51
|
Tan Y, Zhang X, Cheang WS. Isoflavones daidzin and daidzein inhibit lipopolysaccharide-induced inflammation in RAW264.7 macrophages. Chin Med 2022; 17:95. [PMID: 35974408 PMCID: PMC9380348 DOI: 10.1186/s13020-022-00653-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background Inflammation contributes to various diseases and soybeans and legumes are shown to reduce inflammation. However, the bioactive ingredients involved and mechanisms are not completely known. We hypothesized that soy isoflavones daidzin and daidzein exhibit anti-inflammatory effect in lipopolysaccharides (LPS)-stimulated RAW264.7 macrophage cell model and that activation mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways may mediate the effect. Methods Cell viability and nitric oxide (NO) level were determined by 3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Griess reagent respectively. ELISA kits and Western blotting respectively assessed the generations of pro-inflammatory cytokines and protein expressions of signaling molecules. p65 nuclear translocation was determined by immunofluorescence assay. Results The in vitro results showed that both isoflavones did not affect cell viability at the concentrations being tested and significantly reduced levels of NO, pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), and inflammatory indicators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in RAW264.7 cells. Daidzin and daidzein partially suppressed MAPK signaling pathways, reducing the phosphorylation of p38 and ERK; whilst phosphorylation of JNK was mildly but not significantly decreased. For the involvement of NF-κB signaling pathways, daidzin only reduced the phosphorylation of p65 whereas daidzein effectively inhibited the phosphorylation of IKKα/β, IκBα and p65. Daidzin and daidzein inhibited p65 nuclear translocation, comparable with dexamethasone (positive control). Conclusion This study supports the anti-inflammatory effects of isoflavones daidzin and daidzein, which were at least partially mediated through inactivation of MAPK and/or NF-κB signaling pathways in macrophages.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Xutao Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
52
|
Wang Z, Gong J, Wang P, Xiong J, Zhang F, Mao Z. An activatable fluorescent probe enables in vivo evaluation of peroxynitrite levels in rheumatoid arthritis. Talanta 2022; 252:123811. [DOI: 10.1016/j.talanta.2022.123811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
|
53
|
Activation and Pharmacological Regulation of Inflammasomes. Biomolecules 2022; 12:biom12071005. [PMID: 35883561 PMCID: PMC9313256 DOI: 10.3390/biom12071005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammasomes are intracellular signaling complexes of the innate immune system, which is part of the response to exogenous pathogens or physiological aberration. The multiprotein complexes mainly consist of sensor proteins, adaptors, and pro-caspase-1. The assembly of the inflammasome upon extracellular and intracellular cues drives the activation of caspase-1, which processes pro-inflammatory cytokines IL-1β and IL-18 to maturation and gasdermin-D for pore formation, leading to pyroptosis and cytokine release. Inflammasome signaling functions in numerous infectious or sterile inflammatory diseases, including inherited autoinflammatory diseases, metabolic disorders, cardiovascular diseases, cancers, neurodegenerative disorders, and COVID-19. In this review, we summarized current ideas on the organization and activation of inflammasomes, with details on the molecular mechanisms, regulations, and interventions. The recent developments of pharmacological strategies targeting inflammasomes as disease therapeutics were also covered.
Collapse
|
54
|
Yang L, Wang L, Tang Q, Liu Y, Meng C, Sun S, Chong Y, Zhang Y, Feng F. Hsa_circ_0093884 bound to RNA-binding protein RPS3 ameliorates hepatocyte inflammation in anti-tuberculosis drug-induced liver injury by competitively activating SIRT1. Int Immunopharmacol 2022; 110:109018. [PMID: 35816943 DOI: 10.1016/j.intimp.2022.109018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023]
Abstract
Anti-tuberculosis drug-induced liver injury (ADLI) is one of the main factors hindering the efficacy of routine chemotherapy against tuberculosis. Understanding the mechanism of ADLI will aid in the effective treatment of patients with tuberculosis. Recently, we found that the expression of hsa_circ_0093884, a circular RNA derived from the NAD-dependent deacetylase, sirtuin-1 (SIRT1), was down-regulated in ADLI. Hsa_circ_0093884 was negatively correlated with the NLR family pyrin domain containing 3 (NLRP3) inflammasome and its overexpression increased the expression levels of NLRP3, interleukin-1β, and caspase-1. Mechanistically, RNA immunoprecipitation and immunofluorescence assays revealed that the ribosomal protein S3 (RPS3) could bind to hsa_circ_0093884 and SIRT1. Additionally, the expression of hsa_circ_0093884 was positively correlated with that of SIRT1, and the upregulation of hsa_circ_0093884 expression was crucial for the upregulation of SIRT1 expression. We confirmed that the mRNA and protein expression levels of SIRT1 were influenced by hsa_circ_0093884 and RPS3. Furthermore, hsa_circ_0093884 recruited RPS3 to increase SIRT1 mRNA and protein levels. Importantly, we found a marked decrease in the upregulating effect of hsa_circ_0093884 on SIRT1 owing to RPS3 depletion. To the best of our knowledge, this study is the first to reveal that hsa_circ_0093884 regulates SIRT1 expression and inhibits the inflammatory response by binding to RPS3 in ADLI, which may be used to develop novel strategies for ADLI treatment.
Collapse
Affiliation(s)
- Luming Yang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| | - Lin Wang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| | - Qinyan Tang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| | - Yue Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| | - Chunyan Meng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| | - Shufeng Sun
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| | - Yingzhi Chong
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| | - Yiyang Zhang
- Lubei District Center for Disease Control and Prevention, Tangshan City, Tangshan, Hebei, 063000, China.
| | - Fumin Feng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, China; School of Life Science, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| |
Collapse
|
55
|
Chen F, Liu Q. Demystifying phytoconstituent-derived nanomedicines in their immunoregulatory and therapeutic roles in inflammatory diseases. Adv Drug Deliv Rev 2022; 186:114317. [PMID: 35533788 DOI: 10.1016/j.addr.2022.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2022] [Accepted: 04/30/2022] [Indexed: 11/28/2022]
Abstract
In the past decades, phytoconstituents have appeared as critical mediators for immune regulations among various diseases, both in eukaryotes and prokaryotes. These bioactive molecules, showing a broad range of biological functions, would hold tremendous promise for developing new therapeutics. The discovery of phytoconstituents' capability of functionally regulating immune cells and associating cytokines, suppressing systemic inflammation, and remodeling immunity have rapidly promoted the idea of their employment as anti-inflammatory agents. In this review, we discuss various roles of phyto-derived medicines in the field of inflammatory diseases, including chronic inflammation, autoimmune diseases, and acute inflammatory disease such as COVID-19. Nevertheless, traditional phyto-derived medicines often concurred with their clinical administration limitations, such as their lack of cell specificity, inefficient cytoplasmic delivery, and rapid clearance by the immune system. As alternatives, phyto-derived nano-approaches may provide significant benefits. Both unmodified and engineered nanocarriers present the potential to serve as phytoconstituent delivery systems to improve therapeutic physio-chemical properties and pharmacokinetic profiles. Thus, the development of phytoconstituents' nano-delivery designs, their new and perspective approaches for therapeutical applications are elaborated herein.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 216, 1550 Orleans Street, Baltimore, MD 21231, United States.
| |
Collapse
|
56
|
Yin H, Liu N, Sigdel KR, Duan L. Role of NLRP3 Inflammasome in Rheumatoid Arthritis. Front Immunol 2022; 13:931690. [PMID: 35833125 PMCID: PMC9271572 DOI: 10.3389/fimmu.2022.931690] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by multi-articular, symmetrical and invasive arthritis resulting from immune system abnormalities involving T and B lymphocytes. Although significant progress has been made in the understanding of RA pathogenesis, the underlying mechanisms are not fully understood. Recent studies suggest that NLRP3 inflammasome, a regulator of inflammation, might play an important role in the development of RA. There have been increasing clinical and pre-clinical evidence showing the treatment of NLRP3/IL-1β in inflammatory diseases. To provide a foundation for the development of therapeutic strategies, we will briefly summarize the roles of NLRP3 inflammasome in RA and explore its potential clinical treatment.
Collapse
Affiliation(s)
- Hui Yin
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Na Liu
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Keshav Raj Sigdel
- Department of Internal Medicine, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Lihua Duan,
| |
Collapse
|
57
|
Li W, Wang K, Liu Y, Wu H, He Y, Li C, Wang Q, Su X, Yan S, Su W, Zhang Y, Lin N. A Novel Drug Combination of Mangiferin and Cinnamic Acid Alleviates Rheumatoid Arthritis by Inhibiting TLR4/NFκB/NLRP3 Activation-Induced Pyroptosis. Front Immunol 2022; 13:912933. [PMID: 35799788 PMCID: PMC9253268 DOI: 10.3389/fimmu.2022.912933] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022] Open
Abstract
Growing evidence shows that Baihu-Guizhi decoction (BHGZD), a traditional Chinese medicine (TCM)-originated disease-modifying anti-rheumatic prescription, may exert a satisfying clinical efficacy for rheumatoid arthritis (RA) therapy. In our previous studies, we verified its immunomodulatory and anti-inflammatory activities. However, bioactive compounds (BACs) of BHGZD and the underlying mechanisms remain unclear. Herein, an integrative research strategy combining UFLC-Q-TOF-MS/MS, gene expression profiling, network calculation, pharmacokinetic profiling, surface plasmon resonance, microscale thermophoresis, and pharmacological experiments was carried out to identify the putative targets of BHGZD and underlying BACs. After that, both in vitro and in vivo experiments were performed to determine the drug effects and pharmacological mechanisms. As a result, the calculation and functional modularization based on the interaction network of the “RA-related gene–BHGZD effective gene” screened the TLR4/PI3K/AKT/NFκB/NLRP3 signaling-mediated pyroptosis to be one of the candidate effective targets of BHGZD for reversing the imbalance network of “immune-inflammation” during RA progression. In addition, both mangiferin (MG) and cinnamic acid (CA) were identified as representative BACs acting on that target, for the strong binding affinities between compounds and target proteins, good pharmacokinetic features, and similar pharmacological effects to BHGZD. Notably, both BHGZD and the two-BAC combination of MG and CA effectively alleviated the disease severity of the adjuvant-induced arthritis-modified rat model, including elevating pain thresholds, relieving joint inflammation and bone erosion via inhibiting NF-κB via TLR4/PI3K/AKT signaling to suppress the activation of the NLRP3 inflammasome, leading to the downregulation of downstream caspase-1, the reduced release of IL-1β and IL-18, and the modulation of GSDMD-mediated pyroptosis. Consistent data were obtained based on the in vitro pyroptosis cellular models of RAW264.7 and MH7A cells induced by LPS/ATP. In conclusion, these findings offer an evidence that the MG and CA combination identified from BHGZD may interact with TLR4/PI3K/AKT/NFκB signaling to inhibit NLRP3 inflammasome activation and modulate pyroptosis, which provides the novel representative BACs and pharmacological mechanisms of BHGZD against active RA. Our data may shed new light on the mechanisms of the TCM formulas and promote the modernization development of TCM and drug discovery.
