51
|
Sugimoto H, Ikeda K, Kawakami K. Atp1a3-
deficient heterozygous mice show lower rank in the hierarchy and altered social behavior. GENES BRAIN AND BEHAVIOR 2017; 17:e12435. [DOI: 10.1111/gbb.12435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
- H. Sugimoto
- Division of Biology, Center for Molecular Medicine; Jichi Medical University; Tochigi Japan
| | - K. Ikeda
- Division of Biology, Center for Molecular Medicine; Jichi Medical University; Tochigi Japan
- Department of Physiology; International University of Health and Welfare, School of Medicine; Chiba Japan
| | - K. Kawakami
- Division of Biology, Center for Molecular Medicine; Jichi Medical University; Tochigi Japan
| |
Collapse
|
52
|
Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks. J Neurosci 2017; 37:906-921. [PMID: 28123025 PMCID: PMC5296784 DOI: 10.1523/jneurosci.2005-16.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/29/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022] Open
Abstract
Ubiquitously expressed sodium pumps are best known for maintaining the ionic gradients and resting membrane potential required for generating action potentials. However, activity- and state-dependent changes in pump activity can also influence neuronal firing and regulate rhythmic network output. Here we demonstrate that changes in sodium pump activity regulate locomotor networks in the spinal cord of neonatal mice. The sodium pump inhibitor, ouabain, increased the frequency and decreased the amplitude of drug-induced locomotor bursting, effects that were dependent on the presence of the neuromodulator dopamine. Conversely, activating the pump with the sodium ionophore monensin decreased burst frequency. When more "natural" locomotor output was evoked using dorsal-root stimulation, ouabain increased burst frequency and extended locomotor episode duration, whereas monensin slowed and shortened episodes. Decreasing the time between dorsal-root stimulation, and therefore interepisode interval, also shortened and slowed activity, suggesting that pump activity encodes information about past network output and contributes to feedforward control of subsequent locomotor bouts. Using whole-cell patch-clamp recordings from spinal motoneurons and interneurons, we describe a long-duration (∼60 s), activity-dependent, TTX- and ouabain-sensitive, hyperpolarization (∼5 mV), which is mediated by spike-dependent increases in pump activity. The duration of this dynamic pump potential is enhanced by dopamine. Our results therefore reveal sodium pumps as dynamic regulators of mammalian spinal motor networks that can also be affected by neuromodulatory systems. Given the involvement of sodium pumps in movement disorders, such as amyotrophic lateral sclerosis and rapid-onset dystonia parkinsonism, knowledge of their contribution to motor network regulation also has considerable clinical importance. SIGNIFICANCE STATEMENT The sodium pump is ubiquitously expressed and responsible for at least half of total brain energy consumption. The pumps maintain ionic gradients and the resting membrane potential of neurons, but increasing evidence suggests that activity- and state-dependent changes in pump activity also influence neuronal firing. Here we demonstrate that changes in sodium pump activity regulate locomotor output in the spinal cord of neonatal mice. We describe a sodium pump-mediated afterhyperpolarization in spinal neurons, mediated by spike-dependent increases in pump activity, which is affected by dopamine. Understanding how sodium pumps contribute to network regulation and are targeted by neuromodulators, including dopamine, has clinical relevance due to the role of the sodium pump in diseases, including amyotrophic lateral sclerosis, parkinsonism, epilepsy, and hemiplegic migraine.
Collapse
|
53
|
Picton LD, Zhang H, Sillar KT. Sodium pump regulation of locomotor control circuits. J Neurophysiol 2017; 118:1070-1081. [PMID: 28539392 DOI: 10.1152/jn.00066.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/03/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
Sodium pumps are ubiquitously expressed membrane proteins that extrude three Na+ ions in exchange for two K+ ions, using ATP as an energy source. Recent studies have illuminated additional, dynamic roles for sodium pumps in regulating the excitability of neuronal networks in an activity-dependent fashion. We review their role in a novel form of short-term memory within rhythmic locomotor networks. The data we review derives mainly from recent studies on Xenopus tadpoles and neonatal mice. The role and underlying mechanisms of pump action broadly match previously published data from an invertebrate, the Drosophila larva. We therefore propose a highly conserved mechanism by which sodium pump activity increases following a bout of locomotion. This results in an ultraslow afterhyperpolarization (usAHP) of the membrane potential that lasts around 1 min, but which only occurs in around half the network neurons. This usAHP in turn alters network excitability so that network output is reduced in a locomotor interval-dependent manner. The pumps therefore confer on spinal locomotor networks a temporary memory trace of recent network performance.
