51
|
Noè F, Cattalini A, Vila Verde D, Alessi C, Colciaghi F, Figini M, Zucca I, de Curtis M. Epileptiform activity contralateral to unilateral hippocampal sclerosis does not cause the expression of brain damage markers. Epilepsia 2019; 60:1184-1199. [PMID: 31111475 DOI: 10.1111/epi.15611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Patients with epilepsy often ask if recurrent seizures harm their brain and aggravate their epileptic condition. This crucial question has not been specifically addressed by dedicated experiments. We analyze here if intense bilateral seizure activity induced by local injection of kainic acid (KA) in the right hippocampus produces brain damage in the left hippocampus. METHODS Adult guinea pigs were bilaterally implanted with hippocampal electrodes for continuous video-electroencephalography (EEG) monitoring. Unilateral injection of 1 μg KA in the dorsal CA1 area induced nonconvulsive status epilepticus (ncSE) characterized by bilateral hippocampal seizure discharges. This treatment resulted in selective unilateral sclerosis of the KA-injected hippocampus. Three days after KA injection, the animals were killed, and the brains were submitted to ex vivo magnetic resonance imaging (MRI) and were processed for immunohistochemical analysis. RESULTS During ncSE, epileptiform activity was recorded for 27.6 ± 19.1 hours in both the KA-injected and contralateral hippocampi. Enhanced T1-weighted MR signal due to gadolinium deposition, mean diffusivity reduction, neuronal loss, gliosis, and blood-brain barrier permeability changes was observed exclusively in the KA-injected hippocampus. Despite the presence of a clear unilateral hippocampal sclerosis at the site of KA injection, no structural alterations were detected by MR and immunostaining analysis performed in the hippocampus contralateral to KA injection 3 days and 2 months after ncSE induction. Fluoro-Jade and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining at the same time points confirmed the absence of degenerating cells in the hippocampi contralateral to KA injection. SIGNIFICANCE We demonstrate that intense epileptiform activity during ncSE does not cause obvious brain damage in the hippocampus contralateral to unilateral hippocampal KA injection. These findings argue against the hypothesis that epileptiform activity per se contributes to focal brain injury in previously undamaged cortical regions.
Collapse
Affiliation(s)
- Francesco Noè
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Diogo Vila Verde
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Camilla Alessi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Colciaghi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Matteo Figini
- Scientific Direction, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ileana Zucca
- Scientific Direction, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
52
|
Li L, Bragin A, Staba R, Engel J. Unit firing and oscillations at seizure onset in epileptic rodents. Neurobiol Dis 2019; 127:382-389. [PMID: 30928646 DOI: 10.1016/j.nbd.2019.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/04/2019] [Accepted: 03/26/2019] [Indexed: 01/27/2023] Open
Abstract
Epileptic seizures result from a variety of pathophysiological processes, evidenced by different electrographic ictal onset patterns, as seen on direct brain recordings. The two most common electrographic patterns of focal ictal onset in patients are hypersynchronous (HYP) and low-voltage fast (LVF). Whereas LVF ictal onsets were believed to result from disinhibition; based on similarities with absence seizures, focal HYP ictal onsets were believed to result from increased synchronizing inhibition. Recent findings, however, suggest the differences between these seizure onset types are more complicated and, in some cases, the opposite of these concepts are true. The following review presents evidence that a reduction of tonic inhibition on small pathologically interconnected neuron (PIN) clusters generating pathological high-frequency oscillations (pHFOs), which reflect abnormal synchronously bursting neurons may be the cause of HYP ictal onsets. Increased inhibition preceding LVF ictal onsets are discussed in other reviews in this issue. We postulate that neuronal cell loss following epileptogenic insults can result in structural reorganization, giving rise to small PIN clusters, which generate pHFOs. These clusters have a heterogeneous distribution and are spatially stable over time. Studies have demonstrated that a transient reduction in tonic inhibition causes these clusters to increase in size. This could result in consolidation and synchronization of pHFOs until a critical mass leads to propagation of HYP ictal discharges. Viewed within a network neuroscience framework, local disturbances such as PIN clusters are likely to contribute to large-scale brain network alterations: a better understanding of these epileptogenic networks promises to elucidate mechanisms of ictogenesis, epileptogenesis, and certain comorbidities of epilepsy.
