51
|
M'Dahoma S, Bourgoin S, Kayser V, Barthélémy S, Chevarin C, Chali F, Orsal D, Hamon M. Spinal cord transection-induced allodynia in rats--behavioral, physiopathological and pharmacological characterization. PLoS One 2014; 9:e102027. [PMID: 25019623 PMCID: PMC4096923 DOI: 10.1371/journal.pone.0102027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 06/14/2014] [Indexed: 12/31/2022] Open
Abstract
In humans, spinal cord lesions induce not only major motor and neurovegetative deficits but also severe neuropathic pain which is mostly resistant to classical analgesics. Better treatments can be expected from precise characterization of underlying physiopathological mechanisms. This led us to thoroughly investigate (i) mechanical and thermal sensory alterations, (ii) responses to acute treatments with drugs having patent or potential anti-allodynic properties and (iii) the spinal/ganglion expression of transcripts encoding markers of neuronal injury, microglia and astrocyte activation in rats that underwent complete spinal cord transection (SCT). SCT was performed at thoracic T8-T9 level under deep isoflurane anaesthesia, and SCT rats were examined for up to two months post surgery. SCT induced a marked hyper-reflexia at hindpaws and strong mechanical and cold allodynia in a limited (6 cm2) cutaneous territory just rostral to the lesion site. At this level, pressure threshold value to trigger nocifensive reactions to locally applied von Frey filaments was 100-fold lower in SCT- versus sham-operated rats. A marked up-regulation of mRNAs encoding ATF3 (neuronal injury) and glial activation markers (OX-42, GFAP, P2×4, P2×7, TLR4) was observed in spinal cord and/or dorsal root ganglia at T6-T11 levels from day 2 up to day 60 post surgery. Transcripts encoding the proinflammatory cytokines IL-1β, IL-6 and TNF-α were also markedly but differentially up-regulated at T6-T11 levels in SCT rats. Acute treatment with ketamine (50 mg/kg i.p.), morphine (3-10 mg/kg s.c.) and tapentadol (10-20 mg/kg i.p.) significantly increased pressure threshold to trigger nocifensive reaction in the von Frey filaments test, whereas amitriptyline, pregabalin, gabapentin and clonazepam were ineffective. Because all SCT rats developed long lasting, reproducible and stable allodynia, which could be alleviated by drugs effective in humans, thoracic cord transection might be a reliable model for testing innovative therapies aimed at reducing spinal cord lesion-induced central neuropathic pain.
Collapse
Affiliation(s)
- Saïd M'Dahoma
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
- * E-mail:
| | - Sylvie Bourgoin
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
| | - Valérie Kayser
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
| | - Sandrine Barthélémy
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
| | - Caroline Chevarin
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
| | - Farah Chali
- Laboratoire de Neurobiologie des Signaux Intercellulaires, Centre National de la Recherche Scientifique, CNRS UMR 7101, Université Pierre et Marie Curie, Paris, France
| | - Didier Orsal
- Laboratoire de Neurobiologie des Signaux Intercellulaires, Centre National de la Recherche Scientifique, CNRS UMR 7101, Université Pierre et Marie Curie, Paris, France
| | - Michel Hamon
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
| |
Collapse
|
52
|
IL-10 deficiency exacerbates the brain inflammatory response to permanent ischemia without preventing resolution of the lesion. J Cereb Blood Flow Metab 2013; 33:1955-66. [PMID: 24022622 PMCID: PMC3851905 DOI: 10.1038/jcbfm.2013.155] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 11/08/2022]
Abstract
Stroke induces inflammation that can aggravate brain damage. This work examines whether interleukin-10 (IL-10) deficiency exacerbates inflammation and worsens the outcome of permanent middle cerebral artery occlusion (pMCAO). Expression of IL-10 and IL-10 receptor (IL-10R) increased after ischemia. From day 4, reactive astrocytes showed strong IL-10R immunoreactivity. Interleukin-10 knockout (IL-10 KO) mice kept in conventional housing showed more mortality after pMCAO than the wild type (WT). This effect was associated with the presence of signs of colitis in the IL-10 KO mice, suggesting that ongoing systemic inflammation was a confounding factor. In a pathogen-free environment, IL-10 deficiency slightly increased infarct volume and neurologic deficits. Induction of proinflammatory molecules in the IL-10 KO brain was similar to that in the WT 6 hours after ischemia, but was higher at day 4, while differences decreased at day 7. Deficiency of IL-10 promoted the presence of more mature phagocytic cells in the ischemic tissue, and enhanced the expression of M2 markers and the T-cell inhibitory molecule CTLA-4. These findings agree with a role of IL-10 in attenuating local inflammatory reactions, but do not support an essential function of IL-10 in lesion resolution. Upregulation of alternative immunosuppressive molecules after brain ischemia can compensate, at least in part, the absence of IL-10.