Collapse
Affiliation(s)
- Laurence D Picton
- School of Psychology and Neuroscience, University of St. Andrews, St Andrews, Fife, Scotland, United Kingdom; and
| | - HongYan Zhang
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Keith T Sillar
- School of Psychology and Neuroscience, University of St. Andrews, St Andrews, Fife, Scotland, United Kingdom; and
| |
Collapse
|
54
|
Isaksen TJ, Kros L, Vedovato N, Holm TH, Vitenzon A, Gadsby DC, Khodakhah K, Lykke-Hartmann K. Hypothermia-induced dystonia and abnormal cerebellar activity in a mouse model with a single disease-mutation in the sodium-potassium pump. PLoS Genet 2017; 13:e1006763. [PMID: 28472154 PMCID: PMC5436892 DOI: 10.1371/journal.pgen.1006763] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/18/2017] [Accepted: 04/17/2017] [Indexed: 11/18/2022] Open
Abstract
Mutations in the neuron-specific α3 isoform of the Na+/K+-ATPase are found in patients suffering from Rapid onset Dystonia Parkinsonism and Alternating Hemiplegia of Childhood, two closely related movement disorders. We show that mice harboring a heterozygous hot spot disease mutation, D801Y (α3+/D801Y), suffer abrupt hypothermia-induced dystonia identified by electromyographic recordings. Single-neuron in vivo recordings in awake α3+/D801Y mice revealed irregular firing of Purkinje cells and their synaptic targets, the deep cerebellar nuclei neurons, which was further exacerbated during dystonia and evolved into abnormal high-frequency burst-like firing. Biophysically, we show that the D-to-Y mutation abolished pump-mediated Na+/K+ exchange, but allowed the pumps to bind Na+ and become phosphorylated. These findings implicate aberrant cerebellar activity in α3 isoform-related dystonia and add to the functional understanding of the scarce and severe mutations in the α3 isoform Na+/K+-ATPase. The neurological spectrum associated with mutations in the ATP1A3 gene, encoding the α3 isoform of the Na+/K+-ATPase, is complex and still poorly understood. To elucidate the disease-specific pathophysiology, we examined a mouse model harboring the mutation D801Y, which was originally found in a patient with Rapid onset Dystonia Parkinsonism, but recently, also in a patient with Alternating Hemiplegia of Childhood. We found that this model exhibited motor deficits and developed dystonia when exposed to a drop in body temperature. Cerebellar in vivo recordings in awake mice revealed irregular firing of Purkinje cells and their synaptic targets, the deep cerebellar nuclei neurons, which was further exacerbated and evolved into abnormal high-frequency burst firing during dystonia. The development of specific neurological features within the ATP1A3 mutation spectrum, such as dystonia, are thought to reflect the functional consequences of each mutation, thus to investigate the consequence of the D801Y mutations we characterized mutated D-to-Y Na+/K+-ATPases expressed in Xenopus oocytes. These in vitro studies showed that the D-to-Y mutation abolishes pump-mediated Na+/K+ exchange, but still allows the pumps to bind Na+ and become phosphorylated, trapping them in conformations that instead support proton influx.
Collapse
Affiliation(s)
- Toke Jost Isaksen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Lieke Kros
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Natascia Vedovato
- The Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, New York, United States of America
| | - Thomas Hellesøe Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Ariel Vitenzon
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David C. Gadsby
- The Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, New York, United States of America
| | - Kamran Khodakhah
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
55
|
Masoud M, Prange L, Wuchich J, Hunanyan A, Mikati MA. Diagnosis and Treatment of Alternating Hemiplegia of Childhood. Curr Treat Options Neurol 2017; 19:8. [PMID: 28337648 DOI: 10.1007/s11940-017-0444-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OPINION STATEMENT The diagnosis and treatment of patients with Alternating Hemiplegia of Childhood (AHC) and related disorders should be provided by a multidisciplinary team experienced with the spectrum of presentations of this disease, with its related disorders, with its complex and fluctuating manifestations, and with cutting edge advances occurring in the field. Involvement in research to advance the understanding of this disease and partnership with international collaborators and family organizations are also important. An example of such an approach is that of The Duke AHC and Related Disorders Multi-Disciplinary Clinic and Program, which, in partnership with the Cure AHC Foundation, has developed and applied this approach to patients seen since early 2013. The program provides comprehensive care and education directly to AHC patients and their families and collaborates with referring physicians on the care of patients with AHC whether evaluated at Duke clinics or not. It also is involved in clinical and basic research and in collaborations with other International AHC Research Consortium (IAHCRC) partners. The clinic is staffed with physicians and experts from Neurology, Cardiology, Child Behavioral Health, Medical Genetics, Neurodevelopment, Neuropsychology, Nursing, Physical and Occupational Therapies, Psychiatry, Sleep Medicine, and Speech/Language Pathology. Patients are seen either for full comprehensive evaluations that last several days or for targeted evaluations with one or few appointments.