Collapse
Affiliation(s)
- Lin Li
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Anatol Bragin
- Department of Neurology, University of California, Los Angeles, CA, USA; Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Richard Staba
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, University of California, Los Angeles, CA, USA; Brain Research Institute, University of California, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
53
|
Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1098-1112. [PMID: 30703511 DOI: 10.1016/j.bbadis.2019.01.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
Glutamate-mediated excitotoxicity, neuroinflammation, and oxidative stress are common underlying events in neurodegeneration. This pathogenic "triad" characterizes the neurobiology of epilepsy, leading to seizure-induced cell death, increased susceptibility to neuronal synchronization and network alterations. Along with other maladaptive changes, these events pave the way to spontaneous recurrent seizures and progressive degeneration of the interested brain areas. In vivo models of epilepsy are available to explore such epileptogenic mechanisms, also assessing the efficacy of chemoprevention and therapy strategies at the pre-clinical level. The kainic acid model of pharmacological excitotoxicity and epileptogenesis is one of the most investigated mimicking the chronicization profile of temporal lobe epilepsy in humans. Its pathogenic cues include inflammatory and neuronal death pathway activation, mitochondrial disturbances and lipid peroxidation of several regions of the brain, the most vulnerable being the hippocampus. The importance of neuroinflammation and lipid peroxidation as underlying molecular events of brain damage was demonstrated in this model by the possibility to counteract the related maladaptive morphological and functional changes of this organ with vitamin E, the main fat-soluble cellular antioxidant and "conditional" co-factor of enzymatic pathways involved in polyunsaturated lipid metabolism and inflammatory signaling. The present review paper provides an overview of the literature supporting the potential for a timely intervention with vitamin E therapy in clinical management of seizures and epileptogenic processes associated with excitotoxicity, neuroinflammation and lipid peroxidation, i.e. the pathogenic "triad".
Collapse
|
54
|
Lévesque M, Avoli M. High-frequency oscillations and focal seizures in epileptic rodents. Neurobiol Dis 2018; 124:396-407. [PMID: 30590178 DOI: 10.1016/j.nbd.2018.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/26/2018] [Accepted: 12/22/2018] [Indexed: 01/09/2023] Open
Abstract
High-pass filtering (> 80 Hz) of EEG signals has enabled neuroscientists to analyze high-frequency oscillations (HFOs; i.e., ripples: 80-200 Hz and fast ripples: 250-500 Hz) in epileptic patients presenting with focal seizures and in animal models mimicking this condition. Evidence obtained from these studies indicate that HFOs mirror pathological network activity that may initiate and sustain ictogenesis and epileptogenesis. HFOs are observed in temporal lobe regions of epileptic animals during interictal periods but they also occur before seizure onset and during the ictal period, suggesting that they can pinpoint to the mechanisms of seizure generation. Accordingly, ripples and fast ripples predominate during two specific seizure onset patterns termed low-voltage fast and hypersynchronous, respectively. In this review we will: (i) summarize these experimental studies; (ii) consider the evolution of HFOs over time during epileptogenesis; (iii) address data obtained with optogenetic stimulating procedures both in vitro and in vivo, and (iv) take into account the impact of anti-epileptic drugs on HFOs. We expect these findings to contribute to understanding the neuronal mechanisms leading to ictogenesis and epileptogenesis thus leading to the development of mechanistically targeted anti-epileptic strategies.