Collapse
|
53
|
Thompson CD, Zurko JC, Hanna BF, Hellenbrand DJ, Hanna A. The therapeutic role of interleukin-10 after spinal cord injury. J Neurotrauma 2013; 30:1311-24. [PMID: 23731227 DOI: 10.1089/neu.2012.2651] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition affecting 270,000 people in the United States. A potential treatment for decreasing the secondary inflammation, excitotoxic damage, and neuronal apoptosis associated with SCI, is the anti-inflammatory cytokine interleukin-10. The best characterized effects of IL-10 are anti-inflammatory-it downregulates pro-inflammatory species interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), tumor necrosis factor-α, interferon-γ, matrix metalloproteinase-9, nitric oxide synthase, myeloperoxidase, and reactive oxygen species. Pro-apoptotic factors cytochrome c, caspase 3, and Bax are downregulated by IL-10, whereas anti-apoptotic factors B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X, B-cell lymphoma-extra large (Bcl-xl) are upregulated by IL-10. IL-10 also provides trophic support to neurons through the IL-10 receptor. Increased tissue sparing, functional recovery, and neuroprotection are seen with an immediate post-SCI systemic administration of IL-10. Treatment of SCI with IL-10 has been used successfully in combination with Schwann cell and olfactory glial cell grafts, as well as methylprednisolone. Minocycline, tetramethylpyrazine, and hyperbaric oxygen treatment all increase IL-10 levels in a SCI models and result in increased tissue sparing and functional recovery. A chronic systemic administration of IL-10 does not appear to be beneficial to SCI recovery and causes increased susceptibility to septicemia, pneumonia, and peripheral neuropathy. However, a localized upregulation of IL-10 has been shown to be beneficial and can be achieved by herpes simplex virus gene therapy, injection of poliovirus replicons, or surgical placement of a slow-release compound. IL-10 shows promise as a treatment for SCI, although research on local IL-10 delivery timeline and dosage needs to be expanded.
Collapse
Affiliation(s)
- Colton D Thompson
- Department of Neurological Surgery, University of Wisconsin , Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
54
|
Perez-Polo JR, Rea HC, Johnson KM, Parsley MA, Unabia GC, Xu G, Infante SK, Dewitt DS, Hulsebosch CE. Inflammatory consequences in a rodent model of mild traumatic brain injury. J Neurotrauma 2013; 30:727-40. [PMID: 23360201 DOI: 10.1089/neu.2012.2650] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mild traumatic brain injury (mTBI), particularly mild "blast type" injuries resulting from improvised exploding devices and many sport-caused injuries to the brain, result in long-term impairment of cognition and behavior. Our central hypothesis is that there are inflammatory consequences to mTBI that persist over time and, in part, are responsible for resultant pathogenesis and clinical outcomes. We used an adaptation (1 atmosphere pressure) of a well-characterized moderate-to-severe brain lateral fluid percussion (LFP) brain injury rat model. Our mild LFP injury resulted in acute increases in interleukin-1α/β and tumor necrosis factor alpha levels, macrophage/microglial and astrocytic activation, evidence of heightened cellular stress, and blood-brain barrier (BBB) dysfunction that were evident as early as 3-6 h postinjury. Both glial activation and BBB dysfunction persisted for 18 days postinjury.