Collapse
Affiliation(s)
- Melanie Masoud
- Duke University Children Health Center, 2301 Erwin Rd., Durham, NC, 27710, USA
| | - Lyndsey Prange
- Duke University Children Health Center, 2301 Erwin Rd., Durham, NC, 27710, USA
| | | | - Arsen Hunanyan
- Duke University Children Health Center, 2301 Erwin Rd., Durham, NC, 27710, USA
| | - Mohamad A Mikati
- Duke University Children Health Center, 2301 Erwin Rd., Durham, NC, 27710, USA.
| |
Collapse
|
56
|
Holm R, Toustrup-Jensen MS, Einholm AP, Schack VR, Andersen JP, Vilsen B. Neurological disease mutations of α3 Na +,K +-ATPase: Structural and functional perspectives and rescue of compromised function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1807-1828. [PMID: 27577505 DOI: 10.1016/j.bbabio.2016.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 11/26/2022]
Abstract
Na+,K+-ATPase creates transmembrane ion gradients crucial to the function of the central nervous system. The α-subunit of Na+,K+-ATPase exists as four isoforms (α1-α4). Several neurological phenotypes derive from α3 mutations. The effects of some of these mutations on Na+,K+-ATPase function have been studied in vitro. Here we discuss the α3 disease mutations as well as information derived from studies of corresponding mutations of α1 in the light of the high-resolution crystal structures of the Na+,K+-ATPase. A high proportion of the α3 disease mutations occur in the transmembrane sector and nearby regions essential to Na+ and K+ binding. In several cases the compromised function can be traced to disturbance of the Na+ specific binding site III. Recently, a secondary mutation was found to rescue the defective Na+ binding caused by a disease mutation. A perspective is that it may be possible to develop an efficient pharmaceutical mimicking the rescuing effect.
Collapse
Affiliation(s)
- Rikke Holm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | | | - Anja P Einholm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Vivien R Schack
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Jens P Andersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
57
|
Holm TH, Isaksen TJ, Glerup S, Heuck A, Bøttger P, Füchtbauer EM, Nedergaard S, Nyengaard JR, Andreasen M, Nissen P, Lykke-Hartmann K. Cognitive deficits caused by a disease-mutation in the α3 Na(+)/K(+)-ATPase isoform. Sci Rep 2016; 6:31972. [PMID: 27549929 PMCID: PMC4994072 DOI: 10.1038/srep31972] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 12/01/2022] Open
Abstract
The Na+/K+-ATPases maintain Na+ and K+ electrochemical gradients across the plasma membrane, a prerequisite for electrical excitability and secondary transport in neurons. Autosomal dominant mutations in the human ATP1A3 gene encoding the neuron-specific Na+/K+-ATPase α3 isoform cause different neurological diseases, including rapid-onset dystonia-parkinsonism (RDP) and alternating hemiplegia of childhood (AHC) with overlapping symptoms, including hemiplegia, dystonia, ataxia, hyperactivity, epileptic seizures, and cognitive deficits. Position D801 in the α3 isoform is a mutational hotspot, with the D801N, D801E and D801V mutations causing AHC and the D801Y mutation causing RDP or mild AHC. Despite intensive research, mechanisms underlying these disorders remain largely unknown. To study the genotype-to-phenotype relationship, a heterozygous knock-in mouse harboring the D801Y mutation (α3+/D801Y) was generated. The α3+/D801Y mice displayed hyperactivity, increased sensitivity to chemically induced epileptic seizures and cognitive deficits. Interestingly, no change in the excitability of CA1 pyramidal neurons in the α3+/D801Y mice was observed. The cognitive deficits were rescued by administration of the benzodiazepine, clonazepam, a GABA positive allosteric modulator. Our findings reveal the functional significance of the Na+/K+-ATPase α3 isoform in the control of spatial learning and memory and suggest a link to GABA transmission.
Collapse
Affiliation(s)
- Thomas Hellesøe Holm
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Toke Jost Isaksen
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Simon Glerup
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark
| | - Anders Heuck
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Pernille Bøttger
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark
| | | | - Steen Nedergaard
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Laboratory, Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus University, DK-8000 Aarhus, Denmark
| | - Mogens Andreasen
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus, Denmark.,Danish Research Institute for Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership of Molecular Medicine, Aarhus University, Department of Molecular Biology and Genetics and Department of Biomedicine, DK-8000 Aarhus C, Denmark
| | - Karin Lykke-Hartmann
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
58
|
Capuani C, Melone M, Tottene A, Bragina L, Crivellaro G, Santello M, Casari G, Conti F, Pietrobon D. Defective glutamate and K+ clearance by cortical astrocytes in familial hemiplegic migraine type 2. EMBO Mol Med 2016; 8:967-86. [PMID: 27354390 PMCID: PMC4967947 DOI: 10.15252/emmm.201505944] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Migraine is a common disabling brain disorder. A subtype of migraine with aura (familial hemiplegic migraine type 2: FHM2) is caused by loss‐of‐function mutations in α2 Na+,K+ATPase (α2NKA), an isoform almost exclusively expressed in astrocytes in adult brain. Cortical spreading depression (CSD), the phenomenon that underlies migraine aura and activates migraine headache mechanisms, is facilitated in heterozygous FHM2‐knockin mice with reduced expression of α2NKA. The mechanisms underlying an increased susceptibility to CSD in FHM2 are unknown. Here, we show reduced rates of glutamate and K+ clearance by cortical astrocytes during neuronal activity and reduced density of GLT‐1a glutamate transporters in cortical perisynaptic astrocytic processes in heterozygous FHM2‐knockin mice, demonstrating key physiological roles of α2NKA and supporting tight coupling with GLT‐1a. Using ceftriaxone treatment of FHM2 mutants and partial inhibition of glutamate transporters in wild‐type mice, we obtain evidence that defective glutamate clearance can account for most of the facilitation of CSD initiation in FHM2‐knockin mice, pointing to excessive glutamatergic transmission as a key mechanism underlying the vulnerability to CSD ignition in migraine.