Collapse
Affiliation(s)
| | - Massimo Avoli
- Montreal Neurological Institute, Canada; Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montréal, H3A 2B4 Québec, Canada; Department of Experimental Medicine, Facoltà di Medicina e Odontoiatria, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
55
|
Gnatkovsky V, Pelliccia V, de Curtis M, Tassi L. Two main focal seizure patterns revealed by intracerebral electroencephalographic biomarker analysis. Epilepsia 2018; 60:96-106. [DOI: 10.1111/epi.14610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/08/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Vadym Gnatkovsky
- Epilepsy Unit; Institute of Cure, Recovery, and Scientific Research (IRCCS) Foundation Carlo Besta Neurological Institute; Milan Italy
| | | | - Marco de Curtis
- Epilepsy Unit; Institute of Cure, Recovery, and Scientific Research (IRCCS) Foundation Carlo Besta Neurological Institute; Milan Italy
| | - Laura Tassi
- Claudio Munari Epilepsy Surgery Center; Niguarda Hospital; Milan Italy
| |
Collapse
|
56
|
Weiss SA, Staba R, Bragin A, Moxon K, Sperling M, Avoli M, Engel J. "Interneurons and principal cell firing in human limbic areas at focal seizure onset". Neurobiol Dis 2018; 124:183-188. [PMID: 30471414 DOI: 10.1016/j.nbd.2018.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/11/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022] Open
Affiliation(s)
- Shennan A Weiss
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Richard Staba
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anatol Bragin
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Karen Moxon
- Dept. of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
| | - Michael Sperling
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Massimo Avoli
- Montreal Neurological Institute, Depts. of Neurology & Neurosurgery and of Physiology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jerome Engel
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Dept. of Neurobiology, Dept. of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
57
|
Nariai H, Wu JY, Bernardo D, Fallah A, Sankar R, Hussain SA. Interrater reliability in visual identification of interictal high-frequency oscillations on electrocorticography and scalp EEG. Epilepsia Open 2018; 3:127-132. [PMID: 30564771 PMCID: PMC6293061 DOI: 10.1002/epi4.12266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
High-frequency oscillations (HFOs), including ripples (Rs) and fast ripples (FRs), are promising biomarkers of epileptogenesis, but their clinical utility is limited by the lack of a standardized approach to identification. We set out to determine whether electroencephalographers experienced in HFO analysis can reliably identify and quantify interictal HFOs. Two blinded raters independently reviewed 10 intraoperative electrocorticography (ECoG) samples from epilepsy surgery cases, and 10 scalp EEG samples from epilepsy monitoring unit evaluations. HFOs were visually marked using bandpass filters (R, 80-250 Hz; FR, 250-500 Hz) with a sampling frequency of 2,000 Hz. There was agreement as to the presence or absence of epileptiform discharges (EDs), Rs, and FRs, in 17, 18, and 18 cases, respectively. Interrater reliability (IRR) was favorable with κ = 0.70, 0.80, and 0.80, respectively, and similar for ECoG and scalp electroencephalography (EEG). Furthermore, interclass correlation for rates of Rs (0.99, 95% confidence interval [CI] 0.96-0.99) and FRs (0.77, 95% CI 0.41-0.91) were superior in comparison to EDs (0.37, 95% CI -0.60 to 0.75). Our data suggest that HFO identification and quantification are reliable among experienced electroencephalographers. Our findings support the reliability of utilizing HFO data in both research and clinical arenas.
Collapse
Affiliation(s)
- Hiroki Nariai
- Division of Pediatric Neurology UCLA Mattel Children's Hospital David Geffen School of Medicine Los Angeles California U.S.A
| | - Joyce Y Wu
- Division of Pediatric Neurology UCLA Mattel Children's Hospital David Geffen School of Medicine Los Angeles California U.S.A
| | - Danilo Bernardo
- Division of Pediatric Neurology UCLA Mattel Children's Hospital David Geffen School of Medicine Los Angeles California U.S.A
| | - Aria Fallah
- Department of Neurosurgery UCLA Mattel Children's Hospital David Geffen School of Medicine Los Angeles California U.S.A
| | - Raman Sankar
- Division of Pediatric Neurology UCLA Mattel Children's Hospital David Geffen School of Medicine Los Angeles California U.S.A
| | - Shaun A Hussain
- Division of Pediatric Neurology UCLA Mattel Children's Hospital David Geffen School of Medicine Los Angeles California U.S.A
| |
Collapse
|
58
|
Elahian B, Lado NE, Mankin E, Vangala S, Misra A, Moxon K, Fried I, Sharan A, Yeasin M, Staba R, Bragin A, Avoli M, Sperling MR, Engel J, Weiss SA. Low-voltage fast seizures in humans begin with increased interneuron firing. Ann Neurol 2018; 84:588-600. [PMID: 30179277 DOI: 10.1002/ana.25325] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Intracellular recordings from cells in entorhinal cortex tissue slices show that low-voltage fast (LVF) onset seizures are generated by inhibitory events. Here, we determined whether increased firing of interneurons occurs at the onset of spontaneous mesial-temporal LVF seizures recorded in patients. METHODS The seizure onset zone (SOZ) was identified using visual inspection of the intracranial electroencephalogram. We used wavelet clustering and temporal autocorrelations to characterize changes in single-unit activity during the onset of LVF seizures recorded from microelectrodes in mesial-temporal structures. Action potentials generated by principal neurons and interneurons (ie, putative excitatory and inhibitory neurons) were distinguished using waveform morphology and K-means clustering. RESULTS From a total of 200 implanted microelectrodes in 9 patients during 13 seizures, we isolated 202 single units; 140 (69.3%) of these units were located in the SOZ, and 40 (28.57%) of them were classified as inhibitory. The waveforms of both excitatory and inhibitory units remained stable during the LVF epoch (p > > 0.05). In the mesial-temporal SOZ, inhibitory interneurons increased their firing rate during LVF seizure onset (p < 0.01). Excitatory neuron firing rates peaked 10 seconds after the inhibitory neurons (p < 0.01). During LVF spread to the contralateral mesial temporal lobe, an increase in inhibitory neuron firing rate was also observed (p < 0.01). INTERPRETATION Our results suggest that seizure generation and spread during spontaneous mesial-temporal LVF onset events in humans may result from increased inhibitory neuron firing that spawns a subsequent increase in excitatory neuron firing and seizure evolution. Ann Neurol 2018;84:588-600.