Collapse
Affiliation(s)
- J Regino Perez-Polo
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77225, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Hu JZ, Huang JH, Xiao ZM, Li JH, Li XM, Lu HB. Tetramethylpyrazine accelerates the function recovery of traumatic spinal cord in rat model by attenuating inflammation. J Neurol Sci 2013; 324:94-9. [DOI: 10.1016/j.jns.2012.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 10/14/2012] [Accepted: 10/16/2012] [Indexed: 01/10/2023]
|
56
|
Spitzbarth I, Baumgärtner W, Beineke A. The role of pro- and anti-inflammatory cytokines in the pathogenesis of spontaneous canine CNS diseases. Vet Immunol Immunopathol 2012; 147:6-24. [PMID: 22542984 DOI: 10.1016/j.vetimm.2012.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 11/16/2022]
Abstract
Dogs are comparatively frequently affected by various spontaneously occurring inflammatory and degenerative central nervous system (CNS) conditions, and immunopathological processes are a hallmark of the associated neuropathology. Due to the low regenerative capacity of the CNS a sophisticated understanding of the underlying molecular basis for disease initiation, progression and remission in canine CNS diseases represents a prerequisite for the development of novel therapeutical approaches. In addition, as many spontaneous canine CNS diseases share striking similarities with their human counterpart, knowledge about the immune pathogenesis may in part be translated for a better understanding of certain human diseases. In addition to cytokine-driven differentiation of peripheral leukocytes including different subsets of T cells recent research suggests a pivotal role of these mediators also in phenotype polarization of resident glial cells. Cytokines thus represent the key mediators of the local and systemic immune response in CNS diseases and their orchestration significantly decides on either lesion progression or remission. The aim of the present review is to summarize the growing number of data focusing on the molecular basis of the immune response during spontaneous canine CNS diseases and to detail the effect of cytokines on the immune pathogenesis of selected idiopathic, infectious, and traumatic canine CNS diseases. Steroid-responsive meningitis arteritis (SRMA) represents a unique idiopathic disease of leptomeningeal blood vessels characterized by excessive IgA secretion into the cerebrospinal fluid. Recent reports have given sophisticated insights into the cytokine-driven, immune-mediated pathogenesis of SRMA that is characterized by a biased T helper 2 cell response. Canine distemper associated leukoencephalitis represents an important spontaneously occurring disease that allows investigations on the basic pathogenesis of immune-mediated myelin loss. It is characterized by an early virus-induced up-regulation of pro-inflammatory cytokines with chronic bystander immune-mediated demyelinating processes. Lastly, canine spinal cord injury (SCI) shares many similarities with the human counterpart and most commonly results from intervertebral disk disease. The knowledge of its pathogenesis is largely restricted to experimental studies in rodents, and the impact of immune processes that accompany secondary injury is discussed controversially. Recent investigations on canine SCI highlight the pivotal role of pro-inflammatory cytokine expression that is paralleled by a dominating reaction of microglia/macrophages potentially indicating a polarization of these immune cells into a neurotoxic and harmful phenotype. This report will review the role of cytokines in the immune processes of the mentioned representative canine CNS diseases and highlight the importance of cytokine/cytokine interaction as a useful therapeutic target in canine CNS diseases.