Collapse
Affiliation(s)
- Weijie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kexin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan He
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Congchong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shikai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanqiong Zhang, ; Na Lin,
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanqiong Zhang, ; Na Lin,
| |
Collapse
|
58
|
Du X, Li B, Cai Q, Qiao S, Wang Z, Li Z, Li Y, Meng W. D-aspartic acid protects against gingival fibroblasts inflammation by suppressing pyroptosis. Mol Biol Rep 2022; 49:5821-5829. [PMID: 35716284 DOI: 10.1007/s11033-022-07335-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/19/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Peri-implantitis is the main cause of dental implant failure, which is associated with pyroptosis. The roles of D-aspartic acid (D-Asp) on pyroptosis and the mechanism of the protective effect of D-Asp on human gingival fibroblasts (HGFs) remain unknown. This study investigated the effects of D-Asp on the pyroptosis of HGFs induced by high mobility group box 1 protein (HMGB1). METHODS The cytotoxic effects of D-Asp on HGFs was detected by Cell Counting Kit-8 assay, the membrane permeability was investigated by propidium iodide/ Hoechst 33,342 double staining, flow cytometry analysis, and lactate dehydrogenase releasing, The gene and protein expression levels were detected by real-time quantitative PCR, enzyme-linked immunosorbent assay, and Western blot, respectively. RESULTS Cell viability analysis showed that D-Asp ≤ 30 mM had no cytotoxicity to HGFs. HMGB1 drastically raised the membrane permeability of HGFs, while 1/10/30 mM D-Asp suppressed the permeability and remained the integrity of the membrane. HMGB1 promoted the mRNA expression of NLRP3, caspase-1, GSDMD, IL-1β, and IL-18, and the protein expression of IL-1β, IL-18, caspase-1, GSDMD, and NLRP3. CONCLUSIONS With the pretreatment of HGFs with D-Asp of 1/10/30 mM for 24 h, the cell membrane permeability was reduced and the expression of NLRP3, caspase-1, GSDMD, IL-1β, and IL-18 was significantly decreased compared with the HMGB1 group, indicating the competitive antagonism of D-Asp against HMGB1 on the binding with toll-like receptors. Hence, this study may provide a novel insight into preventing pyroptosis and propose a new strategy for the treatment of peri-implantitis.
Collapse
Affiliation(s)
- Xuechun Du
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, 130021, Changchun, Jilin, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, Jilin, China
| | - Baosheng Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, 130021, Changchun, Jilin, China
| | - Qing Cai
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, 130021, Changchun, Jilin, China
| | - Shuwei Qiao
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, 130021, Changchun, Jilin, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, Jilin, China
| | - Zixuan Wang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, 130021, Changchun, Jilin, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, Jilin, China
| | - Zhen Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, 130021, Changchun, Jilin, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, Jilin, China
| | - Yuyang Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, 130021, Changchun, Jilin, China.,Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Weiyan Meng
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, 130021, Changchun, Jilin, China.
| |
Collapse
|
59
|
Effects of Anthraquinones on Immune Responses and Inflammatory Diseases. Molecules 2022; 27:molecules27123831. [PMID: 35744949 PMCID: PMC9230691 DOI: 10.3390/molecules27123831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
The anthraquinones (AQs) and derivatives are widely distributed in nature, including plants, fungi, and insects, with effects of anti-inflammation and anti-oxidation, antibacterial and antiviral, anti-osteoporosis, anti-tumor, etc. Inflammation, including acute and chronic, is a comprehensive response to foreign pathogens under a variety of physiological and pathological processes. AQs could attenuate symptoms and tissue damages through anti-inflammatory or immuno-modulatory effects. The review aims to provide a scientific summary of AQs on immune responses under different pathological conditions, such as digestive diseases, respiratory diseases, central nervous system diseases, etc. It is hoped that the present paper will provide ideas for future studies of the immuno-regulatory effect of AQs and the therapeutic potential for drug development and clinical use of AQs and derivatives.
Collapse
|
60
|
Liu Y, Tao X, Tao J. Strategies of Targeting Inflammasome in the Treatment of Systemic Lupus Erythematosus. Front Immunol 2022; 13:894847. [PMID: 35664004 PMCID: PMC9157639 DOI: 10.3389/fimmu.2022.894847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ dysfunction resulting from the production of multiple autoantibodies and adaptive immune system abnormalities involving T and B lymphocytes. In recent years, inflammasomes have been recognized as an important component of innate immunity and have attracted increasing attention because of their pathogenic role in SLE. In short, inflammasomes regulate the abnormal differentiation of immune cells, modulate pathogenic autoantibodies, and participate in organ damage. However, due to the clinical heterogeneity of SLE, the pathogenic roles of inflammasomes are variable, and thus, the efficacy of inflammasome-targeting therapies is uncertain. To provide a foundation for the development of such therapeutic strategies, in this paper, we review the role of different inflammasomes in the pathogenesis of SLE and their correlation with clinical phenotypes and propose some corresponding treatment strategies.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinyu Tao
- Department of Clinical Medicine "5 + 3" Integration, The First Clinical College, Anhui Medical University, Hefei, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
61
|
The Role of Inflammasomes in Osteoarthritis and Secondary Joint Degeneration Diseases. Life (Basel) 2022; 12:life12050731. [PMID: 35629398 PMCID: PMC9146751 DOI: 10.3390/life12050731] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis is age-related and the most common form of arthritis. The main characteristics of the disease are progressive loss of cartilage and secondary synovial inflammation, which finally result in pain, joint stiffness, and functional disability. Similarly, joint degeneration is characteristic of systemic inflammatory diseases such as rheumatoid arthritis and gout, with the associated secondary type of osteoarthritis. Studies suggest that inflammation importantly contributes to the progression of the disease. Particularly, cytokines TNFα and IL-1β drive catabolic signaling in affected joints. IL-1β is a product of inflammasome activation. Inflammasomes are inflammatory multiprotein complexes that propagate inflammation in various autoimmune and autoinflammatory conditions through cell death and the release of inflammatory cytokines and damage-associated molecule patterns. In this article, we review genetic, marker, and animal studies that establish inflammasomes as important drivers of secondary arthritis and discuss the current evidence for inflammasome involvement in primary osteoarthritis. The NLRP3 inflammasome has a significant role in the development of secondary osteoarthritis, and several studies have provided evidence of its role in the development of primary osteoarthritis, while other inflammasomes cannot be excluded. Inflammasome-targeted therapeutic options might thus provide a promising strategy to tackle these debilitating diseases.
Collapse
|
62
|
Inflammasome Activation in the Hip Synovium of Rapidly Destructive Coxopathy Patients and Its Relationship with the Development of Synovitis and Bone Loss. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:794-804. [PMID: 35292262 DOI: 10.1016/j.ajpath.2022.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/20/2022] [Accepted: 02/11/2022] [Indexed: 10/18/2022]
Abstract
Rapidly destructive coxopathy (RDC), a rare disease of unknown etiology, is characterized by the rapid destruction of the hip joint. In the current study, the potential involvement of inflammasome signaling in the progression of RDC was investigated. Histopathologic changes and the gene expression of inflammasome activation markers in hip synovial tissues collected from patients with RDC were evaluated and compared with those of osteoarthritis and osteonecrosis of the femoral head patients. The synovial tissues of patients with RDC exhibited remarkable increases in the number of infiltrated macrophages and osteoclasts, and the expression of inflammasome activation markers was also increased compared with those of osteoarthritis and osteonecrosis of the femoral head patients. To further understand the histopathologic changes in the joint, a co-culture model of macrophages and synoviocytes that mimicked the joint environment was developed. Remarkably, the gene expression levels of NLRP3, GSDMD, IL1B, TNFA, ADMTS4, ADMTS5, MMP3, MMP9, and RANKL were significantly elevated in the synoviocytes that were co-cultured with activated THP-1 macrophages, suggesting the association between synovitis and inflammasome activation. Consistent with these findings, osteoclast precursor cells that were co-cultured with stimulated synoviocytes exhibited an increased number of tartrate-resistant acid phosphatase-positive cells, compared with cells that were co-cultured with non-stimulated synoviocytes. These findings suggest that the activation of inflammasome signaling in the synovium results in an increase in local inflammation and osteoclastogenesis, thus leading to the rapid bone destruction in RDC.
Collapse
|
63
|
Bertheloot D, Wanderley CW, Schneider AH, Schiffelers LD, Wuerth JD, Tödtmann JM, Maasewerd S, Hawwari I, Duthie F, Rohland C, Ribeiro LS, Jenster LM, Rosero N, Tesfamariam YM, Cunha FQ, Schmidt FI, Franklin BS. Nanobodies dismantle post-pyroptotic ASC specks and counteract inflammation in vivo. EMBO Mol Med 2022; 14:e15415. [PMID: 35438238 PMCID: PMC9174887 DOI: 10.15252/emmm.202115415] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes sense intracellular clues of infection, damage, or metabolic imbalances. Activated inflammasome sensors polymerize the adaptor ASC into micron‐sized “specks” to maximize caspase‐1 activation and the maturation of IL‐1 cytokines. Caspase‐1 also drives pyroptosis, a lytic cell death characterized by leakage of intracellular content to the extracellular space. ASC specks are released among cytosolic content, and accumulate in tissues of patients with chronic inflammation. However, if extracellular ASC specks contribute to disease, or are merely inert remnants of cell death remains unknown. Here, we show that camelid‐derived nanobodies against ASC (VHHASC) target and disassemble post‐pyroptotic inflammasomes, neutralizing their prionoid, and inflammatory functions. Notably, pyroptosis‐driven membrane perforation and exposure of ASC specks to the extracellular environment allowed VHHASC to target inflammasomes while preserving pre‐pyroptotic IL‐1β release, essential to host defense. Systemically administrated mouse‐specific VHHASC attenuated inflammation and clinical gout, and antigen‐induced arthritis disease. Hence, VHHASC neutralized post‐pyroptotic inflammasomes revealing a previously unappreciated role for these complexes in disease. VHHASC are the first biologicals that disassemble pre‐formed inflammasomes while preserving their functions in host defense.