Collapse
Affiliation(s)
- Bahareh Elahian
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA.,Department of Electrical and Computer Engineering, University of Memphis, Memphis, TN
| | - Nathan E Lado
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| | - Emily Mankin
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Sitaram Vangala
- Department of Medicine, Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Amrit Misra
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Karen Moxon
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA
| | - Mohammed Yeasin
- Department of Electrical and Computer Engineering, University of Memphis, Memphis, TN
| | - Richard Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Massimo Avoli
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Jerome Engel
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA.,Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Shennan A Weiss
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
59
|
Engel J, Bragin A, Staba R. Nonictal EEG biomarkers for diagnosis and treatment. Epilepsia Open 2018; 3:120-126. [PMID: 30564770 PMCID: PMC6293068 DOI: 10.1002/epi4.12233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
There are no reliable nonictal biomarkers for epilepsy, electroencephalography (EEG) or otherwise, but efforts to identify biomarkers that would predict the development of epilepsy after a potential epileptogenic insult, diagnose the existence of epilepsy, or assess the effects of antiseizure or antiepileptogenic interventions are relying heavily on electrophysiology. The most promising EEG biomarkers to date are pathologic high‐frequency oscillations (pHFOs), brief EEG events in the range of 100 to 600 Hz, which are believed to reflect summated action potentials from synchronously bursting neurons. Studies of patients with epilepsy, and experimental animal models, have been based primarily on direct brain recording, which makes pHFOs potentially useful for localizing the epileptogenic zone for surgical resection, but application for other diagnostic and therapeutic purposes is limited. Consequently, recent efforts have involved identification of HFOs recorded with scalp electrodes, and with magnetoencephalography, which may reflect the same pathophysiologic mechanisms as pHFOs recorded directly from the brain. The search is also on for other EEG changes that might serve as epilepsy biomarkers, and candidates include arcuate rhythms, which may reflect repetitive pHFOs, reduction in theta rhythm, which correlates with epileptogenesis in several rodent models of epilepsy, and shortened sleep spindles that correlate with ictogenesis.
Collapse
Affiliation(s)
- Jerome Engel
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaU.S.A.
- Brain Research InstituteUniversity of California Los AngelesLos AngelesCaliforniaU.S.A.
- Neurobiology and Psychiatry and Biobehavioral SciencesDavid Geffen School of Medicine at UCLALos AngelesCaliforniaU.S.A.
| | - Anatol Bragin
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaU.S.A.
- Brain Research InstituteUniversity of California Los AngelesLos AngelesCaliforniaU.S.A.
| | - Richard Staba
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaU.S.A.