Collapse
Affiliation(s)
- Clizia Capuani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marcello Melone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | - Angelita Tottene
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Luca Bragina
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | | | - Mirko Santello
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
| | - Giorgio Casari
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milano, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy Fondazione di Medicina Molecolare, Università Politecnica delle Marche, Ancona, Italy
| | - Daniela Pietrobon
- Department of Biomedical Sciences, University of Padova, Padova, Italy CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
59
|
Holm TH, Lykke-Hartmann K. Insights into the Pathology of the α3 Na(+)/K(+)-ATPase Ion Pump in Neurological Disorders; Lessons from Animal Models. Front Physiol 2016; 7:209. [PMID: 27378932 PMCID: PMC4906016 DOI: 10.3389/fphys.2016.00209] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/22/2016] [Indexed: 01/08/2023] Open
Abstract
The transmembrane Na(+)-/K(+) ATPase is located at the plasma membrane of all mammalian cells. The Na(+)-/K(+) ATPase utilizes energy from ATP hydrolysis to extrude three Na(+) cations and import two K(+) cations into the cell. The minimum constellation for an active Na(+)-/K(+) ATPase is one alpha (α) and one beta (β) subunit. Mammals express four α isoforms (α1-4), encoded by the ATP1A1-4 genes, respectively. The α1 isoform is ubiquitously expressed in the adult central nervous system (CNS) whereas α2 primarily is expressed in astrocytes and α3 in neurons. Na(+) and K(+) are the principal ions involved in action potential propagation during neuronal depolarization. The α1 and α3 Na(+)-/K(+) ATPases are therefore prime candidates for restoring neuronal membrane potential after depolarization and for maintaining neuronal excitability. The α3 isoform has approximately four-fold lower Na(+) affinity compared to α1 and is specifically required for rapid restoration of large transient increases in [Na(+)]i. Conditions associated with α3 deficiency are therefore likely aggravated by suprathreshold neuronal activity. The α3 isoform been suggested to support re-uptake of neurotransmitters. These processes are required for normal brain activity, and in fact autosomal dominant de novo mutations in ATP1A3 encoding the α3 isoform has been found to cause the three neurological diseases Rapid Onset Dystonia Parkinsonism (RDP), Alternating Hemiplegia of Childhood (AHC), and Cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS). All three diseases cause acute onset of neurological symptoms, but the predominant neurological manifestations differ with particularly early onset of hemiplegic/dystonic episodes and mental decline in AHC, ataxic encephalopathy and impairment of vision and hearing in CAPOS syndrome and late onset of dystonia/parkinsonism in RDP. Several mouse models have been generated to study the in vivo consequences of Atp1a3 modulation. The different mice show varying degrees of hyperactivity, gait problems, and learning disability as well as stress-induced seizures. With the advent of several Atp1a3-gene or chemically modified animal models that closely phenocopy many aspects of the human disorders, we will be able to reach a much better understanding of the etiology of RDP, AHC, and CAPOS syndrome.
Collapse
Affiliation(s)
- Thomas H. Holm
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus UniversityAarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus UniversityAarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
60
|
Kinoshita PF, Leite JA, Orellana AMM, Vasconcelos AR, Quintas LEM, Kawamoto EM, Scavone C. The Influence of Na(+), K(+)-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. Front Physiol 2016; 7:195. [PMID: 27313535 PMCID: PMC4890531 DOI: 10.3389/fphys.2016.00195] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022] Open
Abstract
Decreased Na(+), K(+)-ATPase (NKA) activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β, and γ, with four distinct isoforms of the catalytic α subunit (α1-4). Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS), the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2), while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC), as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS) syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2∕3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP) and cGMP-dependent protein kinase (PKG) pathway. Glutamate, through nitric oxide synthase (NOS), cGMP and PKG, stimulates brain α2∕3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA) receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid-β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging.
