51
|
Leong PK, Chiu PY, Ko KM. Prooxidant-induced glutathione antioxidant response in vitro and in vivo: a comparative study between schisandrin B and curcumin. Biol Pharm Bull 2012; 35:464-72. [PMID: 22466548 DOI: 10.1248/bpb.35.464] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether two naturally-occurring prooxidants, namely, schisandrin B (Sch B) and curcumin, and a synthetic prooxidant, menadione, can invariably elicit cyto/hepatoprotective responses against oxidant-induced injury. Results showed that (-)Sch B (a potent enantiomer of Sch B, 15 μM), curcumin (7.5 μM) and menadione (2 μM) induced a similar extent of reactive oxygen species production in AML12 cells. The relative potencies of cytoprotection in vitro were in a descending order of curcumin>menadione>(-)Sch B, which were parallel to the extent of stimulation in cellular reduced glutathione level. We further examined their hepatoprotection in vivo. Pretreatment with Sch B (800 mg/kg) and curcumin (737 mg/kg), but not menadione (344 mg/kg), protected against CCl(4) toxicity, with the degree of protection afforded by Sch B being much larger than that of curcumin. The attenuated hepatoprotection afforded by curcumin may be attributed to its low bioavailability in vivo. This postulation is supported by the findings that intraperitoneal injections of Sch B (400 mg/kg) and curcumin (368 mg/kg) and the long term, low dose treatment with Sch B (20 mg/kg/d×15) and curcumin (18 mg/kg/d×15) induced glutathione antioxidant response and hepatoprotection to similar extents in vivo. The inability of menadione to induce hepatoprotection may be related to its extensive intestinal metabolism and/or hepatotoxicity. Taken together, prooxidants can invariably induce the glutathione antioxidant response and confer cytoprotection in vitro. Whether or not the prooxidant can produce a similar response in vivo would depend on its bioavailability and potential toxic effect.
Collapse
Affiliation(s)
- Pou Kuan Leong
- Division of Life Science, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China
| | | | | |
Collapse
|
52
|
Prabha SP, Ansil PN, Nitha A, Wills PJ, Latha MS. Preventive and curative effect of methanolic extract of Gardenia gummifera Linn. f. on thioacetamide induced oxidative stress in rats. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60023-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
53
|
Girish C, Pradhan SC. Indian herbal medicines in the treatment of liver diseases: problems and promises. Fundam Clin Pharmacol 2011; 26:180-9. [DOI: 10.1111/j.1472-8206.2011.01011.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
54
|
Molina-Jijón E, Tapia E, Zazueta C, El Hafidi M, Zatarain-Barrón ZL, Hernández-Pando R, Medina-Campos ON, Zarco-Márquez G, Torres I, Pedraza-Chaverri J. Curcumin prevents Cr(VI)-induced renal oxidant damage by a mitochondrial pathway. Free Radic Biol Med 2011; 51:1543-57. [PMID: 21839166 DOI: 10.1016/j.freeradbiomed.2011.07.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 07/11/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
We report the role of mitochondria in the protective effects of curcumin, a well-known direct and indirect antioxidant, against the renal oxidant damage induced by the hexavalent chromium [Cr(VI)] compound potassium dichromate (K(2)Cr(2)O(7)) in rats. Curcumin was given daily by gavage using three different schemes: (1) complete treatment (100, 200, and 400 mg/kg bw 10 days before and 2 days after K(2)Cr(2)O(7) injection), (2) pretreatment (400 mg/kg bw for 10 days before K(2)Cr(2)O(7) injection), and (3) posttreatment (400 mg/kg bw 2 days after K(2)Cr(2)O(7) injection). Rats were sacrificed 48 h later after a single K(2)Cr(2)O(7) injection (15 mg/kg, sc) to evaluate renal and mitochondrial function and oxidant stress. Curcumin treatment (schemes 1 and 2) attenuated K(2)Cr(2)O(7)-induced renal dysfunction, histological damage, oxidant stress, and the decrease in antioxidant enzyme activity both in kidney tissue and in mitochondria. Curcumin pretreatment attenuated K(2)Cr(2)O(7)-induced mitochondrial dysfunction (alterations in oxygen consumption, ATP content, calcium retention, and mitochondrial membrane potential and decreased activity of complexes I, II, II-III, and V) but was unable to modify renal and mitochondrial Cr(VI) content or to chelate chromium. Curcumin posttreatment was unable to prevent K(2)Cr(2)O(7)-induced renal dysfunction. In further experiments performed in curcumin (400 mg/kg)-pretreated rats it was found that this antioxidant accumulated in kidney and activated Nrf2 at the time when K(2)Cr(2)O(7) was injected, suggesting that both direct and indirect antioxidant effects are involved in the protective effects of curcumin. These findings suggest that the preservation of mitochondrial function plays a key role in the protective effects of curcumin pretreatment against K(2)Cr(2)O(7)-induced renal oxidant damage.
