reperfusion therapies have become more widely used in acute myocardial infarction patients, ischemia-induced myocardial damage has been markedly reduced, but reperfusion-induced cardiac injury has become increasingly evident. The features of cardiac ischemia-reperfusion (I/R) injury include microvascular perfusion defects, platelet activation and sequential cardiomyocyte death due to additional ischemic events at the reperfusion stage. Microvascular obstruction, defined as a no-reflow phenomenon, determines the infarct zone, myocardial function and peri-operative mortality. Cardiac microvascular endothelial cell injury may occur much earlier and with much greater severity than cardiomyocyte injury. Endothelial cells contain fewer mitochondria than other cardiac cells, and several of the pathological alterations during cardiac microvascular I/R injury involve mitochondria, such as increased mitochondrial reactive oxygen species (mROS) levels and disturbed mitochondrial dynamics. Although mROS are necessary physiological second messengers, high mROS levels induce oxidative stress, endothelial senescence and apoptosis. Mitochondrial dynamics, including fission, fusion and mitophagy, determine the shape, distribution, size and function of mitochondria. These adaptive responses modify extracellular signals and orchestrate intracellular processes such as cell proliferation, migration, metabolism, angiogenesis, permeability transition, adhesive molecule expression, endothelial barrier function and anticoagulation. In this review, we discuss the involvement of mROS and mitochondrial morphofunction in cardiac microvascular I/R injury.
Collapse
Affiliation(s)
- Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China. .,Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
74
|
Wang D, Wang Y, Zou X, Shi Y, Liu Q, Huyan T, Su J, Wang Q, Zhang F, Li X, Tie L. FOXO1 inhibition prevents renal ischemia-reperfusion injury via cAMP-response element binding protein/PPAR-γ coactivator-1α-mediated mitochondrial biogenesis. Br J Pharmacol 2019; 177:432-448. [PMID: 31655022 DOI: 10.1111/bph.14878] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Growing evidence indicates targeting mitochondrial dynamics and biogenesis could accelerate recovery from renal ischemia-reperfusion (I/R) injury, but the underlying mechanisms remain elusive. Transcription factor forkhead box O1 (FOXO1) is a key regulator of mitochondrial homeostasis and plays a pathological role in the progression of renal disease. EXPERIMENTAL APPROACH A mouse model of renal I/R injury and a hypoxia/reoxygenation (H/R) injury model for human renal tubular epithelial cells were used. KEY RESULTS I/R injury up-regulated renal expression of FOXO1 and treatment with FOXO1-selective inhibitor AS1842856 prior to I/R injury decreased serum urea nitrogen, serum creatinine and the tubular damage score after injury. Post-I/R injury AS1842856 treatment could also ameliorate renal function and improve the survival rate of mice following injury. AS1842856 administration reduced mitochondrial-mediated apoptosis, suppressed the overproduction of mitochondrial ROS and accelerated recovery of ATP both in vivo and in vitro. Additionally, FOXO1 inhibition improved mitochondrial biogenesis and suppressed mitophagy. Expression of PPAR-γ coactivator 1α (PGC-1α), a master regulator of mitochondrial biogenesis, was down-regulated in both I/R and H/R injury, which could be abrogated by FOXO1 inhibition. Experiments using integrated bioinformatics analysis and coimmunoprecipitation established that FOXO1 inhibited PGC-1α transcription by competing with cAMP-response element binding protein (CREB) for its binding to transcriptional coactivators CREBBP/EP300 (CBP/P300). CONCLUSION AND IMPLICATIONS These findings suggested that FOXO1 was critical to maintain mitochondrial function in renal tubular epithelial cells and FOXO1 may serve as a therapeutic target for pharmacological intervention in renal I/R injury.
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Yanqing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China.,Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiantong Zou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Yundi Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Qian Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Tianru Huyan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Jing Su
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxue Zhang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Lu Tie
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| |
Collapse
|