Collapse
Affiliation(s)
- Paula F. Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Jacqueline A. Leite
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Ana Maria M. Orellana
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Andrea R. Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Luis E. M. Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Elisa M. Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| |
Collapse
|
61
|
Holt RL, Arehart E, Hunanyan A, Fainberg NA, Mikati MA. Pediatric Sudden Unexpected Death in Epilepsy: What Have we Learned from Animal and Human Studies, and Can we Prevent it? Semin Pediatr Neurol 2016; 23:127-33. [PMID: 27544469 DOI: 10.1016/j.spen.2016.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Several factors, such as epilepsy syndrome, poor compliance, and increased seizure frequency increase the risks of sudden unexpected death in epilepsy (SUDEP). Animal models have revealed that the mechanisms of SUDEP involve initially a primary event, often a seizure of sufficient type and severity, that occurs in a brain, which is vulnerable to SUDEP due to either genetic or antecedent factors. This primary event initiates a cascade of secondary events starting, as some models indicate, with cortical spreading depolarization that propagates to the brainstem where it results in autonomic dysfunction. Intrinsic abnormalities in brainstem serotonin, adenosine, sodium-postassium ATPase, and respiratory-control systems are also important. The tertiary event, which results from the above dysfunction, consists of either lethal central apnea, pulmonary edema, or arrhythmia. Currently, it is necessary to (1) continue researching SUDEP mechanisms, (2) work on reducing SUDEP risk factors, and (3) address the major need to counsel families about SUDEP.
Collapse
Affiliation(s)
- Rebecca L Holt
- Division of Pediatric Neurology, Lucile Packard Children's Hospital at Stanford University, Palo Alto, CA
| | - Eric Arehart
- Division of Pediatric Neurology, Children's Health Center, Duke University Medical Center, Durham, NC
| | - Arsen Hunanyan
- Division of Pediatric Neurology, Children's Health Center, Duke University Medical Center, Durham, NC
| | - Nina A Fainberg
- Division of Pediatric Neurology, Children's Health Center, Duke University Medical Center, Durham, NC
| | - Mohamad A Mikati
- Division of Pediatric Neurology, Children's Health Center, Duke University Medical Center, Durham, NC.
| |
Collapse
|
62
|
Larsen BR, Stoica A, MacAulay N. Managing Brain Extracellular K(+) during Neuronal Activity: The Physiological Role of the Na(+)/K(+)-ATPase Subunit Isoforms. Front Physiol 2016; 7:141. [PMID: 27148079 PMCID: PMC4841311 DOI: 10.3389/fphys.2016.00141] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
During neuronal activity in the brain, extracellular K+ rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K+ is the Na+/K+-ATPase, although the relative involvement and physiological impact of the different subunit isoform compositions of the Na+/K+-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K+ from neurons, whereas the neurons themselves become the primary K+ absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na+/K+-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic characteristics required to fulfill their distinct physiological roles in clearance of K+ from the extracellular space in the face of neuronal activity. Understanding the nature, impact and effects of the various Na+/K+-ATPase isoform combinations in K+ management in the central nervous system might reveal insights into pathological conditions such as epilepsy, migraine, and spreading depolarization following cerebral ischemia. In addition, particular neurological diseases occur as a result of mutations in the α2- (familial hemiplegic migraine type 2) and α3 isoforms (rapid-onset dystonia parkinsonism/alternating hemiplegia of childhood). This review addresses aspects of the Na+/K+-ATPase in the regulation of extracellular K+ in the central nervous system as well as the related pathophysiology. Understanding the physiological setting in non-pathological tissue would provide a better understanding of the pathological events occurring during disease.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | - Anca Stoica
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
63
|
Stern WM, Desikan M, Hoad D, Jaffer F, Strigaro G, Sander JW, Rothwell JC, Sisodiya SM. Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study. PLoS One 2016; 11:e0151667. [PMID: 26999520 PMCID: PMC4801356 DOI: 10.1371/journal.pone.0151667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
Background Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syndrome; its genetic basis has recently been established. Its characteristic features include typically-unprovoked episodes of hemiplegia and other transient or more persistent neurological abnormalities. Methods We used transcranial magnetic stimulation to assess the effect of the condition on motor cortex neurophysiology both during and between attacks of hemiplegia. Nine people with alternating hemiplegia of childhood were recruited; eight were successfully tested using transcranial magnetic stimulation to study motor cortex excitability, using single and paired pulse paradigms. For comparison, data from ten people with epilepsy but not alternating hemiplegia, and ten healthy controls, were used. Results One person with alternating hemiplegia tested during the onset of a hemiplegic attack showed progressively diminishing motor cortex excitability until no response could be evoked; a second person tested during a prolonged bilateral hemiplegic attack showed unusually low excitability. Three people tested between attacks showed asymptomatic variation in cortical excitability, not seen in controls. Paired pulse paradigms, which probe intracortical inhibitory and excitatory circuits, gave results similar to controls. Conclusions We report symptomatic and asymptomatic fluctuations in motor cortex excitability in people with alternating hemiplegia of childhood, not seen in controls. We propose that such fluctuations underlie hemiplegic attacks, and speculate that the asymptomatic fluctuation we detected may be useful as a biomarker for disease activity.