Collapse
Affiliation(s)
- Eduardo Molina-Jijón
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510 University City, DF, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Ulbricht C, Basch E, Barrette EP, Boon H, Chao W, Costa D, Higdon ER, Isaac R, Lynch M, Papaliodis G, Grimes Serrano JM, Varghese M, Vora M, Windsor R, Woods J. Turmeric(Curcuma longa): An Evidence-Based Systematic Review by the Natural Standard Research Collaboration. ACTA ACUST UNITED AC 2011. [DOI: 10.1089/act.2011.17409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Catherine Ulbricht
- The Natural Standard Research Collaboration, in Somerville, Massachusetts, is a senior attending pharmacist at Massachusetts General Hospital, and is an adjunct/assistant clinical professor at many universities
| | - Ethan Basch
- The Natural Standard Research Collaboration, is a medical oncologist and professor at Memorial Sloan-Kettering Cancer Center in New York, New York, and is on the faculty at Weill Cornell Medical College in New York, New York
| | - Ernie-Paul Barrette
- The Division of Infectious Diseases at Washington University School of Medicine in St. Louis, Missouri
| | - Heather Boon
- The Leslie Dan Faculty of Pharmacy at the University of Toronto in Ontario, Canada, is a founding chair and principal investigator of the Canadian Interdisciplinary Network for CAM Research (IN-CAM) in Calgary, Alberta, Canada, and is co-chair of Health Canada’s Expert Advisory Committee for Natural Health Products in Ottawa, Ontario, Canada
| | | | | | | | | | | | - George Papaliodis
- The Immunology and Uveitis Service at Massachusetts Eye and Ear Infirmary in Boston, Massachusetts, and is on the faculty at Massachusetts General Hospital in Boston, Massachusetts
| | | | | | | | | | - Jen Woods
- A publications editor, all at the Natural Standard Research Collaboration
| |
Collapse
|
56
|
Kučera O, Lotková H, Staňková P, Podhola M, Roušar T, Mezera V, Cervinková Z. Is rat liver affected by non-alcoholic steatosis more susceptible to the acute toxic effect of thioacetamide? Int J Exp Pathol 2011; 92:281-289. [PMID: 21410800 PMCID: PMC3144517 DOI: 10.1111/j.1365-2613.2011.00765.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/13/2011] [Indexed: 01/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic condition of the liver in the western world. There is only little evidence about altered sensitivity of steatotic liver to acute toxic injury. The aim of this project was to test whether hepatic steatosis sensitizes rat liver to acute toxic injury induced by thioacetamide (TAA). Male Sprague-Dawley rats were fed ad libitum a standard pelleted diet (ST-1, 10% energy fat) and high-fat gelled diet (HFGD, 71% energy fat) for 6 weeks and then TAA was applied intraperitoneally in one dose of 100 mg/kg. Animals were sacrificed in 24-, 48- and 72-h interval after TAA administration. We assessed the serum biochemistry, the hepatic reduced glutathione, thiobarbituric acid reactive substances, cytokine concentration, the respiration of isolated liver mitochondria and histopathological samples (H+E, Sudan III, bromodeoxyuridine [BrdU] incorporation). Activities of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase and concentration of serum bilirubin were significantly higher in HFGD groups after application of TAA, compared to ST-1. There were no differences in activities of respiratory complexes I and II. Serum tumour necrosis factor alpha at 24 and 48 h, liver tissue interleukin-6 at 72 h and transforming growth factor β1 at 24 and 48 h were elevated in TAA-administrated rats fed with HFGD, but not ST-1. TAA-induced centrilobular necrosis and subsequent regenerative response of the liver were higher in HFGD-fed rats in comparison with ST-1. Liver affected by NAFLD, compared to non-steatotic liver, is more sensitive to toxic effect of TAA.
Collapse
Affiliation(s)
- Otto Kučera
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
57
|
Investigation of hepatoprotective activity of induced pluripotent stem cells in the mouse model of liver injury. J Biomed Biotechnol 2011; 2011:219060. [PMID: 21808596 PMCID: PMC3144694 DOI: 10.1155/2011/219060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/27/2011] [Indexed: 01/14/2023] Open
Abstract
To date liver transplantation is the only effective treatment for end-stage liver diseases. Considering the potential of pluripotency and differentiation into tridermal lineages, induced pluripotent stem cells (iPSCs) may serve as an alternative of cell-based therapy. Herein, we investigated the effect of iPSC transplantation on thioacetamide- (TAA-) induced acute/fulminant hepatic failure (AHF) in mice. Firstly, we demonstrated that iPSCs had the capacity to differentiate into hepatocyte-like cells (iPSC-Heps) that expressed various hepatic markers, including albumin, α-fetoprotein, and hepatocyte nuclear factor-3β, and exhibited biological functions. Intravenous transplantation of iPSCs effectively reduced the hepatic necrotic area, improved liver functions and motor activity, and rescued TAA-treated mice from lethal AHF. 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate cell labeling revealed that iPSCs potentially mobilized to the damaged liver area. Taken together, iPSCs can effectively rescue experimental AHF and represent a potentially favorable cell source of cell-based therapy.
