51
|
Xiao L, do Carmo LS, Foss JD, Chen W, Harrison DG. Sympathetic Enhancement of Memory T-Cell Homing and Hypertension Sensitization. Circ Res 2020; 126:708-721. [PMID: 31928179 PMCID: PMC8253247 DOI: 10.1161/circresaha.119.314758] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/10/2019] [Indexed: 01/07/2023]
Abstract
RATIONALE Effector memory T lymphocytes (TEM cells) exacerbate hypertension in response to repeated hypertensive stimuli. These cells reside in the bone marrow for prolonged periods and can be reactivated on reexposure to the hypertensive stimulus. OBJECTIVE Because hypertension is associated with increased sympathetic outflow to the bone marrow, we hypothesized that sympathetic nerves regulate accumulation and reactivation of bone marrow-residing hypertension-specific TEM cells. METHODS AND RESULTS Using unilateral superior cervical ganglionectomy in wild-type C57BL/6 mice, we showed that sympathetic nerves create a bone marrow environment that supports residence of hypertension-specific CD8+ T cells. These cells, defined by their proliferative response on coculture with dendritic cells from Ang (angiotensin) II-infused mice, were reduced in denervated compared with innervated bone of Ang II-infused mice. Adoptively transferred CD8+ T cells from Ang II-infused mice preferentially homed to innervated compared with denervated bone. In contrast, ovalbumin responsive T cells from OT-I mice did not exhibit this preferential homing. Increasing superior cervical ganglion activity by activating Gq-coupled designer receptor exclusively activated by designer drug augmented CD8+ TEM bone marrow accumulation. Adoptive transfer studies using mice lacking β2AR (β2 adrenergic receptors) indicate that β2AR in the bone marrow niche, rather than T-cell β2AR is critical for TEM cell homing. Inhibition of global sympathetic outflow using Gi-coupled DREADD (designer receptor exclusively activated by designer drug) injected into the rostral ventrolateral medulla or treatment with a β2AR antagonist reduced hypertension-specific CD8+ TEM cells in the bone marrow and reduced the hypertensive response to a subsequent response to low dose Ang II. CONCLUSIONS Sympathetic nerves contribute to the homing and survival of hypertension-specific TEM cells in the bone marrow after they are formed in hypertension. Inhibition of sympathetic nerve activity and β2AR blockade reduces these cells and prevents the blood pressure elevation and renal inflammation on reexposure to hypertension stimuli.
Collapse
Affiliation(s)
- Liang Xiao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37205
| | - Luciana Simao do Carmo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37205
| | - Jason D Foss
- Plato BioPharma, 7581 W 103rd Ave #300, Westminster, CO 80021
| | - Wei Chen
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37205
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37205
| |
Collapse
|
52
|
New Insights into Mechanisms of Long-term Protective Anti-tumor Immunity Induced by Cancer Vaccines Modified by Virus Infection. Biomedicines 2020; 8:biomedicines8030055. [PMID: 32155856 PMCID: PMC7148465 DOI: 10.3390/biomedicines8030055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
The topic is how to achieve long-term protective anti-tumor immunity by anti-cancer vaccination and what are its mechanisms. Cancer vaccines should instruct the immune system regarding relevant cancer targets and contain signals for innate immunity activation. Of central importance is T-cell mediated immunity and thus a detailed understanding of cognate interactions between tumor antigen (TA)-specific T cells and TA-presenting dendritic cells. Microbes and their associated molecular patterns initiate early inflammatory defense reactions that can contribute to the activation of antigen-presenting cells (APCs) and to costimulation of T cells. The concommitant stimulation of naive TA-specific CD4+ and CD8+ T cells with TAs and costimulatory signals occurs in T-APC clusters that generate effectors, such as cytotoxic T lymphocytes and T cell mediated immunological memory. Information about how such memory can be maintained over long times is updated. The role that the bone marrow with its specialized niches plays for the survival of memory T cells is emphasized. Examples are presented that demonstrate long-term protective anti-tumor immunity can be achieved by post-operative vaccination with autologous cancer vaccines that are modified by virus infection.