Collapse
Affiliation(s)
- I Spitzbarth
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | | | | |
Collapse
|
57
|
David S, López-Vales R, Wee Yong V. Harmful and beneficial effects of inflammation after spinal cord injury: potential therapeutic implications. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:485-502. [PMID: 23098732 DOI: 10.1016/b978-0-444-52137-8.00030-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Spinal cord injury (SCI) results in immediate damage followed by a secondary phase of tissue damage that occurs over a period of several weeks. The mechanisms underlying this secondary damage are multiple and not fully understood. A number of studies suggest that the local inflammatory response in the spinal cord that occurs after SCI contributes importantly to secondary damage. This response is mediated by cells normally found in the central nervous system (CNS) as well as infiltrating leukocytes. While the inflammatory response mediated by these cells is required for efficient clearance of tissue debris, and promotes wound healing and tissue repair, they also release various factors that can be detrimental to neurons, glia, axons, and myelin. In this chapter we provide an overview of the inflammatory response at the cell and molecular level after SCI, and review the current state of knowledge about its contribution to tissue damage and repair. Additionally, we discuss how some of this work is leading to the development and testing of drugs that modulate inflammation to treat acute SCI in humans.
Collapse
Affiliation(s)
- Samuel David
- McGill University Health Centre, Montreal, Canada.
| | | | | |
Collapse
|
58
|
Prominent Microglial Activation in the Early Proinflammatory Immune Response in Naturally Occurring Canine Spinal Cord Injury. J Neuropathol Exp Neurol 2011; 70:703-14. [DOI: 10.1097/nen.0b013e3182270f8e] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
59
|
Acid fibroblast growth factor and peripheral nerve grafts regulate Th2 cytokine expression, macrophage activation, polyamine synthesis, and neurotrophin expression in transected rat spinal cords. J Neurosci 2011; 31:4137-47. [PMID: 21411654 DOI: 10.1523/jneurosci.2592-10.2011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injury elicits an inflammatory response that recruits macrophages to the injured spinal cord. Quantitative real-time PCR results have shown that a repair strategy combining peripheral nerve grafts with acidic fibroblast growth factor (aFGF) induced higher interleukin-4 (IL-4), IL-10, and IL-13 levels in the graft areas of rat spinal cords compared with transected spinal cords at 10 and 14 d. This led to higher arginase I-positive alternatively activated macrophage (M2 macrophage) responses. The gene expression of several enzymes involved in polyamine biosynthesis pathways was also upregulated in the graft areas of repaired spinal cords. The treatment induced a twofold upregulation of polyamine levels at 14 d, as confirmed by HPLC. Polyamines are important for the repair process, as demonstrated by the observation that treatment with inhibitors of arginase I and ornithine decarboxylase attenuates the functional recoveries of repaired rats. After 14 d, the treatment also induced the expression of neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), as well as M2 macrophages within grafted nerves expressing BDNF. IL-4 was upregulated in the injury sites of transected rats that received aFGF alone compared with those that received nerve grafts alone at 10 d. Conversely, nerve graft treatment induced NGF and BDNF expression at 14 d. Macrophages expressing polyamines and BDNF may benefit axonal regeneration at 14 d. These results indicate that aFGF and nerve grafts regulate different macrophage responses, and M2 macrophages may play an important role in axonal regeneration after spinal cord injury in rats.
Collapse
|
60
|
Sharma A, Bhomia M, Honnold SP, Maheshwari RK. Role of adhesion molecules and inflammation in Venezuelan equine encephalitis virus infected mouse brain. Virol J 2011; 8:197. [PMID: 21529366 PMCID: PMC3113303 DOI: 10.1186/1743-422x-8-197] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/29/2011] [Indexed: 11/26/2022] Open
Abstract
Background Neuroinvasion of Venezuelan equine encephalitis virus (VEEV) and subsequent initiation of inflammation in the brain plays a crucial role in the outcome of VEEV infection in mice. Adhesion molecules expressed on microvascular endothelial cells in the brain have been implicated in the modulation of the blood brain barrier (BBB) and inflammation in brain but their role in VEEV pathogenesis is not very well understood. In this study, we evaluated the expression of extracellular matrix and adhesion molecules genes in the brain of VEEV infected mice. Findings Several cell to cell adhesion molecules and extracellular matrix protein genes such as ICAM-1, VCAM-1, CD44, Cadherins, integrins, MMPs and Timp1 were differentially regulated post-VEEV infection. ICAM-1 knock-out (IKO) mice infected with VEEV had markedly reduced inflammation in the brain and demonstrated a delay in the onset of clinical symptoms of disease. A differential regulation of inflammatory genes was observed in the IKO mice brain compared to their WT counterparts. Conclusions These results improve our present understanding of VEEV induced inflammation in mouse brain.