Collapse
|
58
|
Lin MS, Lee YH, Chiu WT, Hung KS. Curcumin Provides Neuroprotection After Spinal Cord Injury. J Surg Res 2011; 166:280-9. [DOI: 10.1016/j.jss.2009.07.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 06/23/2009] [Accepted: 07/03/2009] [Indexed: 01/12/2023]
|
59
|
Apocynin improves insulin resistance through suppressing inflammation in high-fat diet-induced obese mice. Mediators Inflamm 2011; 2010:858735. [PMID: 21403905 PMCID: PMC3043302 DOI: 10.1155/2010/858735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/17/2010] [Indexed: 02/06/2023] Open
Abstract
We investigated the effects of apocynin on high-fat diet- (HFD-) induced insulin resistance in C57BL/6 mice. After 12 weeks of HFD, the mice that exhibited insulin resistance then received 5 weeks of apocynin (2.4 g/L, in water). Following apocynin treatment, fasting glucose, insulin, and glucose tolerance test showed significant improvement in insulin sensitivity in HFD-fed mice. We demonstrated that serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and leptin were remarkably reduced with apocynin treatment. We also found that mRNA expression of TNF-α, IL-6, and monocyte chemoattractant protein-1 (MCP-1) in the liver and mRNA expression of TNF-α, IL-6, MCP-1, and leptin in adipose tissue were suppressed by apocynin. Furthermore, the activity of transcription factor NF-κB in the liver was significantly suppressed with apocynin treatment. These results suggest that apocynin may reduce inflammatory factors in the blood, liver, and adipose tissue, resulting in amelioration of insulin resistance in HFD-fed mice.
Collapse
|
60
|
Singh S, Trigun SK. Activation of neuronal nitric oxide synthase in cerebellum of chronic hepatic encephalopathy rats is associated with up-regulation of NADPH-producing pathway. THE CEREBELLUM 2011; 9:384-97. [PMID: 20405262 DOI: 10.1007/s12311-010-0172-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cerebellum-associated functions get affected during mild hepatic encephalopathy (MHE) in patients with chronic liver failure (CLF). Involvement of nitrosative and antioxidant factors in the pathogenesis of chronic hepatic encephalopathy is an evolving concept and needs to be defined in a true CLF animal model. This article describes profiles of NADPH-dependent neuronal nitric oxide synthase (nNOS) and those of glutathione peroxidase and glutathione reductase (GR) vis-a-vis regulation of NADPH-producing pathway in the cerebellum of CLF rats induced by administration of thioacetamide (100 mg kg⁻¹ b.w., i.p.) up to 10 days and confirming MHE on Morris water maze tests. Significant increases in the expression of nNOS protein and nitric oxide (NOx) level coincided with a similar increment in NADPH-diaphorase activity in the cerebellum of CLF rats. Glutathione peroxidase and GR utilize NADPH to regenerate reduced glutathione (GSH) in the cells. Both these enzymes and GSH level were found to be static and thus suggested efficient turnover of GSH in the cerebellum of MHE rats. Relative levels of glucose-6-phosphate dehydrogenase (G6PD) vs. phosphofructokinase 2 (PFK2) determine the rate of pentose phosphate pathway (PPP) responsible to synthesize NADPH. The cerebellum of CLF rats showed overactivation of G6PD with a significant decline in the expression of PFK2 and thus suggested activation of PPP in the cerebellum during MHE. It is concluded that concordant activations of PPP and nNOS in cerebellum of MHE rats could be associated with the implication of NOx in the pathogenesis of MHE.
Collapse
Affiliation(s)
- Santosh Singh
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Studies in Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
61
|
Deng ZY, Shan TD, Zhang FX. Severe hepatitis and intestinal mucosal barrier. Shijie Huaren Xiaohua Zazhi 2010; 18:3761-3766. [DOI: 10.11569/wcjd.v18.i35.3761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Besides digestion and absorption of nutrients, another important feature of the intestine is epithelial mucosal barrier. Intestinal epithelial mucosal barrier consists of mechanical, immune, chemical, and biological barriers. Although different barriers have different structures and functions, they can interact with each other in a complicated manner. Severe hepatitis is the most serious form of hepatitis. Some studies have demonstrated that severe hepatitis is closely related to intestinal mucosal injury. Therefore, intestinal mucosal injury has become an important topic for research of severe hepatitis. In this paper, we review the relationship between severe hepatitis and intestinal mucosal barrier.
