52
|
Baschien C, Tsui CKM, Gulis V, Szewzyk U, Marvanová L. The molecular phylogeny of aquatic hyphomycetes with affinity to the Leotiomycetes. Fungal Biol 2013; 117:660-72. [DOI: 10.1016/j.funbio.2013.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/14/2013] [Accepted: 07/16/2013] [Indexed: 11/30/2022]
|
53
|
Davey ML, Heegaard E, Halvorsen R, Ohlson M, Kauserud H. Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. THE NEW PHYTOLOGIST 2012; 195:844-856. [PMID: 22758207 DOI: 10.1111/j.1469-8137.2012.04215.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bryophytes are a dominant vegetation component of the boreal forest, but little is known about their associated fungal communities, including seasonal variation within them. Seasonal variation in the fungal biomass and composition of fungal communities associated with three widespread boreal bryophytes was investigated using HPLC assays of ergosterol and amplicon pyrosequencing of the internal transcribed spacer 2 (ITS2) region of rDNA. The bryophyte phyllosphere community was dominated by Ascomycota. Fungal biomass did not decline appreciably in winter (P=0.272). Significant host-specific patterns in seasonal variation of biomass were detected (P=0.003). Although seasonal effects were not the primary factors structuring community composition, collection date significantly explained (P=0.001) variation not attributed to locality, host, and tissue. Community homogenization and a reduction in turnover occurred with the onset of frost events and subzero air and soil temperatures. Fluctuations in the relative abundance of particular fungal groups seem to reflect the nature of their association with mosses, although conclusions are drawn with caution because of potential methodological bias. The moss-associated fungal community is dynamic, exhibiting seasonal turnover in composition and relative abundance of different fungal groups, and significant fungal biomass is present year-round, suggesting a winter-active fungal community.
Collapse
Affiliation(s)
- Marie L Davey
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, PO Box 5003, NO-1432 Ås, Norway
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| | - Einar Heegaard
- Norwegian Forest and Landscape Institute, Fanaflaten 4, NO-5244 Fana, Norway
| | - Rune Halvorsen
- Department of Botany, Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318 Oslo, Norway
| | - Mikael Ohlson
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, PO Box 5003, NO-1432 Ås, Norway
| | - Håvard Kauserud
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
54
|
Yang E, Xu L, Yang Y, Zhang X, Xiang M, Wang C, An Z, Liu X. Origin and evolution of carnivorism in the Ascomycota (fungi). Proc Natl Acad Sci U S A 2012; 109:10960-5. [PMID: 22715289 PMCID: PMC3390824 DOI: 10.1073/pnas.1120915109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Carnivorism is one of the basic life strategies of fungi. Carnivorous fungi possess the ability to trap and digest their preys by sophisticated trapping devices. However, the origin and development of fungal carnivorism remains a gap in evolution biology. In this study, five protein-encoding genes were used to construct the phylogeny of the carnivorous fungi in the phylum Ascomycota; these fungi prey on nematodes by means of specialized trapping structures such as constricting rings and adhesive traps. Our analysis revealed a definitive pattern of evolutionary development for these trapping structures. Molecular clock calibration based on two fossil records revealed that fungal carnivorism diverged from saprophytism about 419 Mya, which was after the origin of nematodes about 550-600 Mya. Active carnivorism (fungi with constricting rings) and passive carnivorism (fungi with adhesive traps) diverged from each other around 246 Mya, shortly after the occurrence of the Permian-Triassic extinction event about 251.4 Mya. The major adhesive traps evolved around 198-208 Mya, which was within the time frame of the Triassic-Jurassic extinction event about 201.4 Mya. However, no major carnivorous ascomycetes divergence was correlated to the Cretaceous-Tertiary extinction event, which occurred more recently (about 65.5 Mya). Therefore, a causal relationship between mass extinction events and fungal carnivorism evolution is not validated in this study. More evidence including additional fossil records is needed to establish if fungal carnivorism evolution was a response to mass extinction events.
Collapse
Affiliation(s)
- Ence Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingling Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Biotechnology, Xi'an University of Arts and Science, Xi'an 710065, China
| | - Ying Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; and
| | - Zhiqiang An
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
55
|
Akita M, Lehtonen MT, Koponen H, Marttinen EM, Valkonen JPT. Infection of the Sunagoke moss panels with fungal pathogens hampers sustainable greening in urban environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:3166-3173. [PMID: 21624641 DOI: 10.1016/j.scitotenv.2011.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 04/27/2011] [Accepted: 05/04/2011] [Indexed: 05/30/2023]
Abstract
Drought and heat tolerance of the Sunagoke moss (Racomitrium japonicum) and the low thermal conductivity of the dry moss tissue offer novel greening and insulation possibilities of roofs and walls to mitigate the heat island phenomenon in urban environments. However, damage may appear in the moss panels under humid conditions in Japan. In this study we characterized fungi associated with the damaged areas of the Sunagoke moss panels. Fungi were identified by morphology and internal transcribed spacer (ITS) sequence analysis and tested for pathogenicity on R. japonicum (Grimmiaceae) and an unrelated moss species (Physcomitrella patens; Funariaceae) under controlled conditions. Alternaria alternata, Fusarium avenaceum and Fusarium oxysporum caused severe necrosis and death, whereas Cladosporium oxysporum and Epicoccum nigrum caused milder discoloration or chlorosis in both moss species. The fungi pathogenic on moss were closely related to fungal pathogens described from cultivated vascular plants. Ammonium increased severity of fungal diseases in moss. This study demonstrated that fungi can cause economically significant diseases in cultivated moss and hamper commercial use of the moss panels unless appropriate control methods are developed. Use of a single moss clone to cover large surfaces and the air pollutants such as ammonium may increase the risk for fungal disease problems.
Collapse
Affiliation(s)
- Motomu Akita
- Department of Biotechnological Science, Kinki University, Kinokawa, Wakayama 649-6493, Japan
| | | | | | | | | |
Collapse
|
56
|
Baral HO, Garcia G, Bogale M, O’Hara MJ, Untereiner WA. Colipila, a new genus in the Helotiales. Mycol Prog 2011. [DOI: 10.1007/s11557-011-0742-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|