Collapse
Affiliation(s)
- Anuj Sharma
- Dept of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | |
Collapse
|
61
|
Lee SI, Jeong SR, Kang YM, Han DH, Jin BK, Namgung U, Kim BG. Endogenous expression of interleukin-4 regulates macrophage activation and confines cavity formation after traumatic spinal cord injury. J Neurosci Res 2010; 88:2409-19. [PMID: 20623539 DOI: 10.1002/jnr.22411] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Traumatic spinal cord injury (SCI) triggers inflammatory reactions in which various types of cells and cytokines are involved. Several proinflammatory cytokines are up-regulated after SCI and play crucial roles in determining the extent of secondary tissue damage. However, relatively little is known about antiinflammatory cytokines and their roles in spinal cord trauma. Recent studies have shown that an antiinflammatory cytokine, interleukin-4 (IL-4), is expressed and exerts various modulatory effects in CNS inflammation. We found in the present study that IL-4 was highly expressed at 24 hr after contusive SCI in rats and declined thereafter, with concurrent up-regulation of IL-4 receptor subunit IL-4alpha. The majority of IL-4-producing cells were myeloperoxidase-positive neutrophils. Injection of neutralizing antibody against IL-4 into the contused spinal cord did not significantly affect the expression levels of proinflammatory cytokines such as IL-1beta, IL-6, and tumor necrosis factor-alpha or other antiinflammatory cytokines such as IL-10 and transforming growth factor-beta. Instead, attenuation of IL-4 activity led to a marked increase in the extent of ED1-positive macrophage activation along the rostrocaudal extent at 7 days after injury. The enhanced macrophage activation was preceded by an increase in the level of monocyte chemoattractant protein-1 (MCP-1/CCL2). Finally, IL-4 neutralization resulted in more extensive cavitation at 4 weeks after injury. These results suggest that endogenous expression of antiinflammatory cytokine IL-4 regulates the extent of acute macrophage activation and confines the ensuing secondary cavity formation after spinal cord trauma.
Collapse
Affiliation(s)
- Seung Ihm Lee
- Brain Disease Research Center, Institute for Medical Sciences, and Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
62
|
Qiao F, Atkinson C, Kindy MS, Shunmugavel A, Morgan BP, Song H, Tomlinson S. The alternative and terminal pathways of complement mediate post-traumatic spinal cord inflammation and injury. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:3061-70. [PMID: 20952585 DOI: 10.2353/ajpath.2010.100158] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Complement is implicated in the inflammatory response and the secondary neuronal damage that occurs after traumatic spinal cord injury (SCI). Complement can be activated by the classical, lectin, or alternative pathways, all of which share a common terminal pathway that culminates in formation of the cytolytic membrane attack complex (MAC). Here, we investigated the role of the alternative and terminal complement pathways in SCI. Mice deficient in the alternative pathway protein factor B (fB) were protected from traumatic SCI in terms of reduced tissue damage and demyelination, reduced inflammatory cell infiltrate, and improved functional recovery. In a clinically relevant paradigm, treatment of mice with an anti-fB mAb resulted in similarly improved outcomes. These improvements were associated with decreased C3 and fB deposition. On the other hand, deficiency of CD59, an inhibitor of the membrane attack complex, resulted in significantly increased injury and impaired functional recovery compared to wild-type mice. Increased injury in CD59-deficient mice was associated with increased MAC deposition, while levels of C3 and fB were unaffected. These data indicate key roles for the alternative and terminal complement pathways in the pathophysiology of SCI. Considering a previous study demonstrating an important role for the classical pathway in promoting SCI, it is likely that the alternative pathway plays a critical role in amplifying classical pathway initiated complement activation.
Collapse
Affiliation(s)
- Fei Qiao
- Department of Microbiology and Immunology, Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|