Collapse
|
62
|
Kwon HJ, Lim JH, Han JT, Lee SB, Yoon WK, Nam KH, Choi IP, Kim DY, Won YS, Kim HC. The role of vitamin D3 upregulated protein 1 in thioacetamide-induced mouse hepatotoxicity. Toxicol Appl Pharmacol 2010; 248:277-84. [DOI: 10.1016/j.taap.2010.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/27/2010] [Accepted: 08/07/2010] [Indexed: 11/16/2022]
|
63
|
Demirel U, Harputluoglu MMM, Seckin Y, Ciralik H, Temel I, Ozyalin F, Otlu B, Yilmaz B, Dincturk MS, Aladag H. An antibody of TNF-alpha did not prevent thioacetamide-induced hepatotoxicity in rats. Hum Exp Toxicol 2010; 30:560-6. [DOI: 10.1177/0960327110374206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumor necrosis factor (TNF)-α antibodies have been shown to reduce liver damage in different models. We investigated the effects of infliximab (a TNF-α antibody) on liver damage in thioacetamide (TAA)-induced hepatotoxicity in rats. Group 1 (n = 8) was the control group. In group 2 (n = 8), the TAA group, the rats received 300 mg/kg intraperitoneal (ip) TAA daily for 2 days. In group 3 (n = 8), the TAA + Infliximab (INF) group, infliximab (5 mg/kg ip daily) was administered 48 hours before the first dose of TAA daily for 2 days and was maintained for 4 consecutive days. In group 4 (n = 8), the INF group, the rats received only ip infliximab (5 mg/kg) daily. Livers were excised for histopathological and biochemical tests (thiobarbituric-acid-reactive substances [TBARS], and myeloperoxidase [MPO]). Serum ammonia, aspartate transaminase (AST), alanine transaminase (ALT), TNF-α, liver TBARS and MPO levels, and liver necrosis and inflammation scores in the TAA group were significantly higher than in the control and INF groups (all p < 0.01). All parameters except AST were not significantly different between TAA and TAA + INF. In conclusion, our results suggest that oxidative stress plays an important role in TAA-induced hepatotoxicity, and infliximab does not improve oxidative liver damage.
Collapse
Affiliation(s)
- Ulvi Demirel
- Department of Gastroenterology, Firat University Medical Faculty, Elazig, Turkey
| | | | - Yuksel Seckin
- Department of Gastroenterology, Inonu University Medical Faculty, Malatya, Turkey
| | - Harun Ciralik
- Department of Pathology, Sutcu Imam University Medical Faculty, Kahramanmaras, Turkey
| | - Ismail Temel
- Department of Biochemistry, Inonu University Medical Faculty, Malatya, Turkey
| | - Fatma Ozyalin
- Department of Biochemistry, Inonu University Medical Faculty, Malatya, Turkey
| | - Baris Otlu
- Department of Microbiology, Inonu University Medical Faculty, Malatya, Turkey
| | - Bilgic Yilmaz
- Department of Gastroenterology, Inonu University Medical Faculty, Malatya, Turkey
| | | | - Hulya Aladag
- Department of Obstetrics and Gynecology, Malatya Devlet Hastanesi, Malatya, Turkey
| |
Collapse
|
64
|
El-Agamy DS. Comparative effects of curcumin and resveratrol on aflatoxin B(1)-induced liver injury in rats. Arch Toxicol 2010; 84:389-96. [PMID: 20112103 DOI: 10.1007/s00204-010-0511-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 01/13/2010] [Indexed: 02/06/2023]
Abstract
Aflatoxin B(1) is a potent hepatotoxic and hepatocarcinogenic mycotoxin. Lipid peroxidation and oxidative DNA damage are the principal manifestations of aflatoxin B(1)-induced toxicity that could be counteracted by antioxidants. Many plant constituents have been reported to prevent liver damage associated with lipid peroxidation. In this study, curcumin (polyphenolic antioxidant purified from turmeric) and resveratrol (polyphenol obtained from grapes) were evaluated for possible protection against liver injury induced by aflatoxin B(1) in rats. Adult male Fischer rats were divided into six groups including untreated control, curcumin control (200 mg/kg BW), resveratrol control (10 mg/kg BW) and aflatoxin B(1) (25 microg/kg BW). Other two groups were administered either curcumin or resveratrol along with aflatoxin B(1). The study was carried out for 90 days. At the end of the experiment period, blood and tissue samples were collected from the animals before they were killed. Livers were collected for histopathologic studies and fixed in 10% buffered formalin solution. Serum was used for estimation of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (gamma-GT) enzymes. The lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were estimated in liver homogenates. The results revealed that aflatoxin B(1) administration caused liver damage as indicated by statistically significant (P < 0.05) increase in serum ALT, AST and gamma-GT levels. In addition, there were general statistically significant reductions in the activities of GSH, SOD, CAT, GSH-Px, and an increase in lipid peroxidation in the liver of aflatoxin B(1)-treated group compared to the untreated control group. Curcumin showed a significant hepatoprotective activity by lowering the levels of serum marker enzymes, lipid peroxidation and elevating the levels of GSH, SOD, CAT and GSH-Px. However, resveratrol failed to protect from the aflatoxin B(1)-induced liver injury. These findings suggest that curcumin but not resveratrol has a hepatoprotective effect against aflatoxin B(1)-induced liver injury.