Collapse
Affiliation(s)
- Damien Bertheloot
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Carlos Ws Wanderley
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Ayda H Schneider
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Lisa Dj Schiffelers
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jennifer D Wuerth
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jan Mp Tödtmann
- Core Facility Nanobodies, Medical Faculty, University of Bonn, Bonn, Germany
| | - Salie Maasewerd
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ibrahim Hawwari
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Fraser Duthie
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Cornelia Rohland
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lucas S Ribeiro
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lea-Marie Jenster
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Nathalia Rosero
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yonas M Tesfamariam
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Fernando Q Cunha
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.,Core Facility Nanobodies, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernardo S Franklin
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
64
|
Kim SH, Lee JH, Jeong HJ, Kim JM, Baek WK, Kim TH, Jun JB, Son CN. Clinical Significance of Elevated Serum Caspase-1 Levels in Patients With Ankylosing Spondylitis. Ann Lab Med 2022; 42:293-295. [PMID: 34635624 PMCID: PMC8548253 DOI: 10.3343/alm.2022.42.2.293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/06/2021] [Accepted: 09/13/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Sang-Hyon Kim
- Division of Rheumatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Ji-Hyun Lee
- Division of Rheumatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Hye-Jin Jeong
- Division of Rheumatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Ji-Min Kim
- Division of Rheumatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Won-Ki Baek
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Korea
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Jae-Bum Jun
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Chang-Nam Son
- Division of Rheumatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea.,Institute for Cancer Research, Keimyung University, Daegu, Korea
| |
Collapse
|
65
|
Liu S, Liu W, Jia X, Yang Z, Liu R, Xu N. The association between the CASP5 rs7939842 polymorphism and the risk of rheumatoid arthritis in Chinese Han individuals. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
66
|
Yan J, Ding D, Feng G, Yang Y, Zhou Y, Ma L, Guo H, Lu Z, Jin Q. Metformin reduces chondrocyte pyroptosis in an osteoarthritis mouse model by inhibiting NLRP3 inflammasome activation. Exp Ther Med 2022; 23:222. [PMID: 35222699 PMCID: PMC8812147 DOI: 10.3892/etm.2022.11146] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is an age-related degenerative disease, and its incidence is increasing with the ageing of the population. Metformin, as the first-line medication for the treatment of diabetes, has received increasing attention for its role in OA. The purpose of the present study was to confirm the therapeutic effect of metformin in a mouse model of OA and to determine the mechanism underlying the resultant delay in OA progression. The right knees of 8-week-old C57BL/6 male mice were subjected to destabilization of the medial meniscus (DMM). Metformin (200 mg/kg) was then administered daily for 4 or 8 weeks. Safranin O-fast green staining, H&E staining and micro-CT were used to analyse the structure and morphological changes. Immunohistochemical staining was used to detect type II collagen (Col II), matrix metalloproteinase 13 (MMP-13), NOD-like receptor protein 3 (NLRP3), caspase-1, gasdermin D (GSDMD) and IL-1β protein expression. Reverse transcription-quantitative PCR was used to detect the mRNA expression of NLRP3, caspase-1, GSDMD and IL-1β. Histomorphological staining showed that metformin delayed the progression of OA in the DMM model. With respect to cartilage, metformin decreased the Osteoarthritis Research Society International score, increased the thickness of hyaline cartilage and decreased the thickness of calcified cartilage. Regarding the mechanism, in cartilage, metformin increased the expression of Col II and decreased the expression of MMP-13, NLRP3, caspase-1, GSDMD and IL-1β. In addition, in subchondral bone, metformin inhibited osteophyte formation, increased the bone volume fraction (%) and the bone mineral density (g/cm3), decreased the trabecular separation (mm) in early stage of osteoarthritis (4 weeks) but the opposite in an advanced stage of osteoarthritis (8 weeks). Overall, metformin inhibited the activation of NLRP3 inflammasome, decreased cartilage degradation, reversed subchondral bone remodelling and inhibited chondrocyte pyroptosis.
Collapse
Affiliation(s)
- Jiangbo Yan
- Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Dong Ding
- Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Gangning Feng
- Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yong Yang
- Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China.,Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yong Zhou
- Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Long Ma
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Haohui Guo
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Zhidong Lu
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Qunhua Jin
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
67
|
The ROS/GRK2/HIF-1α/NLRP3 Pathway Mediates Pyroptosis of Fibroblast-Like Synoviocytes and the Regulation of Monomer Derivatives of Paeoniflorin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4566851. [PMID: 35132350 PMCID: PMC8817856 DOI: 10.1155/2022/4566851] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
Hypoxia is an important factor in the development of synovitis in rheumatoid arthritis (RA). The previous study of the research group found that monomeric derivatives of paeoniflorin (MDP) can alleviate joint inflammation in adjuvant-induced arthritis (AA) rats by inhibiting macrophage pyroptosis. This study revealed increased levels of hypoxia-inducible factor- (HIF-) 1α and N-terminal p30 fragment of GSDMD (GSDMD-N) in fibroblast-like synoviocytes (FLS) of RA patients and AA rats, while MDP significantly inhibited their expression. Subsequently, FLS were exposed to a hypoxic environment or treated with cobalt ion in vitro. Western blot and immunofluorescence analysis showed increased expression of G protein-coupled receptor kinase 2 (GRK2), HIF-1α, nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3), ASC, caspase-1, cleaved-caspase-1, and GSDMD-N. Electron microscopy revealed FLS pyroptosis after exposure in hypoxia. Next, corresponding shRNAs were transferred into FLS to knock down hypoxia-inducible factor- (HIF-) 1α, and in turn, NLRP3 and western blot results confirmed the same. The enhanced level of GSDMD was reversed under hypoxia by inhibiting NLRP3 expression. Knockdown and overexpression of GRK2 in FLS revealed GRK2 to be a positive regulator of HIF-1α. Levels of GRK2 and HIF-1α were inhibited by eliminating excess reactive oxygen species (ROS). Furthermore, MDP reduced FLS pyroptosis through targeted inhibition of GRK2 phosphorylation. According to these findings, hypoxia induces FLS pyroptosis through the ROS/GRK2/HIF-1α/NLRP3 pathway, while MDP regulates this pathway to reduce FLS pyroptosis.
Collapse
|
68
|
Zhang J, Wang Y, Zhang J, Huang S. The Anti-Inflammatory Effect of 6% HES 200/0.5 on RAW264.7 Cells Induced by LPS through HMGB1/NF-κB Signaling Pathway. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jie Zhang
- Department of Anesthesiology, Yantaishan Hospital
| | - Yongli Wang
- Department of Anesthesiology, The 80th Army Hospital of People’s Liberation Army
| | | | | |
Collapse
|
69
|
Guo B, Zhao C, Zhang C, Xiao Y, Yan G, Liu L, Pan H. Elucidation of the anti-inflammatory mechanism of Er Miao San by integrative approach of network pharmacology and experimental verification. Pharmacol Res 2022; 175:106000. [PMID: 34838694 DOI: 10.1016/j.phrs.2021.106000] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023]
Abstract
Traditional Chinese medicine (TCM) has been long time used in China and gains ever-increasing worldwide acceptance. Er Miao San (EMS), a TCM formula, has been extensively used to treat inflammatory diseases, while its bioactive components and therapeutic mechanisms remain unclear. In this study, we conducted an integrative approach of network pharmacology and experimental study to elucidate the underlying mechanisms of EMS in treating human rheumatoid arthritis (RA) and other inflammatory conditions. Quercetin, wogonin and rutaecarpine were probably the main active compounds of EMS in RA treatment as they affected the most RA-related targets, and TNF-α, IL-6 and IL-1β were considered to be the core target proteins. The main compounds in EMS bound to these core proteins, which was further confirmed by molecular docking and bio-layer interferometry (BLI) analysis. Moreover, the potential molecular mechanisms of EMS predicted from network pharmacology analysis, were validated in vivo and in vitro experiments. EMS was found to inhibit the production of NO, TNF-α and IL-6 in lipopolysaccharide (LPS)-stimulated RAW264.7 cells; reduce xylene-induced mouse ear edema; and decrease the incidence of carrageenan-induced rat paw edema. The carrageenan-induced up-regulation of TNF-α, IL-6 and IL-1β mRNA expression in rat paws was down-regulated by EMS, consistent with the network pharmacology results. This study provides evidence that EMS plays a critical role in anti-inflammation via suppressing inflammatory cytokines, indicating that EMS is a candidate herbal drug for further investigation in treating inflammatory and arthritic conditions.
Collapse
Affiliation(s)
- Bin Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macao 999078, China; Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - CaiPing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Chuanhai Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macao 999078, China
| | - Yao Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macao 999078, China
| | - Guangli Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510000, China.
| | - Hudan Pan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macao 999078, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510000, China.
| |
Collapse
|
70
|
Pyroptosis-Mediated Periodontal Disease. Int J Mol Sci 2021; 23:ijms23010372. [PMID: 35008798 PMCID: PMC8745163 DOI: 10.3390/ijms23010372] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Pyroptosis is a caspase-dependent process relevant to the understanding of beneficial host responses and medical conditions for which inflammation is central to the pathophysiology of the disease. Pyroptosis has been recently suggested as one of the pathways of exacerbated inflammation of periodontal tissues. Hence, this focused review aims to discuss pyroptosis as a pathological mechanism in the cause of periodontitis. The included articles presented similarities regarding methods, type of cells applied, and cell stimulation, as the outcomes also point to the same direction considering the cellular events. The collected data indicate that virulence factors present in the diseased periodontal tissues initiate the inflammasome route of tissue destruction with caspase activation, cleavage of gasdermin D, and secretion of interleukins IL-1β and IL-18. Consequently, removing periopathogens’ virulence factors that trigger pyroptosis is a potential strategy to combat periodontal disease and regain tissue homeostasis.