Collapse
|
53
|
Zehentmeier S, Pereira JP. Cell circuits and niches controlling B cell development. Immunol Rev 2020; 289:142-157. [PMID: 30977190 DOI: 10.1111/imr.12749] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
Studies over the last decade uncovered overlapping niches for hematopoietic stem cells (HSCs), multipotent progenitor cells, common lymphoid progenitors, and early B cell progenitors. HSC and lymphoid niches are predominantly composed by mesenchymal progenitor cells (MPCs) and by a small subset of endothelial cells. Niche cells create specialized microenvironments through the concomitant production of short-range acting cell-fate determining cytokines such as interleukin (IL)-7 and stem cell factor and the potent chemoattractant C-X-C motif chemokine ligand 12. This type of cellular organization allows for the cross-talk between hematopoietic stem and progenitor cells with niche cells, such that niche cell activity can be regulated by the quality and quantity of hematopoietic progenitors being produced. For example, preleukemic B cell progenitors and preB acute lymphoblastic leukemias interact directly with MPCs, and downregulate IL-7 expression and the production of non-leukemic lymphoid cells. In this review, we discuss a novel model of B cell development that is centered on cellular circuits formed between B cell progenitors and lymphopoietic niches.
Collapse
Affiliation(s)
- Sandra Zehentmeier
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - João P Pereira
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
54
|
Regulation of Plasma Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1254:63-74. [DOI: 10.1007/978-981-15-3532-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
55
|
Chang HD, Tokoyoda K, Hoyer B, Alexander T, Khodadadi L, Mei H, Dörner T, Hiepe F, Burmester GR, Radbruch A. Pathogenic memory plasma cells in autoimmunity. Curr Opin Immunol 2019; 61:86-91. [PMID: 31675681 PMCID: PMC6908965 DOI: 10.1016/j.coi.2019.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/09/2019] [Accepted: 09/22/2019] [Indexed: 01/06/2023]
Abstract
Memory plasma cells are long-lived but require specialized niches for their survival. Memory plasma cells are refractory to conventional immunosuppression. Pathogenic memory plasma cells represent ‘roadblocks’ to response to conventional therapy. Strategies for (selective) targeting of memory plasma cells are in preclinical and clinical tests.
Collapse
Affiliation(s)
- Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute (DRFZ), Charitéplatz 1, 10117 Berlin, Germany
| | - Koji Tokoyoda
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute (DRFZ), Charitéplatz 1, 10117 Berlin, Germany
| | - Bimba Hoyer
- Universitätsklinikum Schleswig-Holstein, Clinic for Internal Medicine I, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Tobias Alexander
- Charité Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany
| | - Laleh Khodadadi
- Charité Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany
| | - Henrik Mei
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute (DRFZ), Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Dörner
- Charité Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany
| | - Falk Hiepe
- Charité Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany
| | - Gerd-Rüdiger Burmester
- Charité Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute (DRFZ), Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
56
|
Ort MJ, Geissler S, Rakow A, Schoon J. The Allergic Bone Marrow? The Immuno-Capacity of the Human Bone Marrow in Context of Metal-Associated Hypersensitivity Reactions. Front Immunol 2019; 10:2232. [PMID: 31620137 PMCID: PMC6759684 DOI: 10.3389/fimmu.2019.02232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Arthroplasty ranks among the greatest achievements of surgical medicine, with total hip replacement termed “the operation of the century.” Despite its wide success, arthroplasty bears risks, such as local reactions to implant derived wear and corrosion products. Prevalence of allergies across Western society increases and along the number of reported hypersensitivity reactions to orthopedic implant materials. In this context the main focus is on delayed hypersensitivity (DTH). This mechanism is mainly attributed to T cells and an overreaction of the adaptive immune system. Arthroplasty implant materials are in direct contact with bone marrow (BM), which is discussed as a secondary lymphoid organ. However, the mechanisms of sensitization toward implant wear remain elusive. Nickel and cobalt ions can form haptens with native peptides to activate immune cell receptors and are therefore common T helper allergens in cutaneous DTH. The rising prevalence of metal-related allergy in the general population and evidence for the immune-modulating function of BM allow for the assumption hypersensitivity reactions could occur in peri-implant BM. There is evidence that pro-inflammatory factors released during DTH reactions enhance osteoclast activity and inhibit osteoblast function, an imbalance characteristic for osteolysis. Even though some mechanisms are understood, hypersensitivity has remained a diagnosis of exclusion. This review aims to summarize current views on the pathomechanism of DTH in arthroplasty with emphasis on BM and discusses recent advances and future directions for basic research and clinical diagnostics.