Collapse
Affiliation(s)
- William M. Stern
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
- Epilepsy Society, Chalfont St Peter, SL9 0RJ, United Kingdom
| | - Mahalekshmi Desikan
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - Damon Hoad
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - Fatima Jaffer
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Gionata Strigaro
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Josemir W. Sander
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
- Epilepsy Society, Chalfont St Peter, SL9 0RJ, United Kingdom
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - John C. Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - Sanjay M. Sisodiya
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, United Kingdom
- Epilepsy Society, Chalfont St Peter, SL9 0RJ, United Kingdom
- * E-mail:
| |
Collapse
|
64
|
Kirshenbaum GS, Dachtler J, Roder JC, Clapcote SJ. Characterization of cognitive deficits in mice with an alternating hemiplegia-linked mutation. Behav Neurosci 2015; 129:822-31. [PMID: 26501181 PMCID: PMC4655871 DOI: 10.1037/bne0000097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 07/09/2015] [Accepted: 08/03/2015] [Indexed: 11/21/2022]
Abstract
Cognitive impairment is a prominent feature in a range of different movement disorders. Children with Alternating Hemiplegia of Childhood are prone to developmental delay, with deficits in cognitive functioning becoming progressively more evident as they grow older. Heterozygous mutations of the ATP1A3 gene, encoding the Na+,K+-ATPase α3 subunit, have been identified as the primary cause of Alternating Hemiplegia. Heterozygous Myshkin mice have an amino acid change (I810N) in Na+,K+-ATPase α3 that is also found in Alternating Hemiplegia. To investigate whether Myshkin mice exhibit learning and memory deficits resembling the cognitive impairments of patients with Alternating Hemiplegia, we subjected them to a range of behavioral tests that interrogate various cognitive domains. Myshkin mice showed impairments in spatial memory, spatial habituation, locomotor habituation, object recognition, social recognition, and trace fear conditioning, as well as in the visible platform version of the Morris water maze. Increasing the duration of training ameliorated the deficit in social recognition but not in spatial habituation. The deficits of Myshkin mice in all of the learning and memory tests used are consistent with the cognitive impairment of the vast majority of AHC patients. These mice could thus help advance our understanding of the underlying neural mechanisms influencing cognitive impairment in patients with ATP1A3-related disorders.
Collapse
Affiliation(s)
| | | | - John C Roder
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital
| | | |
Collapse
|
65
|
Kirshenbaum GS, Dachtler J, Roder JC, Clapcote SJ. Transgenic rescue of phenotypic deficits in a mouse model of alternating hemiplegia of childhood. Neurogenetics 2015; 17:57-63. [PMID: 26463346 PMCID: PMC4701769 DOI: 10.1007/s10048-015-0461-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/16/2015] [Indexed: 11/13/2022]
Abstract
Missense mutations in ATP1A3 encoding Na+,K+-ATPase α3 are the primary cause of alternating hemiplegia of childhood (AHC). Most ATP1A3 mutations in AHC lie within a cluster in or near transmembrane α-helix TM6, including I810N that is also found in the Myshkin mouse model of AHC. These mutations all substantially reduce Na+,K+-ATPase α3 activity. Herein, we show that Myshkin mice carrying a wild-type Atp1a3 transgene that confers a 16 % increase in brain-specific total Na+,K+-ATPase activity show significant phenotypic improvements compared with non-transgenic Myshkin mice. Interventions to increase the activity of wild-type Na+,K+-ATPase α3 in AHC patients should be investigated further.
Collapse
Affiliation(s)
- Greer S Kirshenbaum
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University Avenue, Toronto, ON, M5G 1X5, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - James Dachtler
- School of Biomedical Sciences, Garstang Building, University of Leeds, Leeds, LS2 9JT, UK
| | - John C Roder
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University Avenue, Toronto, ON, M5G 1X5, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Steven J Clapcote
- School of Biomedical Sciences, Garstang Building, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
66
|
Termsarasab P, Yang AC, Frucht SJ. Intermediate Phenotypes of ATP1A3 Mutations: Phenotype-Genotype Correlations. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2015; 5:336. [PMID: 26417536 PMCID: PMC4578012 DOI: 10.7916/d8mg7ns8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/25/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND ATP1A3-related disorders include rapid-onset dystonia-parkinsonism (RDP or DYT12), alternating hemiplegia of childhood (AHC), and CAPOS syndrome (Cerebellar ataxia, Areflexia, Pes cavus, Optic atrophy, and Sensorineural hearing loss). CASE REPORT We report two cases with intermediate forms between RDP and AHC. Patient 1 initially presented with the AHC phenotype, but the RDP phenotype emerged at age 14 years. The second patient presented with levodopa-responsive paroxysmal oculogyria, a finding never before reported in ATP1A3-related disorders. Genetic testing confirmed heterozygous changes in the ATP1A3 gene in both patients, one of them novel. DISCUSSION Intermediate phenotypes of RDP and AHC support the concept that these two disorders are part of a spectrum. We add our cases to the phenotype-genotype correlations of ATP1A3-related disorders.