Collapse
|
71
|
Zhao J, Jiang P, Guo S, Schrodi SJ, He D. Apoptosis, Autophagy, NETosis, Necroptosis, and Pyroptosis Mediated Programmed Cell Death as Targets for Innovative Therapy in Rheumatoid Arthritis. Front Immunol 2021; 12:809806. [PMID: 35003139 PMCID: PMC8739882 DOI: 10.3389/fimmu.2021.809806] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 01/13/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that can lead to clinical manifestations of systemic diseases. Its leading features include chronic synovial inflammation and degeneration of the bones and joints. In the past decades, multiple susceptibilities for rheumatoid arthritis have been identified along with the development of a remarkable variety of drugs for its treatment; which include analgesics, glucocorticoids, nonsteroidal anti-inflammatory medications (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), and biologic response modifiers (bDMARDs). Despite the existence of many clinical treatment options, the prognosis of some patients remains poor due to complex mechanism of the disease. Programmed cell death (PCD) has been extensively studied and ascertained to be one of the essential pathological mechanisms of RA. Its dysregulation in various associated cell types contributes to the development of RA. In this review, we summarize the role of apoptosis, cell death-associated neutrophil extracellular trap formation, necroptosis, pyroptosis, and autophagy in the pathophysiology of RA to provide a theoretical reference and insightful direction to the discovery and development of novel therapeutic targets for RA.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
72
|
Ling Y, Xiao M, Huang ZW, Xu H, Huang FQ, Ren NN, Chen CM, Lu DM, Yao XM, Xiao LN, Ma WK. Jinwujiangu Capsule Treats Fibroblast-Like Synoviocytes of Rheumatoid Arthritis by Inhibiting Pyroptosis via the NLRP3/CAPSES/GSDMD Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4836992. [PMID: 34853599 PMCID: PMC8629621 DOI: 10.1155/2021/4836992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 01/16/2023]
Abstract
Jinwujiangu capsule (JWJGC) is a traditional Chinese medicine formula used to treat rheumatoid arthritis (RA). However, whether its mechanism is associated with pyroptosis remains unclear. In this study, the ability of JWJGC to inhibit the growth of fibroblast-like synoviocytes of RA (RA-FLS) through pyroptosis was evaluated. The cells isolated from patients with RA were identified by hematoxylin and eosin (H&E) staining, immunohistochemistry, and flow cytometry. After RA-FLS were treated with different concentrations of JWJGC-containing serum, the cell proliferation inhibition rate, expression of caspase-1/3/4/5, NOD-like receptor protein 3 (NLRP3), gasdermin-D (GSDMD), and apoptosis-associated speck-like protein containing a CARD (ASC), concentrations of interleukin-1β (IL-1β) and interleukin-18 (IL-18), the activity of lactic dehydrogenase (LDH), and pyroptosis were evaluated. The results showed that JWJGC increased the proliferative inhibition rate, decreased the expression of caspase-1/3/4/5, GSDMD, NLRP3, and ASC, suppressed the expression of IL-1β and IL-18, induced the activity of LDH, and downregulated the number of double-positive FITC anti-caspase-1 and PI. Generally, our findings suggest that JWJGC can regulate NLRP3/CAPSES/GSDMD in treating RA-FLS through pyroptosis.
Collapse
Affiliation(s)
- Yi Ling
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Mao Xiao
- Guizhou Anshun People's Hospital, Anshun 561000, Guizhou Province, China
| | - Zhao-Wei Huang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Hui Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Fang-Qin Huang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Ni-Na Ren
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Chang-Ming Chen
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Dao Min Lu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Xue-Ming Yao
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Li-Na Xiao
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| | - Wu-Kai Ma
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, Guizhou Province, China
| |
Collapse
|
73
|
Chen G, Guo T, Yang L. Paeonol reduces IL-β production by inhibiting the activation of nucleotide oligomerization domain-like receptor protein-3 inflammasome and nuclear factor-κB in macrophages. Biochem Cell Biol 2021; 100:28-36. [PMID: 34784237 DOI: 10.1139/bcb-2021-0255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interleukin-1β, a key cytokine in gouty inflammation, is precisely regulated by the NLRP3 inflammasome and NF-κB. Our previous study demonstrated that paeonol suppressed IL-1β production in rats with monosodium urate (MSU)-induced arthritis. Whether NLRP3 inflammasome or NF-κB is responsible for the anti-inflammatory effect of paeonol remains unclear. In this study, J774A.1 cells induced by lipopolysaccharide (LPS) plus MSU, was used to investigate the effect of paeonol on NLRP3 inflammasome activation, and J774A.1 cells induced by LPS alone were used to investigate the effect of paeonol on NF-κB activation. In J774A.1 cells induced by LPS plus MSU, paeonol decreased the levels of IL-1β and caspase-1 and reduced the MSU-induced interaction of pro-caspase-1 and apoptosis-associated speck-like protein containing caspase recruitment domain (ASC), but did not affect the levels of pro-IL-1β and pro-caspase-1. In J774A.1 cells induced by LPS alone, paeonol reduced the levels of IL-1β, NLRP3, p-IKK, p-IκBα, and p-p65, but did not affect ASC levels. Paeonol also promoted the content of IκBα and retained more p65 in the cytoplasm. Furthermore, paeonol reduced the DNA-binding activity of p65 and lowered the levels of p-JNK, p-ERK, and p-p38. These results suggest that paeonol inhibits IL-1β production by inhibiting the activation of NLRP3 inflammasome, NF-κB, and MAPK signaling pathways.
Collapse
Affiliation(s)
- Gang Chen
- Key Laboratory of Natural Medicine Research of Chongqing Education Commission, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.,Key Laboratory of Natural Medicine Research of Chongqing Education Commission, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Tingwang Guo
- Key Laboratory of Natural Medicine Research of Chongqing Education Commission, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.,Key Laboratory of Natural Medicine Research of Chongqing Education Commission, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Lin Yang
- Key Laboratory of Natural Medicine Research of Chongqing Education Commission, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.,Key Laboratory of Natural Medicine Research of Chongqing Education Commission, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|
74
|
Zhang T, Wang G, Zheng J, Li S, Xu J. Profile of serum cytokine concentrations in patients with gouty arthritis. J Int Med Res 2021; 49:3000605211055618. [PMID: 34772308 PMCID: PMC8593300 DOI: 10.1177/03000605211055618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective This study aimed to analyze the changes in serum inflammatory cytokines and anti-inflammatory cytokines in patients with gouty arthritis (GA). Methods The clinical data and serum samples in patients with gouty arthritis and those in healthy volunteers were collected in China-Japan Friendship Hospital from July 2018 to January 2019. Serum cytokine concentrations in patients with GA and volunteers (controls) were determined by a chemiluminescence method. The differences in cytokine concentrations were compared between the two groups. Results Concentrations of serum interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), IL-6, IL-8, and IL-4 were significantly higher in patients with acute GA than in controls. Serum concentrations of IL-1ß, TNF-α, IL-6, IL-8, and immunoglobulin E in patients with remission of GA were significantly lower, whereas concentrations of IL-10 and interferon-γ were significantly higher, compared with those in patients with acute GA. Conclusion This study shows that serum concentrations of IL-1ß, TNF-α, IL-6, IL-8, and IL-4 are significantly elevated in patients with GA, and may be involved in the pathogenesis of GA.
Collapse
Affiliation(s)
- Tie Zhang
- Laboratory of China-Japan Friendship Hospital, China-Japan Friendship Hospital, Beijing, P. R. China
- Tie Zhang, Laboratory of China-Japan Friendship Hospital, Sakura Garden East Street, Beijing 100029, P.R. China.
| | - Guozhen Wang
- Laboratory of China-Japan Friendship Hospital, China-Japan Friendship Hospital, Beijing, P. R. China
| | - Jing Zheng
- Laboratory of China-Japan Friendship Hospital, China-Japan Friendship Hospital, Beijing, P. R. China
| | - Shirui Li
- Department of Endocrine, China-Japan Friendship Hospital, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Jing Xu
- Department of Echocadiography, The First Hospital of JiLin University, Changchun, P. R. China
| |
Collapse
|
75
|
Jiang JM, Mo ML, Long XP, Xie LH. MiR-144-3p induced by SP1 promotes IL-1β-induced pyroptosis in chondrocytes via PTEN/PINK1/Parkin axis. Autoimmunity 2021; 55:21-31. [PMID: 34730058 DOI: 10.1080/08916934.2021.1983802] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Rheumatoid arthritis (RA) often leads to functional disabilities and deformities. MiRNA plays a vital role in cell pyroptosis. Nevertheless, the function and underlying mechanism of miR-144-3p in pyroptosis during the progression of RA remains unclear. In this study, N1511 cells were stimulated with IL-1β to construct a RA model. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay was performed to assess the cell viability. Cell pyroptosis was detected by flow cytometry. The levels of inflammatory cytokines (TNF-α, IL-6, and IL-18) were assessed by enzyme-linked immunosorbent assay (ELISA). The relationship among specific protein 1 (SP1), microRNA-144-3p (miR-144-3p), and phosphatase and tensin homolog (PTEN) was explored by dual-luciferase reporter assay, RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (ChIP), respectively. The level of miR-144-3p in N1511 cells was upregulated by IL-1β. MiR-144-3p knockdown inhibited IL-1β-induced pyroptosis in N1511 cells, and the expressions of NOD-like receptor family pyrin domain containing 3 (NLRP3), Cleaved caspase-1, Gasdermin D (GSDMD), and Cleaved caspase-3 in IL-1β-stimulated N1511 cells were increased. The levels of inflammatory cytokines in N1511 cells were increased by IL-1β, which were restored by miR-144-3p knockdown. MiR-144-3p knockdown abolished IL-1β-induced inactivation of putative kinase 1 (PINK1)/Parkin RBR E3 ubiquitin-protein (Parkin) signalling. Moreover, transcription factor SP1 could upregulate miR-144-3p expression and miR-144-3p negatively regulated PTEN expression. In summary, MiR-144-3p induced by SP1 could promote IL-1β-induced chondrocyte pyroptosis via inhibiting PTEN expression and suppressing the activation of PINK1/Parkin signalling, which provided a new strategy against RA.