Collapse
Affiliation(s)
- Melanie J Ort
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anastasia Rakow
- Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janosch Schoon
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
57
|
Tracing IgE-Producing Cells in Allergic Patients. Cells 2019; 8:cells8090994. [PMID: 31466324 PMCID: PMC6769703 DOI: 10.3390/cells8090994] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Immunoglobulin E (IgE) is the key immunoglobulin in the pathogenesis of IgE associated allergic diseases affecting 30% of the world population. Recent data suggest that allergen-specific IgE levels in serum of allergic patients are sustained by two different mechanisms: inducible IgE production through allergen exposure, and continuous IgE production occurring even in the absence of allergen stimulus that maintains IgE levels. This assumption is supported by two observations. First, allergen exposure induces transient increases of systemic IgE production. Second, reduction in IgE levels upon depletion of IgE from the blood of allergic patients using immunoapheresis is only temporary and IgE levels quickly return to pre-treatment levels even in the absence of allergen exposure. Though IgE production has been observed in the peripheral blood and locally in various human tissues (e.g., nose, lung, spleen, bone marrow), the origin and main sites of IgE production in humans remain unknown. Furthermore, IgE-producing cells in humans have yet to be fully characterized. Capturing IgE-producing cells is challenging not only because current staining technologies are inadequate, but also because the cells are rare, they are difficult to discriminate from cells bearing IgE bound to IgE-receptors, and plasma cells express little IgE on their surface. However, due to the central role in mediating both the early and late phases of allergy, free IgE, IgE-bearing effector cells and IgE-producing cells are important therapeutic targets. Here, we discuss current knowledge and unanswered questions regarding IgE production in allergic patients as well as possible therapeutic approaches targeting IgE.
Collapse
|
58
|
Naismith E, Pangrazzi L. The impact of oxidative stress, inflammation, and senescence on the maintenance of immunological memory in the bone marrow in old age. Biosci Rep 2019; 39:BSR20190371. [PMID: 31018996 PMCID: PMC6522741 DOI: 10.1042/bsr20190371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
The bone marrow (BM) provides a preferential survival environment for the long-term maintenance of antigen-experienced adaptive immune cells. After the contact with antigens, effector/memory T cells and plasma cell precursors migrate to the BM, in which they can survive within survival niches in an antigen-independent manner. Despite this, the phenotype of adaptive immune cells changes with aging, and BM niches themselves are affected, leading to impaired long-term maintenance of immunological memory in the elderly as a result. Oxidative stress, age-related inflammation (inflammaging), and cellular senescence appear to play a major role in this process. This review will summarize the age-related changes in T and B cell phenotype, and in the BM niches, discussing the possibility that the accumulation of highly differentiated, senescent-like T cells in the BM during aging may cause inflammation in the BM and promote oxidative stress and senescence. In addition, senescent-like T cells may compete for space with other immune cells within the marrow, partially excluding effector/memory T cells and long-lived plasma cells from the niches.
Collapse
Affiliation(s)
- Erin Naismith
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| |
Collapse
|
59
|
Slifka MK, Amanna IJ. Role of Multivalency and Antigenic Threshold in Generating Protective Antibody Responses. Front Immunol 2019; 10:956. [PMID: 31118935 PMCID: PMC6504826 DOI: 10.3389/fimmu.2019.00956] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/15/2019] [Indexed: 12/03/2022] Open
Abstract
Vaccines play a vital role in protecting our communities against infectious disease. Unfortunately, some vaccines provide only partial protection or in some cases vaccine-mediated immunity may wane rapidly, resulting in either increased susceptibility to that disease or a requirement for more booster vaccinations in order to maintain immunity above a protective level. The durability of antibody responses after infection or vaccination appears to be intrinsically determined by the structural biology of the antigen, with multivalent protein antigens often providing more long-lived immunity than monovalent antigens. This forms the basis for the Imprinted Lifespan model describing the differential survival of long-lived plasma cell populations. There are, however, exceptions to this rule with examples of highly attenuated live virus vaccines that are rapidly cleared and elicit only short-lived immunity despite the expression of multivalent surface epitopes. These exceptions have led to the concept that multivalency alone may not reliably determine the duration of protective humoral immune responses unless a minimum number of long-lived plasma cells are generated by reaching an appropriate antigenic threshold of B cell stimulation. Examples of long-term and in some cases, potentially lifelong antibody responses following immunization against human papilloma virus (HPV), Japanese encephalitis virus (JEV), Hepatitis B virus (HBV), and Hepatitis A virus (HAV) provide several lessons in understanding durable serological memory in human subjects. Moreover, studies involving influenza vaccination provide the unique opportunity to compare the durability of hemagglutinin (HA)-specific antibody titers mounted in response to antigenically repetitive whole virus (i.e., multivalent HA), or detergent-disrupted “split” virus, in comparison to the long-term immune responses induced by natural influenza infection. Here, we discuss the underlying mechanisms that may be associated with the induction of protective immunity by long-lived plasma cells and their importance in future vaccine design.