Collapse
Affiliation(s)
- Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
65
|
Anti-hepatofibrogenic Effect of Turnip Water Extract on Thioacetamide-induced Liver Fibrosis. Lab Anim Res 2010. [DOI: 10.5625/lar.2010.26.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
66
|
Abstract
Since 1900 bc, several therapeutic activities have been attributed to the rhizomes of the plant Curcuma longa for a variety of diseases, including liver disorders. Curcumin, the main active compound obtained from this plant, was first isolated two centuries ago and its structure as diferuloylmethane was determined in 1910. Curcumin has shown anti-inflammatory, anti-oxidant, antifungal, antibacterial and anticancer activities. The pharmacological properties of curcumin were reviewed recently and focused mainly on its anticancer properties. However, its beneficial activity on liver diseases (known centuries ago, and demonstrated recently utilizing animal models) has not being reviewed in depth until now. The curcumin ability to inhibit several factors like nuclear factor-kappaB, which modulates several pro-inflammatory and profibrotic cytokines as well as its anti-oxidant properties, provide a rational molecular basis to use it in hepatic disorders. Curcumin attenuates liver injury induced by ethanol, thioacetamide, iron overdose, cholestasis and acute, subchronic and chronic carbon tetrachloride (CCl(4)) intoxication; moreover, it reverses CCl(4) cirrhosis to some extent. Unfortunately, the number of studies of curcumin on liver diseases is still very low and investigations in this area must be encouraged because hepatic disorders constitute one of the main causes of worldwide mortality.
Collapse
Affiliation(s)
- Yadira Rivera-Espinoza
- Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, México City, México
| | | |
Collapse
|
67
|
Tuñón MJ, Alvarez M, Culebras JM, González-Gallego J. An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure. World J Gastroenterol 2009; 15:3086-98. [PMID: 19575487 PMCID: PMC2705730 DOI: 10.3748/wjg.15.3086] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/23/2009] [Accepted: 05/30/2009] [Indexed: 02/06/2023] Open
Abstract
Acute hepatic failure (AHF) is a severe liver injury accompanied by hepatic encephalopathy which causes multiorgan failure with an extremely high mortality rate, even if intensive care is provided. Management of severe AHF continues to be one of the most challenging problems in clinical medicine. Liver transplantation has been shown to be the most effective therapy, but the procedure is limited by shortage of donor organs. Although a number of clinical trials testing different liver assist devices are under way, these systems alone have no significant effect on patient survival and are only regarded as a useful approach to bridge patients with AHF to liver transplantation. As a result, reproducible experimental animal models resembling the clinical conditions are still needed. The three main approaches used to create an animal model for AHF are: surgical procedures, toxic liver injury and infective procedures. Most common models are based on surgical techniques (total/partial hepatectomy, complete/transient devascularization) or the use of hepatotoxic drugs (acetaminophen, galactosamine, thioacetamide, and others), and very few satisfactory viral models are available. We have recently developed a viral model of AHF by means of the inoculation of rabbits with the virus of rabbit hemorrhagic disease. This model displays biochemical and histological characteristics, and clinical features that resemble those in human AHF. In the present article an overview is given of the most widely used animal models of AHF, and their main advantages and disadvantages are reviewed.
Collapse
|
68
|
Girish C, Pradhan SC. Drug development for liver diseases: focus on picroliv, ellagic acid and curcumin. Fundam Clin Pharmacol 2009; 22:623-32. [PMID: 19049667 DOI: 10.1111/j.1472-8206.2008.00618.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The use of herbal drugs for the treatment of liver diseases has a long tradition in many eastern countries. The easy accessibility without the need for laborious pharmaceutical synthesis has drawn increased attention towards herbal medicines. Few herbal preparations exist as standardized extracts with major known ingredients or even as pure compounds. Some of the herbals, which show promising activity, are ellagic acid for antifibrotic treatment, phyllanthin for treating chronic hepatitis B, glycyrrhizin to treat chronic viral hepatitis and picroliv for liver regeneration. These compounds, which have proven antioxidant, antiviral or anticarcinogenic properties, can serve as primary compounds for further development as hepatoprotective drugs. This review provides the chemistry, pharmacology and future aspects of picroliv, ellagic acid and curcumin with focus on hepatoprotective properties. These phytochemicals may prove to be very useful in the treatment of hepatotoxicity induced by viral agents, toxic drugs and plant poisons. The high safety profile may be an added advantage. However, poor bioavailability and temperature and light sensitivity can reduce the efficacy of drugs like curcumin. In future, the derivatives or new combinations of these drugs may prove to be useful.