Collapse
Affiliation(s)
- Jin-Mei Jiang
- The First Affiliated Hospital, Department of Rheumatology and Immunology, Hengyang Medical College, University of South China,, Hengyang, Hunan, China
| | - Mei-Li Mo
- The First Affiliated Hospital, Department of Rheumatology and Immunology, Hengyang Medical College, University of South China,, Hengyang, Hunan, China
| | - Xiao-Ping Long
- The First Affiliated Hospital, Pulmonary and Critical Care Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Li-Hu Xie
- The First Affiliated Hospital, Department of Rheumatology and Immunology, Hengyang Medical College, University of South China,, Hengyang, Hunan, China
| |
Collapse
|
76
|
Wang C, Yang T, Xiao J, Xu C, Alippe Y, Sun K, Kanneganti TD, Monahan JB, Abu-Amer Y, Lieberman J, Mbalaviele G. NLRP3 inflammasome activation triggers gasdermin D-independent inflammation. Sci Immunol 2021; 6:eabj3859. [PMID: 34678046 DOI: 10.1126/sciimmunol.abj3859] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tong Yang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianqiu Xiao
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Canxin Xu
- Aclaris Therapeutics Inc., St. Louis, MO 63108, USA
| | - Yael Alippe
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kai Sun
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Shriners Hospital for Children, St. Louis, MO 63110, USA
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
77
|
Li Z, Jiang J. The NLRP3 inflammasome mediates liver failure by activating procaspase-1 and pro-IL-1 β and regulating downstream CD40-CD40L signaling. J Int Med Res 2021; 49:3000605211036845. [PMID: 34551597 PMCID: PMC8485287 DOI: 10.1177/03000605211036845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objectives In this prospective case–control study, we explored the regulatory roles of the NLRP3 inflammasome in hepatitis B virus-associated acute-on-chronic liver failure (HBV-ACLF). Methods Thirty patients with HBV-ACLF, 30 patients with chronic hepatitis B, and 30 healthy individuals were enrolled. Real-time reverse transcription polymerase chain reaction was used to assess mRNA levels in peripheral blood mononuclear cells and serum protein levels were assessed by enzyme-linked immunosorbent assay. Results Serum levels of alanine aminotransferase, asparagine aminotransferase, total bilirubin, and direct bilirubin in patients with HBV-ACLF were increased. Transcript levels of NLRP3 and ASC and protein levels of interleukin (IL)-1β, IL-18, and sCD40L were elevated in patients with HBV-ACLF. Expression of the NLRP3 inflammasome signaling pathway components procaspase-1 and pro-IL-1β was elevated in patients with HBV-ACLF. Conclusions This prospective case-control study demonstrated that significant activation of the NLRP3 inflammasome occurs in patients with HBV-ACLF. The activated NLRP3 inflammasome mediated liver failure by stimulating procaspase-1 and pro-IL-1 β and regulating downstream CD40-CD40L signaling.
Collapse
Affiliation(s)
- Zenghui Li
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Jianning Jiang
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| |
Collapse
|
78
|
Wu D, Ai L, Sun Y, Yang B, Chen S, Wang Q, Kuang H. Role of NLRP3 Inflammasome in Lupus Nephritis and Therapeutic Targeting by Phytochemicals. Front Pharmacol 2021; 12:621300. [PMID: 34489689 PMCID: PMC8417800 DOI: 10.3389/fphar.2021.621300] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune inflammatory condition that affects multiple organs and provokes extensive and severe clinical manifestations. Lupus nephritis (LN) is one of the main clinical manifestations of SLE. It refers to the deposition of immune complexes in the glomeruli, which cause kidney inflammation. Although LN seriously affects prognosis and represents a key factor of disability and death in SLE patients, its mechanism remains unclear. The NACHT, leucine-rich repeat (LRR), and pyrin (PYD) domains-containing protein 3 (NLRP3) inflammasome regulates IL-1β and IL-18 secretion and gasdermin D-mediated pyroptosis and plays a key role in innate immunity. There is increasing evidence that aberrant activation of the NLRP3 inflammasome and downstream inflammatory pathways play an important part in the pathogenesis of multiple autoimmune diseases, including LN. This review summarizes research progress on the elucidation of NLRP3 activation, regulation, and recent clinical trials and experimental studies implicating the NLRP3 inflammasome in the pathophysiology of LN. Current treatments fail to provide durable remission and provoke several sides effects, mainly due to their broad immunosuppressive effects. Therefore, the identification of a safe and effective therapeutic approach for LN is of great significance. Phytochemicals are found in many herbs, fruits, and vegetables and are secondary metabolites of plants. Evidence suggests that phytochemicals have broad biological activities and have good prospects in a variety of diseases, including LN. Therefore, this review reports on current research evaluating phytochemicals for targeting NLRP3 inflammasome pathways in LN therapy.
Collapse
Affiliation(s)
- Dantong Wu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China.,Department of Laboratory Diagnostics, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lianjie Ai
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanping Sun
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China
| | - Sisi Chen
- Department of Rheumatology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiuhong Wang
- Department of Natural Medicinal Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
79
|
Tian Q, Xu M, He B. Histidine ameliorates elastase- and lipopolysaccharide-induced lung inflammation by inhibiting the activation of the NLRP3 inflammasome. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1055-1064. [PMID: 34125142 DOI: 10.1093/abbs/gmab072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 01/23/2023] Open
Abstract
Histidine treatment has anti-inflammatory effects on several diseases such as colitis and obesity. We revealed that histidine levels were decreased in the serum of patients with chronic obstructive pulmonary disease (COPD) in our previous study. However, whether histidine confers protection against COPD is unclear. In the present study, we evaluated the protective effects of histidine in a porcine pancreatic elastase- and lipopolysaccharide-induced COPD mouse model. We found that the serum histidine concentration was decreased in COPD mice. Histidine supplementation improved the COPD mouse lung function and reduced the inflammatory cell counts and production of cytokines in bronchoalveolar lavage fluid. In addition, histidine treatment ameliorated lung inflammation by inhibiting the nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 3 inflammasome activation both in vivo and in vitro. Furthermore, we found that the potential anti-inflammatory mechanism involved the upregulation of silent information regulator factor 2-related enzyme 1. These results suggest that histidine may be a valuable therapeutic target for COPD.
Collapse
Affiliation(s)
- Qiaoshan Tian
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Bei He
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
80
|
Moisset X, Giraud P, Dallel R. Migraine in multiple sclerosis and other chronic inflammatory diseases. Rev Neurol (Paris) 2021; 177:816-820. [PMID: 34325914 DOI: 10.1016/j.neurol.2021.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Migraine is a very prevalent disease worldwide and is a major cause of disability. As known for a long time, migraine is associated with neurogenic inflammation. Epidemiological studies have shown that migraine is comorbid with several chronic inflammatory diseases, including multiple sclerosis (MS), chronic inflammatory rheumatic diseases (CIRDs) and inflammatory bowel diseases (IBDs). This brief narrative review highlights some recent data supporting a link between migraine and these three chronic inflammatory diseases. Studies found that migraine prevalence is approximately two-fold higher in these diseases compared to the general population. The causal link between migraine and these chronic inflammatory diseases has not been identified yet. Here, we suggest that systemic mediators (such as cytokines) and gut microbiome make migraine worse or add significant risks. Systemic inflammation biomarkers and gut microbiome modification are certainly avenues worth exploring.
Collapse
Affiliation(s)
- X Moisset
- Inserm, Neuro-Dol, Université Clermont-Auvergne, CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France.
| | - P Giraud
- Annecy-Genevois Hospital, 74370 Annecy, France
| | - R Dallel
- Inserm, Neuro-Dol, Université Clermont-Auvergne, CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
81
|
Calabrese EJ, Kozumbo WJ, Kapoor R, Dhawan G, Lara PC, Giordano J. Nrf2 activation putatively mediates clinical benefits of low-dose radiotherapy in COVID-19 pneumonia and acute respiratory distress syndrome (ARDS): Novel mechanistic considerations. Radiother Oncol 2021; 160:125-131. [PMID: 33932453 PMCID: PMC8080499 DOI: 10.1016/j.radonc.2021.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
Novel mechanistic insights are discussed herein that link a single, nontoxic, low-dose radiotherapy (LDRT) treatment (0.5-1.0 Gy) to (1) beneficial subcellular effects mediated by the activation of nuclear factor erythroid 2-related transcription factor (Nrf2) and to (2) favorable clinical outcomes for COVID-19 pneumonia patients displaying symptoms of acute respiratory distress syndrome (ARDS). We posit that the favorable clinical outcomes following LDRT result from potent Nrf2-mediated antioxidant responses that rebalance the oxidatively skewed redox states of immunological cells, driving them toward anti-inflammatory phenotypes. Activation of Nrf2 by ionizing radiation is highly dose dependent and conforms to the features of a biphasic (hormetic) dose-response. At the cellular and subcellular levels, hormetic doses of <1.0 Gy induce polarization shifts in the predominant population of lung macrophages, from an M1 pro-inflammatory to an M2 anti-inflammatory phenotype. Together, the Nrf2-mediated antioxidant responses and the subsequent shifts to anti-inflammatory phenotypes have the capacity to suppress cytokine storms, resolve inflammation, promote tissue repair, and prevent COVID-19-related mortality. Given these mechanistic considerations-and the historical clinical success of LDRT early in the 20th century-we opine that LDRT should be regarded as safe and effective for use at almost any stage of COVID-19 infection. In theory, however, optimal life-saving potential is thought to occur when LDRT is applied prior to the cytokine storms and before the patients are placed on mechanical oxygen ventilators. The administration of LDRT either as an intervention of last resort or too early in the disease progression may be far less effective in saving the lives of ARDS patients.