| |
Collapse
|
60
|
Targeting the Mouse Ventral Hippocampus in the Intrahippocampal Kainic Acid Model of Temporal Lobe Epilepsy. eNeuro 2018; 5:eN-NWR-0158-18. [PMID: 30131968 PMCID: PMC6102375 DOI: 10.1523/eneuro.0158-18.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/29/2018] [Indexed: 11/21/2022] Open
Abstract
Here we describe a novel mouse model of temporal lobe epilepsy (TLE) that moves the site of kainate injection from the rodent dorsal hippocampus (corresponding to the human posterior hippocampus) to the ventral hippocampus (corresponding to the human anterior hippocampus). We compare the phenotypes of this new model—with respect to seizures, cognitive impairment, affective deficits, and histopathology—to the standard dorsal intrahippocampal kainate model. Our results demonstrate that histopathological measures of granule cell dispersion and mossy fiber sprouting maximize near the site of kainate injection. Somewhat surprisingly, both the dorsal and ventral models exhibit similar spatial memory impairments in addition to similar electrographic and behavioral seizure burdens. In contrast, we find a more pronounced affective (anhedonic) phenotype specifically in the ventral model. These results demonstrate that the ventral intrahippocampal kainic acid model recapitulates critical pathologies of the dorsal model while providing a means to further study affective phenotypes such as depression in TLE.
Collapse
|
61
|
Höller P, Trinka E, Höller Y. High-Frequency Oscillations in the Scalp Electroencephalogram: Mission Impossible without Computational Intelligence. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2018; 2018:1638097. [PMID: 30158959 PMCID: PMC6109569 DOI: 10.1155/2018/1638097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 01/22/2023]
Abstract
High-frequency oscillations (HFOs) in the electroencephalogram (EEG) are thought to be a promising marker for epileptogenicity. A number of automated detection algorithms have been developed for reliable analysis of invasively recorded HFOs. However, invasive recordings are not widely applicable since they bear risks and costs, and the harm of the surgical intervention of implantation needs to be weighted against the informational benefits of the invasive examination. In contrast, scalp EEG is widely available at low costs and does not bear any risks. However, the detection of HFOs on the scalp represents a challenge that was taken on so far mostly via visual detection. Visual detection of HFOs is, in turn, highly time-consuming and subjective. In this review, we discuss that automated detection algorithms for detection of HFOs on the scalp are highly warranted because the available algorithms were all developed for invasively recorded EEG and do not perform satisfactorily in scalp EEG because of the low signal-to-noise ratio and numerous artefacts as well as physiological activity that obscures the tiny phenomena in the high-frequency range.
Collapse
Affiliation(s)
- Peter Höller
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Yvonne Höller
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
62
|
Perucca P, Smith G, Santana-Gomez C, Bragin A, Staba R. Electrophysiological biomarkers of epileptogenicity after traumatic brain injury. Neurobiol Dis 2018; 123:69-74. [PMID: 29883622 DOI: 10.1016/j.nbd.2018.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 02/08/2023] Open
Abstract
Post-traumatic epilepsy is the architype of acquired epilepsies, wherein a brain insult initiates an epileptogenic process culminating in an unprovoked seizure after weeks, months or years. Identifying biomarkers of such process is a prerequisite for developing and implementing targeted therapies aimed at preventing the development of epilepsy. Currently, there are no validated electrophysiological biomarkers of post-traumatic epileptogenesis. Experimental EEG studies using the lateral fluid percussion injury model have identified three candidate biomarkers of post-traumatic epileptogenesis: pathological high-frequency oscillations (HFOs, 80-300 Hz); repetitive HFOs and spikes (rHFOSs); and reduction in sleep spindle duration and dominant frequency at the transition from stage III to rapid eye movement sleep. EEG studies in humans have yielded conflicting data; recent evidence suggests that epileptiform abnormalities detected acutely after traumatic brain injury carry a significantly increased risk of subsequent epilepsy. Well-designed studies are required to validate these promising findings, and ultimately establish whether there are post-traumatic electrophysiological features which can guide the development of 'antiepileptogenic' therapies.
Collapse
Affiliation(s)
- Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia; Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.
| | - Gregory Smith
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Cesar Santana-Gomez
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Richard Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
63
|
Bui AD, Nguyen TM, Limouse C, Kim HK, Szabo GG, Felong S, Maroso M, Soltesz I. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory. Science 2018; 359:787-790. [PMID: 29449490 DOI: 10.1126/science.aan4074] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 12/21/2017] [Indexed: 01/06/2023]
Abstract
Temporal lobe epilepsy (TLE) is characterized by debilitating, recurring seizures and an increased risk for cognitive deficits. Mossy cells (MCs) are key neurons in the hippocampal excitatory circuit, and the partial loss of MCs is a major hallmark of TLE. We investigated how MCs contribute to spontaneous ictal activity and to spatial contextual memory in a mouse model of TLE with hippocampal sclerosis, using a combination of optogenetic, electrophysiological, and behavioral approaches. In chronically epileptic mice, real-time optogenetic modulation of MCs during spontaneous hippocampal seizures controlled the progression of activity from an electrographic to convulsive seizure. Decreased MC activity is sufficient to impede encoding of spatial context, recapitulating observed cognitive deficits in chronically epileptic mice.