Collapse
Affiliation(s)
- Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Ian J Amanna
- Najít Technologies, Inc., Beaverton, OR, United States
| |
Collapse
|
60
|
Ise W, Kurosaki T. Plasma cell differentiation during the germinal center reaction. Immunol Rev 2019; 288:64-74. [DOI: 10.1111/imr.12751] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Wataru Ise
- Laboratory of Lymphocyte DifferentiationWPI Immunology Frontier Research CenterOsaka University Osaka Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte DifferentiationWPI Immunology Frontier Research CenterOsaka University Osaka Japan
- Laboratory for Lymphocyte DifferentiationRIKEN Center for Integrative Medical Sciences (IMS) Yokohama Japan
| |
Collapse
|
61
|
Siracusa F, Durek P, McGrath MA, Sercan-Alp Ö, Rao A, Du W, Cendón C, Chang HD, Heinz GA, Mashreghi MF, Radbruch A, Dong J. CD69 + memory T lymphocytes of the bone marrow and spleen express the signature transcripts of tissue-resident memory T lymphocytes. Eur J Immunol 2019; 49:966-968. [PMID: 30673129 PMCID: PMC6563480 DOI: 10.1002/eji.201847982] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/11/2018] [Accepted: 01/21/2019] [Indexed: 11/08/2022]
Abstract
It is a matter of current debate whether the bone marrow is a hub for circulating memory T lymphocytes and/or the home of resident memory T lymphocytes. Here we demonstrate for CD69+ murine CD8+ , and CD69+ murine and human CD4+ memory T lymphocytes of the bone marrow, making up between 30 and 60% of bone marrow memory T lymphocytes, that they express the gene expression signature of tissue-resident memory T lymphocytes. This suggests that a substantial proportion of bone marrow memory T lymphocytes are resident. It adds to previous evidence that bone marrow memory T cells are resting in terms of mobility and proliferation, and maintain exclusive long-term memory to distinct, systemic antigens.
Collapse
Affiliation(s)
- Francesco Siracusa
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Pawel Durek
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Mairi A McGrath
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Özen Sercan-Alp
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Anna Rao
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Weijie Du
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Carla Cendón
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Hyun-Dong Chang
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany.,Schwiete-Laboratory for Microbiota and Inflammation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Gitta Anne Heinz
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Andreas Radbruch
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany.,Experimental Rheumatology, Charité University Medicine Berlin, Berlin, Germany
| | - Jun Dong
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| |
Collapse
|
62
|
Davidson-Moncada J, Viboch E, Church SE, Warren SE, Rutella S. Dissecting the Immune Landscape of Acute Myeloid Leukemia. Biomedicines 2018; 6:E110. [PMID: 30477280 PMCID: PMC6316310 DOI: 10.3390/biomedicines6040110] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 01/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a molecularly heterogeneous hematological malignancy with variable response to treatment. Recurring cytogenetic abnormalities and molecular lesions identify AML patient subgroups with different survival probabilities; however, 50⁻70% of AML cases harbor either normal or risk-indeterminate karyotypes. The discovery of better biomarkers of clinical success and failure is therefore necessary to inform tailored therapeutic decisions. Harnessing the immune system against cancer with programmed death-1 (PD-1)-directed immune checkpoint blockade (ICB) and other immunotherapy agents is an effective therapeutic option for several advanced malignancies. However, durable responses have been observed in only a minority of patients, highlighting the need to gain insights into the molecular features that predict response and to also develop more effective and rational combination therapies that address mechanisms of immune evasion and resistance. We will review the state of knowledge of the immune landscape of AML and identify the broad opportunity to further explore this incompletely characterized space. Multiplexed, spatially-resolved immunohistochemistry, flow cytometry/mass cytometry, proteomic and transcriptomic approaches are advancing our understanding of the complexity of AML-immune interactions and are expected to support the design and expedite the delivery of personalized immunotherapy clinical trials.