Collapse
Affiliation(s)
- Pichet Termsarasab
- Movement Disorder Division, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy C Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven J Frucht
- Movement Disorder Division, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
67
|
Jaffer F, Avbersek A, Vavassori R, Fons C, Campistol J, Stagnaro M, De Grandis E, Veneselli E, Rosewich H, Gianotta M, Zucca C, Ragona F, Granata T, Nardocci N, Mikati M, Helseth AR, Boelman C, Minassian BA, Johns S, Garry SI, Scheffer IE, Gourfinkel-An I, Carrilho I, Aylett SE, Parton M, Hanna MG, Houlden H, Neville B, Kurian MA, Novy J, Sander JW, Lambiase PD, Behr ER, Schyns T, Arzimanoglou A, Cross JH, Kaski JP, Sisodiya SM. Faulty cardiac repolarization reserve in alternating hemiplegia of childhood broadens the phenotype. Brain 2015; 138:2859-74. [PMID: 26297560 PMCID: PMC4671482 DOI: 10.1093/brain/awv243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/30/2015] [Indexed: 12/29/2022] Open
Abstract
Alternating hemiplegia of childhood is a rare disorder caused by de novo mutations in the ATP1A3 gene, expressed in neurons and cardiomyocytes. As affected individuals may survive into adulthood, we use the term 'alternating hemiplegia'. The disorder is characterized by early-onset, recurrent, often alternating, hemiplegic episodes; seizures and non-paroxysmal neurological features also occur. Dysautonomia may occur during hemiplegia or in isolation. Premature mortality can occur in this patient group and is not fully explained. Preventable cardiorespiratory arrest from underlying cardiac dysrhythmia may be a cause. We analysed ECG recordings of 52 patients with alternating hemiplegia from nine countries: all had whole-exome, whole-genome, or direct Sanger sequencing of ATP1A3. Data on autonomic dysfunction, cardiac symptoms, medication, and family history of cardiac disease or sudden death were collected. All had 12-lead electrocardiogram recordings available for cardiac axis, cardiac interval, repolarization pattern, and J-point analysis. Where available, historical and prolonged single-lead electrocardiogram recordings during electrocardiogram-videotelemetry were analysed. Half the cohort (26/52) had resting 12-lead electrocardiogram abnormalities: 25/26 had repolarization (T wave) abnormalities. These abnormalities were significantly more common in people with alternating hemiplegia than in an age-matched disease control group of 52 people with epilepsy. The average corrected QT interval was significantly shorter in people with alternating hemiplegia than in the disease control group. J wave or J-point changes were seen in six people with alternating hemiplegia. Over half the affected cohort (28/52) had intraventricular conduction delay, or incomplete right bundle branch block, a much higher proportion than in the normal population or disease control cohort (P = 0.0164). Abnormalities in alternating hemiplegia were more common in those ≥16 years old, compared with those <16 (P = 0.0095), even with a specific mutation (p.D801N; P = 0.045). Dynamic, beat-to-beat or electrocardiogram-to-electrocardiogram, changes were noted, suggesting the prevalence of abnormalities was underestimated. Electrocardiogram changes occurred independently of seizures or plegic episodes. Electrocardiogram abnormalities are common in alternating hemiplegia, have characteristics reflecting those of inherited cardiac channelopathies and most likely amount to impaired repolarization reserve. The dynamic electrocardiogram and neurological features point to periodic systemic decompensation in ATP1A3-expressing organs. Cardiac dysfunction may account for some of the unexplained premature mortality of alternating hemiplegia. Systematic cardiac investigation is warranted in alternating hemiplegia of childhood, as cardiac arrhythmic morbidity and mortality are potentially preventable.