Collapse
Affiliation(s)
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, USA
| | - Gaurav Dhawan
- Sri Guru Ram Das University of Health Sciences, Amritsar, India.
| | - Pedro C Lara
- Department of Radiation Oncology, Hospital Universitario San Roque, Universidad Fernando Pessoa Canarias, Las Palmas Gran Canaria, Spain.
| | - James Giordano
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
82
|
An integrated quantitative proteomics strategy reveals the dual mechanisms of celastrol against acute inflammation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
83
|
Chen Z, Zhang M, Zhao Y, Xu W, Xiang F, Li X, Zhang T, Wu R, Kang X. Hydrogen Sulfide Contributes to Uterine Quiescence Through Inhibition of NLRP3 Inflammasome Activation by Suppressing the TLR4/NF-κB Signalling Pathway. J Inflamm Res 2021; 14:2753-2768. [PMID: 34234503 PMCID: PMC8242154 DOI: 10.2147/jir.s308558] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/04/2021] [Indexed: 01/10/2023] Open
Abstract
Background The NLRP3 inflammasome plays a critical role in inflammatory responses in various diseases. Our previous study showed that NLRP3 expression was significantly increased in human pregnancy tissue during term labour. Therefore, we explored whether NLRP3 participated in inflammatory responses of preterm and term labour and whether this process could be relieved by H2S, one anti-inflammatory gasotransmitter. Methods Human myometrium was obtained from non-labouring and labouring women. Mouse myometrium was obtained from LPS-induced infectious preterm labour. Uterine smooth muscle cells were isolated from non-labouring women’s myometrial tissues, transfected with siRNA, and treated cells with IL-1β, H2S donor NaHS, NF-κB inhibitor BAY 11–7082 and TLR4 inhibitorTAK-242. The NLRP3 inflammasome, CSE, CBS, TLR4, uterine contraction-associated proteins (CAPs), NF-κB activation and inflammatory cytokine expression were assessed by Western blotting and RT-PCR. Results The NLRP3 inflammasome, TLR4 and activated NF-κB expression were upregulated in human term labour, mouse preterm labour and human uterine smooth muscle cells treated with IL-1β. NLRP3 levels were negatively correlated with CSE and CBS expression. Treatment with the H2S donor NaHS delayed LPS-induced preterm birth in mice and inhibited NLRP3 inflammasome activation. In siNLRP3-transfected cells, there was a significant decrease in the expression of CAPs and inflammatory cytokines compared with IL-1β stimulation. In addition, treatment with the H2S donor NaHS inhibited NLRP3 inflammasome activation, reduced the expression of uterine contraction-associated proteins and inflammatory cytokines and reduced the activation of TLR4 and NF-κB compared with stimulation with IL-1β in human uterine smooth muscle cells. Furthermore, treatment of uterine smooth muscle cells with BAY 11–7082 and TAK-242 found that NLRP3 activation was regulated by the TLR4 and NF-κB pathways. Conclusion H2S suppresses CAP expression and the inflammatory response and contributes to uterine quiescence by inhibiting the TLR4/NF-κB signalling pathway and downstream NLRP3 inflammasome activation. Thus, H2S contributes to uterine quiescence through inhibition of NLRP3 inflammasome activation by suppressing the TLR4/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yunzhi Zhao
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wenjuan Xu
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaoxiao Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Tao Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiangdong Kang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
84
|
Ding Y, Xu X. Effects of regular exercise on inflammasome activation-related inflammatory cytokine levels in older adults: a systematic review and meta-analysis. J Sports Sci 2021; 39:2338-2352. [PMID: 34121608 DOI: 10.1080/02640414.2021.1932279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Exercise has been found to play important roles in regulating inflammation, although the mechanisms are unclear. The present systematic review and meta-analysis aimed to investigate whether regular exercise could regulate inflammation through inflammasome activation signalling in older adults. Five databases were searched, and 19 randomised controlled trials (RCTs) studying effects of regular exercise on inflammasome activation-related inflammatory cytokines interleukin (IL)-1β and IL-18 and other key molecules involved in inflammasome activation signalling such as NOD-like receptor family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1 in older adults aged 50 years or older were included. The results showed that regular exercise could significantly decrease the levels of IL-1β and IL-18, important end-products of inflammasome activation in older adults. Subgroup analyses showed that aerobic exercise is the most effective training modality, and low-to-moderate intensity and mixed intensity are better compared with high intensity to decrease IL-1β and IL-18. The effect of regular exercise on key molecules involved in inflammasome activation signalling including NLRP3, ASC and caspase-1 is understudied and needs to be further investigated. These findings demonstrate that regular exercise could effectively decrease inflammasome activation-related inflammatory cytokine levels in older adults.
Collapse
Affiliation(s)
- Yijian Ding
- Department of Physical Education, Nanjing University of Science & Technology, Nanjing, P. R. China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, P. R. China
| |
Collapse
|
85
|
Punicalagin ameliorates collagen-induced arthritis by downregulating M1 macrophage and pyroptosis via NF-κB signaling pathway. SCIENCE CHINA-LIFE SCIENCES 2021; 65:588-603. [PMID: 34125371 DOI: 10.1007/s11427-020-1939-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that eventually leads to disability. Inflammatory cell infiltration, severe joint breaking and systemic bone loss are the main clinical symptoms. In this study, we established a collagen-induced arthritis (CIA) model and found a large number of M1 macrophages and pyroptosis, which are important sources of proinflammatory cytokines. Punicalagin (PUN) is an active substance extracted from pomegranate peel. We found that it inhibited joint inflammation, cartilage damage and systemic bone destruction in CIA mice. PUN effectively alleviated the high expression of inflammatory cytokines in synovial tissue in vivo. PUN treatment shifted macrophages from the M1 phenotype to the M2 phenotype after stimulation with lipopolysaccharide (LPS) and interferon (IFN)-γ. The expression of inducible nitric oxide synthase (iNOS) and other proinflammatory cytokines released by M1 macrophages was decreased in the PUN treatment group. However, simultaneously, the expression of markers of anti-inflammatory M2 macrophages, such as arginase (Arg)-1 and interleukin (IL)-10, was increased. In addition, PUN treatment attenuated pyroptosis by downregulating the expression of NLRP3 and caspase-1, thereby preventing inflammatory cell death resulting from the release of IL-1β and IL-18. Mechanistically, PUN inhibited the activation of receptor activators of the nuclear factor-κB (NF-κB) signaling pathway, which contributes to M1 polarization and pyroptosis of macrophages. We concluded that PUN ameliorated pathological inflammation by inhibiting M1 phenotype polarization and pyroptosis and has great potential as a therapeutic treatment for human RA.
Collapse
|
86
|
Chen S, Luo Z, Chen X. Hsa_circ_0044235 regulates the pyroptosis of rheumatoid arthritis via MiR-135b-5p-SIRT1 axis. Cell Cycle 2021; 20:1107-1121. [PMID: 34097558 DOI: 10.1080/15384101.2021.1916272] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Studies have found that cell pyroptosis is involved in the occurrence and development of rheumatoid arthritis (RA). Hsa_circ_0044235 has been found to be significantly low-expressed in RA patients. The purpose of this research was to reveal the regulatory mechanism of hsa_circ_0044235 in the pyroptosis pathway of RA. Serum expressions of hsa_circ_0044235 and SIRT were detected by RT-qPCR, and the relationship of the two genes was analyzed by Pearson. Next, a collagen-induced arthritis (CIA) mouse model was constructed to examine the effect of hsa_circ_0044235 on knee joint injury. The number of apoptotic cells and the level of inflammatory cytokines in synovial tissue were detected by TUNEL and ELISA. Fibroblast-like synoviocytes (FLSs) were extracted as in vitro study subject. Functional assays including flow cytometry and immunofluorescence staining, molecular experiments including RT-qPCR, Western blot and dual luciferase assay, and bioinformatics analysis were performed to analyze the mechanism of hsa_circ_0044235 in pyroptosis in FLSs. Hsa_circ_0044235 and SIRT1 expressions were suppressed in RA patients and the two were positively correlated. Overexpressed hsa_circ_0044235 attenuated joint inflammation, cell apoptosis, and joint damage, reduced foot pad thickness, clinical case scores, inhibited the NLRP3-mediated pyroptosis pathway but promoted SIRT1 expression in CIA mice. Overexpressed hsa_circ_0044235 inhibited caspase-1 content and the NLRP3-mediated pyroptosis pathway. Moreover, hsa_circ_0044235 promoted SIRT1 expression by sponging miR-135b-5p in FLSs. Additionally, the effect of overexpressed hsa_circ_0044235 on FLSs was reversed by miR-135b-5p mimic and siSIRT1, while the effect of siSIRT1 was reversed by miR-135b-5p inhibitor. Hsa_circ_0044235 regulated NLRP3-mediated pyroptosis through miR-135b-5p-SIRT1 axis to regulate the development of RA.
Collapse
Affiliation(s)
- Shaojian Chen
- Department of Sports Medical, Ganzhou People's Hospital/The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, china
| | - Zhihuan Luo
- Department of Sports Medical, Ganzhou People's Hospital/The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, china
| | - Xiaguang Chen
- Department of Sports Medical, Ganzhou People's Hospital/The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, china
| |
Collapse
|
87
|
Xu H, Cai L, Li Z, Zhang L, Wang G, Xie R, Jiang Y, Yuan Y, Nie H. Dual effect of IL-7/IL-7R signalling on the osteoimmunological system: a potential therapeutic target for rheumatoid arthritis. Immunology 2021; 164:161-172. [PMID: 33934341 DOI: 10.1111/imm.13351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/08/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
The IL-7/IL-7R pathway plays a vital role in the immune system, especially in the inflammatory response. Monocytes/macrophages (osteoclast precursors) have been recently recognized as important participants in the osteoclastogenesis of rheumatoid arthritis (RA) patients. Here, we aimed to investigate the therapeutic potential of IL-7/IL-7R pathway in RA and to determine whether it could restrain osteoclastogenic functions and therefore ameliorate RA. Firstly, collagen-induced arthritis (CIA) mice were administered with IL-7Rα-target antibodies to assess their therapeutic effect on arthritis. We found that blockade of the IL-7/IL-7R pathway protected CIA mice from bone destruction in addition to inducing inflammatory remission, by altering the RANKL/RANK/OPG ratio and consequently decreasing osteoclast formation. To explore the effect and mechanism of this pathway, bone marrow cells were induced to osteoclasts and treated with IL-7, a STAT5 inhibitor or supernatants from T cells. The results showed that the IL-7/IL-7R pathway played a direct inhibitory role in osteoclast differentiation via STAT5 signalling pathway in a RANKL-induced manner. We applied flow cytometry to analyse the effect of IL-7 on T-cell RANKL expression and found that IL-7/IL-7R pathway had an indirect role in the osteoclast differentiation process by enhancing the RANKL expression on T cells. In conclusion, the IL-7/IL-7R pathway exhibited a dual effect on osteoclastogenesis of CIA mice by interacting with osteoimmunology processes and could be a novel therapeutic target for autoimmune diseases such as RA.