Collapse
Affiliation(s)
- C Girish
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605 006, India.
| | | |
Collapse
|
69
|
Calabrese V, Bates TE, Mancuso C, Cornelius C, Ventimiglia B, Cambria MT, Di Renzo L, De Lorenzo A, Dinkova-Kostova AT. Curcumin and the cellular stress response in free radical-related diseases. Mol Nutr Food Res 2009; 52:1062-73. [PMID: 18792015 DOI: 10.1002/mnfr.200700316] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Free radicals play a main pathogenic role in several human diseases such as neurodegenerative disorders, diabetes, and cancer. Although there has been progress in treatment of these diseases, the development of important side effects may complicate the therapeutic course. Curcumin, a well known spice commonly used in India to make foods colored and flavored, is also used in traditional medicine to treat mild or moderate human diseases. In the recent years, a growing body of literature has unraveled the antioxidant, anticarcinogenic, and antinfectious activity of curcumin based on the ability of this compound to regulate a number of cellular signal transduction pathways. These promising data obtained in vitro are now being translated to the clinic and more than ten clinical trials are currently ongoing worldwide. This review outlines the biological activities of curcumin and discusses its potential use in the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Clinical Biochemistry and Clinical Molecular Biology Chair, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Reyes-Gordillo K, Segovia J, Shibayama M, Tsutsumi V, Vergara P, Moreno MG, Muriel P. Curcumin prevents and reverses cirrhosis induced by bile duct obstruction or CCl4 in rats: role of TGF-beta modulation and oxidative stress. Fundam Clin Pharmacol 2008; 22:417-27. [PMID: 18705752 DOI: 10.1111/j.1472-8206.2008.00611.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Curcumin is a phytophenolic compound, which is highly efficacious for treating several inflammatory diseases. The aim of this study was to evaluate the efficacy of curcumin in preventing or reversing liver cirrhosis. A 4-week bile duct ligation (BDL) rat model was used to test the ability of curcumin (100 mg/kg, p.o., daily) to prevent cirrhosis. To reverse cirrhosis, CCl(4) was administered chronically for 3 months, and then it was withdrawn and curcumin administered for 2 months. Alanine aminotransferase, gamma-glutamyl transpeptidase, liver histopathology, bilirubin, glycogen, reduced and oxidized glutathione, and TGF-beta (mRNA and protein) levels were assessed. Curcumin preserved normal values of markers of liver damage in BDL rats. Fibrosis, assessed by measuring hydroxyproline levels and histopathology, increased nearly fivefold after BDL and this effect was partially but significantly prevented by curcumin. BDL increased transforming growth factor-beta (TGF-beta) levels (mRNA and proteins), while curcumin partially suppressed this mediator of fibrosis. Curcumin also partially reversed the fibrosis induced by CCl(4). Curcumin was effective in preventing and reversing cirrhosis, probably by its ability of reducing TGF-beta expression. These data suggest that curcumin might be an effective antifibrotic and fibrolitic drug in the treatment of chronic hepatic diseases.
Collapse
Affiliation(s)
- Karina Reyes-Gordillo
- Sección Externa de Farmacología, Cinvestav-IPN., Apdo. Postal 14-740, México 07000, D.F. México
| | | | | | | | | | | | | |
Collapse
|
71
|
López-Lázaro M. Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 2008; 52 Suppl 1:S103-27. [PMID: 18496811 DOI: 10.1002/mnfr.200700238] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A growing body of research suggests that curcumin, the major active constituent of the dietary spice turmeric, has potential for the prevention and therapy of cancer. Preclinical data have shown that curcumin can both inhibit the formation of tumors in animal models of carcinogenesis and act on a variety of molecular targets involved in cancer development. In vitro studies have demonstrated that curcumin is an efficient inducer of apoptosis and some degree of selectivity for cancer cells has been observed. Clinical trials have revealed that curcumin is well tolerated and may produce antitumor effects in people with precancerous lesions or who are at a high risk for developing cancer. This seems to indicate that curcumin is a pharmacologically safe agent that may be used in cancer chemoprevention and therapy. Both in vitro and in vivo studies have shown, however, that curcumin may produce toxic and carcinogenic effects under specific conditions. Curcumin may also alter the effectiveness of radiotherapy and chemotherapy. This review article analyzes the in vitro and in vivo cancer-related activities of curcumin and discusses that they are linked to its known antioxidant and pro-oxidant properties. Several considerations that may help develop curcumin as an anticancer agent are also discussed.