Collapse
Affiliation(s)
| | - Elena Viboch
- NanoString Technologies Inc., Seattle, WA 98109, USA.
| | | | | | - Sergio Rutella
- John van Geest Cancer Research Center, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| |
Collapse
|
63
|
Tellier J, Nutt SL. Plasma cells: The programming of an antibody‐secreting machine. Eur J Immunol 2018; 49:30-37. [DOI: 10.1002/eji.201847517] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/28/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Julie Tellier
- The Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology University of Melbourne Parkville Victoria Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology University of Melbourne Parkville Victoria Australia
| |
Collapse
|
64
|
Baliu-Piqué M, Verheij MW, Drylewicz J, Ravesloot L, de Boer RJ, Koets A, Tesselaar K, Borghans JAM. Short Lifespans of Memory T-cells in Bone Marrow, Blood, and Lymph Nodes Suggest That T-cell Memory Is Maintained by Continuous Self-Renewal of Recirculating Cells. Front Immunol 2018; 9:2054. [PMID: 30254637 PMCID: PMC6141715 DOI: 10.3389/fimmu.2018.02054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
Memory T-cells are essential to maintain long-term immunological memory. It is widely thought that the bone marrow (BM) plays an important role in the long-term maintenance of memory T-cells. There is controversy however on the longevity and recirculating kinetics of BM memory T-cells. While some have proposed that the BM is a reservoir for long-lived, non-circulating memory T-cells, it has also been suggested to be the preferential site for memory T-cell self-renewal. In this study, we used in vivo deuterium labeling in goats to simultaneously quantify the average turnover rates—and thereby expected lifespans—of memory T-cells from BM, blood and lymph nodes (LN). While the fraction of Ki-67 positive cells, a snapshot marker for recent cell division, was higher in memory T-cells from blood compared to BM and LN, in vivo deuterium labeling revealed no substantial differences in the expected lifespans of memory T-cells between these compartments. Our results support the view that the majority of memory T-cells in the BM are self-renewing as fast as those in the periphery, and are continuously recirculating between the blood, BM, and LN.
Collapse
Affiliation(s)
- Mariona Baliu-Piqué
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Myrddin W Verheij
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Julia Drylewicz
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lars Ravesloot
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Rob J de Boer
- Theoretical Biology, Utrecht University, Utrecht, Netherlands
| | - Ad Koets
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Kiki Tesselaar
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - José A M Borghans
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
65
|
Murine Bone Marrow Niches from Hematopoietic Stem Cells to B Cells. Int J Mol Sci 2018; 19:ijms19082353. [PMID: 30103411 PMCID: PMC6121419 DOI: 10.3390/ijms19082353] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 01/03/2023] Open
Abstract
After birth, the development of hematopoietic cells occurs in the bone marrow. Hematopoietic differentiation is finely tuned by cell-intrinsic mechanisms and lineage-specific transcription factors. However, it is now clear that the bone marrow microenvironment plays an essential role in the maintenance of hematopoietic stem cells (HSC) and their differentiation into more mature lineages. Mesenchymal and endothelial cells contribute to a protective microenvironment called hematopoietic niches that secrete specific factors and establish a direct contact with developing hematopoietic cells. A number of recent studies have addressed in mouse models the specific molecular events that are involved in the cellular crosstalk between hematopoietic subsets and their niches. This has led to the concept that hematopoietic differentiation and commitment towards a given hematopoietic pathway is a dynamic process controlled at least partially by the bone marrow microenvironment. In this review, we discuss the evolving view of murine hematopoietic–stromal cell crosstalk that is involved in HSC maintenance and commitment towards B cell differentiation.
Collapse
|
66
|
Abstract
Memory for antigens once encountered is a hallmark of the immune system of vertebrates, providing us with an immunity adapted to pathogens of our environment. Despite its fundamental relevance, the cells and genes representing immunological memory are still poorly understood. Here we discuss the concept of a circulating, proliferating, and ubiquitous population of effector lymphocytes vs concepts of resting and dormant populations of dedicated memory lymphocytes, distinct from effector lymphocytes and residing in defined tissues, particularly in barrier tissues and in the bone marrow. The lifestyle of memory plasma cells of the bone marrow may serve as a paradigm, showing that persistence of memory lymphocytes is not defined by intrinsic "half-lives", but rather conditional on distinct survival signals provided by dedicated niches. These niches are organized by individual mesenchymal stromal cells. They define the capacity of immunological memory and regulate its homeostasis.
Collapse
Affiliation(s)
- Hyun‐Dong Chang
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
| | - Koji Tokoyoda
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
| | - Andreas Radbruch
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
- Charité University MedicineBerlinGermany
| |
Collapse
|
67
|
Affiliation(s)
- Dirk Homann
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|