Collapse
Affiliation(s)
- Fatima Jaffer
- 1 MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Andreja Avbersek
- 3 NIHR UCLH Biomedical Research Centre Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK 4 Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| | - Rosaria Vavassori
- 5 A.I.S.EA Onlus, Via Sernovella, 37 - Verderio Superiore, 23878 Lecco, Italy
| | - Carmen Fons
- 6 Paediatric Neurology Department, Hospital Sant Joan de Déu, P° de Sant Joan de Déu, 2 08950 Esplugues de Llobregat, Barcelona University, Barcelona, Spain
| | - Jaume Campistol
- 6 Paediatric Neurology Department, Hospital Sant Joan de Déu, P° de Sant Joan de Déu, 2 08950 Esplugues de Llobregat, Barcelona University, Barcelona, Spain
| | - Michela Stagnaro
- 7 Child Neuropsychiatry Unit, Istituto Giannina Gaslini, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children's Sciences, Istituto Giannina Gaslini, Largo Gaslini 5, 26148, University of Genoa, Genoa, Italy
| | - Elisa De Grandis
- 7 Child Neuropsychiatry Unit, Istituto Giannina Gaslini, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children's Sciences, Istituto Giannina Gaslini, Largo Gaslini 5, 26148, University of Genoa, Genoa, Italy
| | - Edvige Veneselli
- 7 Child Neuropsychiatry Unit, Istituto Giannina Gaslini, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children's Sciences, Istituto Giannina Gaslini, Largo Gaslini 5, 26148, University of Genoa, Genoa, Italy
| | - Hendrik Rosewich
- 8 University Medical Center Göttingen, Georg August University, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Georg August University, Robert Koch Strasse 40, 37099 Göttingen, Germany
| | - Melania Gianotta
- 9 Child Neurology Unit IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 3, 40139 Bologna, Italy
| | - Claudio Zucca
- 10 Clinical Neurophysiology Unit, IRCCS "E. Medea", Via Don L. Monza 20, 23842 Bosisio Parini (LC), Italy
| | - Francesca Ragona
- 11 Department of Pediatric Neuroscience, IRCCS Foundation Neurological Institute C. Besta, Via Celoria 11, 20133 Milano, Italy
| | - Tiziana Granata
- 11 Department of Pediatric Neuroscience, IRCCS Foundation Neurological Institute C. Besta, Via Celoria 11, 20133 Milano, Italy
| | - Nardo Nardocci
- 11 Department of Pediatric Neuroscience, IRCCS Foundation Neurological Institute C. Besta, Via Celoria 11, 20133 Milano, Italy
| | - Mohamed Mikati
- 12 Division of Paediatric Neurology, Duke University, T0913J Children Health Centre, Duke University Medical Centre, Durham, USA
| | - Ashley R Helseth
- 12 Division of Paediatric Neurology, Duke University, T0913J Children Health Centre, Duke University Medical Centre, Durham, USA
| | - Cyrus Boelman
- 13 Division of Neurology, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, 555 University Avenue, Toronto, Ontario, Canada, M5G 1X8
| | - Berge A Minassian
- 13 Division of Neurology, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, 555 University Avenue, Toronto, Ontario, Canada, M5G 1X8
| | - Sophia Johns
- 14 Inherited Cardiovascular Diseases Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, and Institute of Cardiovascular Science, University College London, London, WC1N 3JH, UK
| | - Sarah I Garry
- 15 Florey Institute of Neurosciences and Mental Health, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Ingrid E Scheffer
- 15 Florey Institute of Neurosciences and Mental Health, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Isabelle Gourfinkel-An
- 16 Centre de reference epilepsies rares et Sclérose tubéreuse de Bourneville (site Parisien adolescents-adultes), Hôpital Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital 75651 Paris cedex 13, France
| | - Ines Carrilho
- 17 Neuropediatric Department Centro Hospitalar do Porto, Rua da Boavista, 8274050-111, Porto, Portugal
| | - Sarah E Aylett
- 18 Clinical Neurosciences, Developmental Neuroscience Programme, UCL Institute of Child Health, & Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Matthew Parton
- 1 MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Michael G Hanna
- 1 MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Henry Houlden
- 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Brian Neville
- 18 Clinical Neurosciences, Developmental Neuroscience Programme, UCL Institute of Child Health, & Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Manju A Kurian
- 19 Molecular Neurosciences, Developmental Neurosciences Programme, UCL Institute of Child Health and Department of Neurology, Great Ormond Street Hospital, London, London, WC1N 3JH, UK
| | - Jan Novy
- 3 NIHR UCLH Biomedical Research Centre Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK 4 Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| | - Josemir W Sander
- 3 NIHR UCLH Biomedical Research Centre Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK 4 Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| | - Pier D Lambiase
- 20 Department of Cardiac Electrophysiology, The Heart Hospital, Institute of Cardiovascular Science, University College London, 16-18 Westmoreland St, London W1G 8PH, UK
| | - Elijah R Behr
- 21 Cardiac and Cell Sciences Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Tsveta Schyns
- 22 European Network for Research on Alternating Hemiplegia, ENRAH, Brussels, Belgium
| | - Alexis Arzimanoglou
- 23 Epilepsy, Sleep and Paediatric Neurophysiology Department (ESEFNP), University Hospitals of Lyon (HCL), and DYCOG team, Lyon Neuroscience Research Centre (CRNL), INSERM U1028; CNRS UMR 5292, Lyon, France
| | - J Helen Cross
- 18 Clinical Neurosciences, Developmental Neuroscience Programme, UCL Institute of Child Health, & Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK 24 Young Epilepsy, St. Piers Lane, Lingfield, Surrey RH7 6PW, UK
| | - Juan P Kaski
- 14 Inherited Cardiovascular Diseases Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, and Institute of Cardiovascular Science, University College London, London, WC1N 3JH, UK
| | - Sanjay M Sisodiya
- 3 NIHR UCLH Biomedical Research Centre Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK 4 Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| |
Collapse
|