Collapse
Affiliation(s)
- Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Sevilla, Spain.
| |
Collapse
|
72
|
Bhatia V, Bhardwaj P, Elikkottil J, Batra J, Saraya A. A 7-day profile of oxidative stress and antioxidant status in patients with acute liver failure. Hepatol Int 2008; 2:465-70. [PMID: 19669321 DOI: 10.1007/s12072-008-9098-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 08/12/2008] [Indexed: 12/19/2022]
Abstract
PURPOSE Acute liver failure (ALF) is characterized by a rapid and massive destruction of hepatocytes. The role of oxidative stress in perpetuating the injury is undefined and may be a potential therapeutic target. Our aim was to study serial variation in oxidative stress and antioxidant status in patients with ALF. METHODS The study involved a prospective case-control study set in a tertiary care referral center. Thirty-two consecutive patients admitted with ALF were included with 23 healthy controls for comparison. Level of systemic oxidative stress as defined by superoxide dismutase (SOD), lipid peroxidation products (thiobarbituric acid reactive derivatives [TBARS]), and the total antioxidant capacity as the ferric reducing ability of plasma (FRAP) was measured at baseline on days 3 and 7. RESULTS The patients were aged 24 years (range 13-60 years) and included 20 females. Thirteen (40.6%) patients died. Patients with ALF had significantly increased systemic oxidative stress at presentation, as reflected by higher levels of SOD (P < 0.001) and TBARS (P < 0.001) than controls. Both TBARS levels and FRAP decreased progressively from admission to the end of first week among the survivors (P = 0.004 and 0.015, respectively). The antioxidant status reflected by FRAP (P = 0.001) was significantly lower in ALF patients than controls. No relation was found between the level of oxidative stress and the mortality or complications. CONCLUSION A high level of systemic oxidative stress exists in ALF, with depletion of antioxidant reserves. Further studies are needed to define the clinical correlation of the large pro-oxidant burden.
Collapse
Affiliation(s)
- Vikram Bhatia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | | | | | | |
Collapse
|
73
|
Ghoneim AI. Effects of curcumin on ethanol-induced hepatocyte necrosis and apoptosis: implication of lipid peroxidation and cytochrome c. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:47-60. [PMID: 18716759 DOI: 10.1007/s00210-008-0335-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Accepted: 07/06/2008] [Indexed: 11/28/2022]
Abstract
Ethanol-induced hepatocyte necrosis and apoptosis are valid in vitro models to investigate the modulatory effects of hepatoprotective/toxic agents such as curcumin. In this study, suspension and monolayer cultures of isolated rat hepatocytes were used. Levels of trypan blue uptake, reduced glutathione, and lipid peroxidation were quantified. Chromatin condensation, caspase-3 activity, and cytochrome c extramitochondrial translocation were also evaluated. Results revealed that curcumin did not protect against either ethanol-induced necrosis or glutathione depletion. Neither did curcumin reduce caspase-3 activation nor chromatin condensation. In contrast, curcumin induced glutathione depletion, caspase-3 activation, necrosis, and apoptosis. Fortunately, all tested curcumin concentrations (1 microM-10 mM) diminished the ethanol-induced lipid peroxidation. In addition, 1 microM curcumin decreased cytochrome c translocation in hepatocyte monolayers. In conclusion, low concentrations of curcumin may protect hepatocytes by reducing lipid peroxidation and cytochrome c release. Conversely, higher concentrations provoke glutathione depletion, caspase-3 activation, and hepatocytotoxicity.
Collapse
Affiliation(s)
- Asser I Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
74
|
Chen TM, Subeq YM, Lee RP, Chiou TW, Hsu BG. Single dose intravenous thioacetamide administration as a model of acute liver damage in rats. Int J Exp Pathol 2008; 89:223-31. [PMID: 18422601 DOI: 10.1111/j.1365-2613.2008.00576.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thioacetamide (TAA) has been used extensively in the development of animal models of acute liver injury. Frequently, TAA is administered intraperitoneally to induce liver damage under anaesthesia. However, it is rarely administered by intravenous injection in conscious rats. The experiments in this study were designed to induce acute liver damage by single intravenous injection of TAA (0, 70 and 280 mg/kg) in unrestrained rats. Biochemical parameters and cytokines measured during the 60-h period following TAA administration, included white blood cells (WBC), haemoglobulin (Hb), platelet, aspartate transferase (GOT), alanine transferase (GPT), total bilirubin (TBIL), direct bilirubin (DBI), albumin, ammonia (NH3), r-glutamyl transpeptidase (r-GT), tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6). Rats were sacrificed by decapitation 60 h after TAA administration and livers were removed immediately for pathology and immunohistochemical (IHC) examination. Another group of rats were sacrificed by decapitation 1, 6 and 24 h after TAA administration and livers were removed immediately for time course change of pathology and IHC examination. TAA significantly increased blood WBC, GOT, GPT, TBIL, DBIL, NH3, r-GT, TNF-alpha and IL-6 levels but decreased the blood Hb, platelet and albumin level. The levels of histopathological damage in the liver after intravenous TAA administration were also increased with a dose-dependent trend and more increased at 60 h after TAA administration. The levels of inducible nitric oxide synthase (iNOS) and nuclear factor-kappaB (NF-kappaB) detected by IHC in the liver after intravenous TAA administration were also increased with a dose-dependent trend and more increased at 1 h after TAA administration. Single intravenous TAA administration without anaesthesia is a restorable animal model which may be used to investigate acute liver damage.