Collapse
Affiliation(s)
- Haiyan Xu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Cai
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zijian Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Zhang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guojue Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongli Xie
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongshuai Jiang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyang Yuan
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Nie
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
88
|
Clayton SA, MacDonald L, Kurowska-Stolarska M, Clark AR. Mitochondria as Key Players in the Pathogenesis and Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:673916. [PMID: 33995417 PMCID: PMC8118696 DOI: 10.3389/fimmu.2021.673916] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are major energy-producing organelles that have central roles in cellular metabolism. They also act as important signalling hubs, and their dynamic regulation in response to stress signals helps to dictate the stress response of the cell. Rheumatoid arthritis is an inflammatory and autoimmune disease with high prevalence and complex aetiology. Mitochondrial activity affects differentiation, activation and survival of immune and non-immune cells that contribute to the pathogenesis of this disease. This review outlines what is known about the role of mitochondria in rheumatoid arthritis pathogenesis, and how current and future therapeutic strategies can function through modulation of mitochondrial activity. We also highlight areas of this topic that warrant further study. As producers of energy and of metabolites such as succinate and citrate, mitochondria help to shape the inflammatory phenotype of leukocytes during disease. Mitochondrial components can directly stimulate immune receptors by acting as damage-associated molecular patterns, which could represent an initiating factor for the development of sterile inflammation. Mitochondria are also an important source of intracellular reactive oxygen species, and facilitate the activation of the NLRP3 inflammasome, which produces cytokines linked to disease symptoms in rheumatoid arthritis. The fact that mitochondria contain their own genetic material renders them susceptible to mutation, which can propagate their dysfunction and immunostimulatory potential. Several drugs currently used for the treatment of rheumatoid arthritis regulate mitochondrial function either directly or indirectly. These actions contribute to their immunomodulatory functions, but can also lead to adverse effects. Metabolic and mitochondrial pathways are attractive targets for future anti-rheumatic drugs, however many questions still remain about the precise role of mitochondrial activity in different cell types in rheumatoid arthritis.
Collapse
Affiliation(s)
- Sally A Clayton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Birmingham, United Kingdom
| | - Lucy MacDonald
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom.,Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Mariola Kurowska-Stolarska
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom.,Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Andrew R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Birmingham, United Kingdom
| |
Collapse
|
89
|
Therapeutic potential of the target on NLRP3 inflammasome in multiple sclerosis. Pharmacol Ther 2021; 227:107880. [PMID: 33901504 DOI: 10.1016/j.pharmthera.2021.107880] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Inflammasomes are multi-protein macromolecular complexes that typically comprise of three units, a sensor, an adaptor and procaspase-1. The assembly of each inflammasome is dictated by a unique pattern recognition receptors (PRRs) in response to pathogen-associated molecular patterns (PAMPs) or other endogenous danger-associated molecular patterns (DAMPs) in the cytosol of the host cells, and promote the maturation and secretion of IL-1β and IL-18 during the inflammatory process. Specific inflammasomes are involved in the host defense response against different pathogens, and the latter have evolved multiple corresponding mechanisms to inhibit inflammasome activation. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome is the best understood in terms of molecular mechanisms, and is a promising therapeutic target in immune-related disorders. Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demyelination of white matter in the central nervous system, increased levels of IL-1β in the cerebrospinal fluid (CSF) of relapsed patients, and deposition of caspase-1 in the spinal cord. The direct involvement of the NLRP3 inflammasome in the occurrence and development of MS was ascertained in the experimental autoimmune encephalomyelitis (EAE) animal model. In this review, we have focused on the mechanisms underlying activation of the NLRP3 inflammasome in MS or EAE, as well as inhibitors that specifically target the complex and alleviate disease progression, in order to unearth new therapeutic strategies against MS.
Collapse
|
90
|
Agnuside Alleviates Synovitis and Fibrosis in Knee Osteoarthritis through the Inhibition of HIF-1 α and NLRP3 Inflammasome. Mediators Inflamm 2021; 2021:5534614. [PMID: 33814979 PMCID: PMC7987448 DOI: 10.1155/2021/5534614] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence has shown that NLRP3 inflammasome activation participates in chronic aseptic inflammation and is related to tissue fibrosis. Our last study also revealed the vital role of NLRP3 inflammasome, highly associated with tissue hypoxia, in the onset and development of knee osteoarthritis (KOA). In this study, we tried to find a possible benign intervention for that pathological process. Agnuside (AGN), a nontoxic, natural small molecule isolated from the extract of Vitex negundo L. (Verbenaceae), has been demonstrated to have antioxidation, anti-inflammatory, analgesia, and many other properties as an iridoid glycoside, although its specific target is still unclear. Therefore, we established MIA-induced KOA model rats and investigated the effects of AGN oral gavage on oxygen-containing state, NLRP3 inflammasome, synovitis, and fibrosis in KOA. Pimonidazole staining and HIF-1α immunohistochemical assay both showed that AGN at the oral dose of 6.25 mg/kg can effectively relieve local hypoxia in synovial tissue. Besides, we observed a decrease of HIF-1α, caspase-1, ASC, and NLRP3 after AGN intervention, both in the mRNA and protein levels. In addition, rats treated with the AGN showed less inflammatory reaction and fibrosis, not only in the expression of NLRP3, inflammasome downstream factors IL-1β and IL-18, and fibrosis markers TGF-β, TIMP1, and VEGF but also in the observation of HE staining, anatomical characteristics, Sirius Red staining, and type I collagen immunohistochemistry. Subsequently, we established LPS-induced models of fibroblast-like synoviocytes (FLSs) mimicking the inflammatory environment of KOA and activating NLRP3 inflammasome. FLSs treated with AGN (3 μM) resulted in a downregulation of HIF-1α and the components required for NLRP3 inflammasome activation. Meanwhile, the content of proinflammatory factors IL-1β and IL-18 in FLS supernatant was also reduced by AGN. In addition, both mRNA and protein levels of the fibrotic markers were significantly decreased after AGN management. To conclude, this study demonstrates that AGN alleviates synovitis and fibrosis in experimental KOA through the inhibition of HIF-1α accumulation and NLRP3 inflammasome activation. Additionally, not only does it reveal some novel targets for anti-inflammatory and antioxidant effects of AGN but also announces its potential value in treating KOA in humans.
Collapse
|
91
|
Cai M, Ni WJ, Han L, Chen WD, Peng DY. Research Progress of Therapeutic Enzymes and Their Derivatives: Based on Herbal Medicinal Products in Rheumatoid Arthritis. Front Pharmacol 2021; 12:626342. [PMID: 33796022 PMCID: PMC8008143 DOI: 10.3389/fphar.2021.626342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) acts as one of the most common, agnogenic and chronic inflammatory-autoimmune disorder which is characterized by persistent synovitis, cartilage destruction, and joint deformities, leads to a wide range of disabilities, and increased mortality, thus imposing enormous burdens. Several drugs with anti-inflammatory and immunomodulatory properties such as celecoxib, diclofenac and methotrexate are being selected as conventional drugs in the allopathic system of medicine for the treatment of RA in clinic. However, there are some serious side effects more or less when using these drugs because of their short poor bioavailability and biological half-life for a long time. These shortcomings greatly promote the exploration and application of new low- or no-toxicity drugs for treating the RA. Meanwhile, a growing number of studies demonstrate that several herbs present certain anti-inflammatory and anti-arthritic activities through different enzymes and their derivatives, which indicate that they are promising therapeutic strategies when targeting these mediators based on herbal medicinal products in RA research. This review article summarizes the roles of the main enzymes and their derivatives during the pathogenesis of RA, and clearly clarifies the explicit and potential targeted actions of herbal medicinal products that have anti-RA activity. Our review provides timely and critical reference for the scientific rationale use of herbal medicinal products, with the increasing basic research and clinical application of herbal medicinal products by patients with RA.
Collapse
Affiliation(s)
- Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| | - Wei-Jian Ni
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Lan Han
- Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| | - Wei-Dong Chen
- Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| | - Dai-Yin Peng
- Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
92
|
Xia W, Li Y, Wu M, Jin Q, Wang Q, Li S, Huang S, Zhang A, Zhang Y, Jia Z. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation. Cell Death Dis 2021; 12:139. [PMID: 33542198 PMCID: PMC7862699 DOI: 10.1038/s41419-021-03431-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Pyroptosis, one kind of inflammatory regulated cell death, is involved in various inflammatory diseases, including acute kidney injury (AKI). Besides Gasdermin D (GSDMD), GSDME is a newly identified mediator of pyroptosis via the cleavage of caspase-3 generating pyroptotic GSDME-N. Here, we investigated the role of GSDME in renal cellular pyroptosis and AKI pathogenesis employing GSDME-deficient mice and human tubular epithelial cells (TECs) with the interventions of pharmacological and genetic approaches. After cisplatin treatment, GSDME-mediated pyroptosis was induced as shown by the characteristic pyroptotic morphology in TECs, upregulated GSDME-N expression and enhanced release of IL-1β and LDH, and decreased cell viability. Strikingly, silencing GSDME in mice attenuated acute kidney injury and inflammation. The pyroptotic role of GSDME was also verified in human TECs in vitro. Further investigation showed that inhibition of caspase-3 blocked GSDME-N cleavage and attenuated cisplatin-induced pyroptosis and kidney dysfunction. Moreover, deletion of GSDME also protected against kidney injury induced by ischemia-reperfusion. Taken together, the findings from current study demonstrated that caspase-3/GSDME-triggered pyroptosis and inflammation contributes to AKI, providing new insights into the understanding and treatment of this disease.
Collapse
Affiliation(s)
- Weiwei Xia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Yuanyuan Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Mengying Wu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Qianqian Jin
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Qian Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Shuzhen Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China. .,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China. .,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China.