Collapse
Affiliation(s)
- Tse-Min Chen
- Division of Laboratory Medicine, Hualien Armed Forces General Hospital, Hualien, Taiwan
| | | | | | | | | |
Collapse
|
75
|
Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem Toxicol 2007; 46:1279-87. [PMID: 18006204 DOI: 10.1016/j.fct.2007.09.095] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/12/2007] [Accepted: 09/03/2007] [Indexed: 01/03/2023]
Abstract
Curcumin (diferuloymethane), a yellow colouring agent present in the rhizome of Curcuma longa Linn (Zingiberaceae), has been reported to possess anti-inflammatory, antioxidant, antimutagenic and anticarcinogenic activities. Curcumin exerts its chemoprotective and chemopreventive effects via multiple mechanisms. It has been reported to induce expression of the antioxidant enzymes in various cell lines. Heme oxygenase-1 (HO-1) is an important antioxidant enzyme that plays a pivotal role in cytoprotection against noxious stimuli of both endogenous and exogenous origin. In the present study, we found that oral administration of curcumin at 200mg/kg dose for four consecutive days not only protected against dimethylnitrosamine (DMN)-induced hepatic injury, but also resulted in more than three-fold induction of HO-1 protein expression as well as activity in rat liver. Inhibition of HO-1 activity by zinc protoporphyrin-IX abrogated the hepatoprotective effect of curcumin against DMN toxicity. NF-E2-related factor 2 (Nrf2) plays a role in the cellular protection against oxidative stress through antioxidant response element (ARE)-directed induction of several phase-2 detoxifying and antioxidant enzymes including HO-1. Curcumin administration resulted in enhanced nuclear translocation and ARE-binding of Nrf2. Taken together, these findings suggest that curcumin protects against DMN-induced hepatotoxicity, at least in part, through ARE-driven induction of HO-1 expression.
Collapse
|
76
|
Bhattacharyya S, Mandal D, Sen GS, Pal S, Banerjee S, Lahiry L, Finke JH, Tannenbaum CS, Das T, Sa G. Tumor-Induced Oxidative Stress Perturbs Nuclear Factor-κB Activity-Augmenting Tumor Necrosis Factor-α–Mediated T-Cell Death: Protection by Curcumin. Cancer Res 2007; 67:362-70. [PMID: 17210719 DOI: 10.1158/0008-5472.can-06-2583] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer patients often exhibit loss of proper cell-mediated immunity and reduced effector T-cell population in the circulation. Thymus is a major site of T-cell maturation, and tumors induce thymic atrophy to evade cellular immune response. Here, we report severe thymic hypocellularity along with decreased thymic integrity in tumor bearer. In an effort to delineate the mechanisms behind such thymic atrophy, we observed that tumor-induced oxidative stress played a critical role, as it perturbed nuclear factor-kappaB (NF-kappaB) activity. Tumor-induced oxidative stress increased cytosolic IkappaBalpha retention and inhibited NF-kappaB nuclear translocation in thymic T cells. These NF-kappaB-perturbed cells became vulnerable to tumor-secreted tumor necrosis factor (TNF)-alpha (TNF-alpha)-mediated apoptosis through the activation of TNF receptor-associated protein death domain-associated Fas-associated protein death domain and caspase-8. Interestingly, TNF-alpha-depleted tumor supernatants, either by antibody neutralization or by TNF-alpha-small interfering RNA transfection of tumor cells, were unable to kill T cell effectively. When T cells were overexpressed with NF-kappaB, the cells became resistant to tumor-induced apoptosis. In contrast, when degradation-defective IkappaBalpha (IkappaBalpha super-repressor) was introduced into T cells, the cells became more vulnerable, indicating that inhibition of NF-kappaB is the reason behind such tumor/TNF-alpha-mediated apoptosis. Curcumin could prevent tumor-induced thymic atrophy by restoring the activity of NF-kappaB. Further investigations suggest that neutralization of tumor-induced oxidative stress and restoration of NF-kappaB activity along with the reeducation of the TNF-alpha signaling pathway can be the mechanism behind curcumin-mediated thymic protection. Thus, our results suggest that unlike many other anticancer agents, curcumin is not only devoid of immunosuppressive effects but also acts as immunorestorer in tumor-bearing host.
Collapse
|