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008, Nanjing, China. .,Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008, Nanjing, China. .,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029, Nanjing, China.
| |
Collapse
|
93
|
Burstein S. Molecular Mechanisms for the Inflammation-Resolving Actions of Lenabasum. Mol Pharmacol 2021; 99:125-132. [PMID: 33239333 DOI: 10.1124/molpharm.120.000083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022] Open
Abstract
A first-in-class cannabinoid analog called lenabasum that is a CB2 agonist is being developed as an inflammation-resolving drug candidate. Thus far, specific therapeutic targets include scleroderma, cystic fibrosis, dermatomyositis, and lupus, all of which represent unmet medical needs. Two somewhat-independent molecular mechanisms for this type of action are here proposed. Both pathways initially involve the release of free arachidonic acid after activation of the CB2 receptor and phospholipase A2 by lenabasum. The pathways then diverge into a cyclooxygenase 2-mediated and a lipoxygenase-mediated route. The former leads to increased levels of the cyclopentenone prostaglandin 15-deoxy-Δ12,14-prostaglandin-J2 that can activate the NLPR3 inflammasome, which in turn releases caspase-3, leading to apoptosis and the resolution of chronic inflammation. The lipoxygenase-mediated pathway stimulates the production of lipoxin A4 as well as other signaling molecules called specialized proresolving mediators. These also have inflammation-resolving actions. It is not well understood under which conditions each of these mechanisms operates and whether there is crosstalk between them. Thus, much remains to be learned about the mechanisms describing the actions of lenabasum. SIGNIFICANCE STATEMENT: The resolution of chronic inflammation is a major unmet medical need. The synthetic nonpsychoactive cannabinoid lenabasum could provide a safe and effective drug for this purpose. Two putative molecular mechanisms are suggested to better understand how lenabasum produces this action. In both, different metabolites of arachidonic acid act as mediators.
Collapse
Affiliation(s)
- Sumner Burstein
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
94
|
McCarty MF, Iloki Assanga SB, Lewis Luján L, O’Keefe JH, DiNicolantonio JJ. Nutraceutical Strategies for Suppressing NLRP3 Inflammasome Activation: Pertinence to the Management of COVID-19 and Beyond. Nutrients 2020; 13:E47. [PMID: 33375692 PMCID: PMC7823562 DOI: 10.3390/nu13010047] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 02/03/2023] Open
Abstract
Inflammasomes are intracellular protein complexes that form in response to a variety of stress signals and that serve to catalyze the proteolytic conversion of pro-interleukin-1β and pro-interleukin-18 to active interleukin-1β and interleukin-18, central mediators of the inflammatory response; inflammasomes can also promote a type of cell death known as pyroptosis. The NLRP3 inflammasome has received the most study and plays an important pathogenic role in a vast range of pathologies associated with inflammation-including atherosclerosis, myocardial infarction, the complications of diabetes, neurological and autoimmune disorders, dry macular degeneration, gout, and the cytokine storm phase of COVID-19. A consideration of the molecular biology underlying inflammasome priming and activation enables the prediction that a range of nutraceuticals may have clinical potential for suppressing inflammasome activity-antioxidants including phycocyanobilin, phase 2 inducers, melatonin, and N-acetylcysteine, the AMPK activator berberine, glucosamine, zinc, and various nutraceuticals that support generation of hydrogen sulfide. Complex nutraceuticals or functional foods featuring a number of these agents may find utility in the prevention and control of a wide range of medical disorders.
Collapse
Affiliation(s)
| | - Simon Bernard Iloki Assanga
- Department of Research and Postgraduate in Food, University of Sonora, Centro 83000, Mexico; (S.B.I.A.); (L.L.L.)
| | - Lidianys Lewis Luján
- Department of Research and Postgraduate in Food, University of Sonora, Centro 83000, Mexico; (S.B.I.A.); (L.L.L.)
| | | | | |
Collapse
|
95
|
Parkinson JT, Foley ÉM, Jadon DR, Khandaker GM. Depression in patients with spondyloarthritis: prevalence, incidence, risk factors, mechanisms and management. Ther Adv Musculoskelet Dis 2020; 12:1759720X20970028. [PMID: 33224281 PMCID: PMC7649919 DOI: 10.1177/1759720x20970028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
Depression is a major neuropsychiatric disorder common in patients with rheumatological conditions including spondyloarthritis (SpA). It is associated with higher disease activity, functional impairment, poor treatment response and quality of life in patients with musculoskeletal disorders. Using ankylosing spondylitis (AS) and psoriatic arthritis (PsA) as examples, we have reviewed the evidence regarding the burden, risk factors, potential mechanisms and clinical management of depression in spondyloarthritis. The prevalence of depression is higher in patients with AS and PsA compared with the general population, with evidence of moderate/severe depression in about 15% of patients with AS or PsA. Mild depression is even more common and estimated to be present in about 40% of patients with AS. In addition to conventional risk factors such as stressful life events and socioeconomic deprivation, increased risk of depression in SpA may be associated with disease-related factors, such as disease activity, poor quality of life, fatigue, and sleep disturbances. Emerging evidence implicates inflammation in the aetiology of depression, which could also be a shared mechanism for depression and chronic inflammatory conditions such as AS and PsA. It is imperative for clinicians to actively assess and treat depression in SpA, as this could improve treatment adherence, quality of life, and overall long-term clinical and occupational outcomes. The use of validated tools can aid recognition and management of depression in rheumatology clinics. Management of depression in SpA, especially when to refer to specialist mental health services, are discussed.
Collapse
Affiliation(s)
- Joel T. Parkinson
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Cambridge Biomedical Campus, Robinson Way, Cambridge, Cambridgeshire CB2 0SZ, UK
| | - Éimear M. Foley
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Deepak R. Jadon
- Department of Rheumatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medicine, University of Cambridge, UK
| | - Golam M. Khandaker
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
96
|
Yu L, Deng Z, Liu L, Zhang W, Wang C. Plant-Derived Nanovesicles: A Novel Form of Nanomedicine. Front Bioeng Biotechnol 2020; 8:584391. [PMID: 33154966 PMCID: PMC7591720 DOI: 10.3389/fbioe.2020.584391] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
The nanovesicles extracted from the plant and herbal decoctions are identified as a new class of nanomedicine. They are involved in interspecies chemical communication across the plant and animal kingdoms and display a therapeutic potential against a variety of diseases. Herein, we review the recent progress made in the medical applications of plant-derived nanovesicles in the aspects of anti-inflammation, anti-cancer, tissue regeneration, and modulating commensal microbiota. We further summarize the cellular and molecular mechanisms underlying the physiological functions of plant-derived nanovesicles. Overall, plant-derived nanovesicles provide an alternative to conventional synthetic drugs and present exciting opportunities for future research on disease therapy.
Collapse
Affiliation(s)
- Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhun Deng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
97
|
Tang L, Lu C, Zheng G, Burgering BM. Emerging insights on the role of gasdermins in infection and inflammatory diseases. Clin Transl Immunology 2020; 9:e1186. [PMID: 33033617 PMCID: PMC7533414 DOI: 10.1002/cti2.1186] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
The gasdermins, family of pore-forming proteins, are emerging key regulators of infection, autoinflammation and antitumor immunity. Multiple studies have recently characterised their crucial roles in driving pyroptosis, a lytic pro-inflammatory type of cell death. Additionally, gasdermins also act as key effectors of NETosis, secondary necrosis and apoptosis. In this review, we will address current understanding of the mechanisms of gasdermin activation and further describe the protective and detrimental roles of gasdermins in host defence and autoinflammatory diseases. These data suggest that gasdermins play a prominent role in innate immunity and autoinflammatory disorders, thereby providing potential new therapeutic avenues for the treatment of infection and autoimmune disease.
Collapse
Affiliation(s)
- Lipeng Tang
- Department of Pharmacology of Traditional Chinese Medicine The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China.,Department of Molecular Cancer Research Center Molecular Medicine University Medical Center Utrecht Utrecht The Netherlands
| | - Chuanjian Lu
- Department of Dermatology The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Guangjuan Zheng
- Department of Pharmacology of Traditional Chinese Medicine The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China.,Department of Pathology The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Boudewijn Mt Burgering
- Department of Molecular Cancer Research Center Molecular Medicine University Medical Center Utrecht Utrecht The Netherlands
| |
Collapse
|
98
|
Wu Y, He X, Huang N, Yu J, Shao B. A20: a master regulator of arthritis. Arthritis Res Ther 2020; 22:220. [PMID: 32958016 PMCID: PMC7504854 DOI: 10.1186/s13075-020-02281-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
A20, also known as TNF-α-induced protein 3 (TNFAIP3), is an anti-inflammatory protein that plays an important part in both immune responses and cell death. Impaired A20 function is associated with several human inflammatory and autoimmune diseases. Although the role of A20 in mediating inflammation has been frequently discussed, its intrinsic link to arthritis awaits further explanation. Here, we review new findings that further demonstrate the molecular mechanisms through which A20 regulates inflammatory arthritis, and we discuss the regulation of A20 by many factors. We conclude by reviewing the latest A20-associated mouse models that have been applied in related research because they reflect the characteristics of arthritis, the study of which will hopefully cast new light on anti-arthritis treatments.
Collapse
Affiliation(s)
- Yongyao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaomin He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ning Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiayun Yu
- State Key Laboratory of Biotherapy anf Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,State Key Laboratory of Biotherapy anf Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
99
|
Zhang Y, Qu X, Gao H, Zhai J, Tao L, Sun J, Song Y, Zhang J. Quercetin attenuates NLRP3 inflammasome activation and apoptosis to protect INH-induced liver injury via regulating SIRT1 pathway. Int Immunopharmacol 2020; 85:106634. [DOI: 10.1016/j.intimp.2020.106634] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 01/04/2023]
|
100
|
Edilova MI, Akram A, Abdul-Sater AA. Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed J 2020; 44:172-182. [PMID: 32798211 PMCID: PMC8178572 DOI: 10.1016/j.bj.2020.06.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease affecting ∼1% of the general population. This disease is characterized by persistent articular inflammation and joint damage driven by the proliferating synovial tissue fibroblasts as well as neutrophil, monocyte and lymphocyte trafficking into the synovium. The factors leading to RA pathogenesis remain poorly elucidated although genetic and environmental factors have been proposed to be the main contributors to RA. The majority of the early studies focused on the role of lymphocytes and adaptive immune responses in RA. However, in the past two decades, emerging studies showed that the innate immune system plays a critical role in the onset and progression of RA pathogenesis. Various innate immune cells including monocytes, macrophages and dendritic cells are involved in inflammatory responses seen in RA patients as well as in driving the activation of the adaptive immune system, which plays a major role in the later stages of the disease. Here we focus the discussion on the role of different innate immune cells and components in initiation and progression of RA. New therapeutic approaches targeting different inflammatory pathways and innate immune cells will be highlighted here. Recent emergence and the significant roles of innate lymphoid cells and inflammasomes will be also discussed.
Collapse
Affiliation(s)
- Maria I Edilova
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ali Akram
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario Canada; The University Health Network, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario Canada.
| |
Collapse
|