Collapse
Affiliation(s)
- Anh D Bui
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA. .,Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA
| | - Theresa M Nguyen
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Charles Limouse
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Hannah K Kim
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Gergely G Szabo
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Sylwia Felong
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Mattia Maroso
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
64
|
Li L, Patel M, Almajano J, Engel J, Bragin A. Extrahippocampal high-frequency oscillations during epileptogenesis. Epilepsia 2018; 59:e51-e55. [PMID: 29508901 DOI: 10.1111/epi.14041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 01/23/2023]
Abstract
The current study aimed to investigate the spatial and temporal patterns of high-frequency oscillations (HFOs) in the intra-/extrahippocampal areas during epileptogenesis. Local field potentials were bilaterally recorded from hippocampus (CA1), thalamus, motor cortex, and prefrontal cortex in 13 rats before and after intrahippocampal kainic acid (KA) lesions. HFOs in the ripple (100-200 Hz) and fast ripple (250-500 Hz) ranges were detected and their rates were computed during different time periods (1-5 weeks) after KA-induced status epilepticus (SE). Recurrent spontaneous seizures were observed in 7 rats after SE, and the other 6 rats did not develop epilepsy. During the latent period, the rate of hippocampal HFOs increased at the ipsilateral site of the KA lesion in both groups, and the HFO rate was significantly higher in the animals that later developed epilepsy. Animals that later developed epilepsy also demonstrated widespread appearance of HFOs, in both the ripple and the fast ripple range, whereas animals that did not develop epilepsy only exhibited changes in the ipsilateral intrahippocampal HFO rate. This study demonstrates an association between an increased rate of widespread HFOs and the later development of epilepsy, suggesting the formation of large-scale distributed pathological networks during epileptogenesis.
Collapse
Affiliation(s)
- Lin Li
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Mayur Patel
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Joyel Almajano
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, University of California, Los Angeles, CA, USA.,Brain Research Institute, University of California, Los Angeles, CA, USA.,Departments of Neurobiology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Anatol Bragin
- Department of Neurology, University of California, Los Angeles, CA, USA.,Brain Research Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
65
|
Ambrogini P, Albertini MC, Betti M, Galati C, Lattanzi D, Savelli D, Di Palma M, Saccomanno S, Bartolini D, Torquato P, Ruffolo G, Olivieri F, Galli F, Palma E, Minelli A, Cuppini R. Neurobiological Correlates of Alpha-Tocopherol Antiepileptogenic Effects and MicroRNA Expression Modulation in a Rat Model of Kainate-Induced Seizures. Mol Neurobiol 2018; 55:7822-7838. [PMID: 29468563 PMCID: PMC6132771 DOI: 10.1007/s12035-018-0946-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022]
Abstract
Seizure-triggered maladaptive neural plasticity and neuroinflammation occur during the latent period as a key underlying event in epilepsy chronicization. Previously, we showed that α-tocopherol (α-T) reduces hippocampal neuroglial activation and neurodegeneration in the rat model of kainic acid (KA)-induced status epilepticus (SE). These findings allowed us to postulate an antiepileptogenic potential for α-T in hippocampal excitotoxicity, in line with clinical evidence showing that α-T improves seizure control in drug-resistant patients. To explore neurobiological correlates of the α-T antiepileptogenic role, rats were injected with such vitamin during the latent period starting right after KA-induced SE, and the effects on circuitry excitability, neuroinflammation, neuronal death, and microRNA (miRNA) expression were investigated in the hippocampus. Results show that in α-T-treated epileptic rats, (1) the number of population spikes elicited by pyramidal neurons, as well as the latency to the onset of epileptiform-like network activity recover to control levels; (2) neuronal death is almost prevented; (3) down-regulation of claudin, a blood-brain barrier protein, is fully reversed; (4) neuroinflammation processes are quenched (as indicated by the decrease of TNF-α, IL-1β, GFAP, IBA-1, and increase of IL-6); (5) miR-146a, miR-124, and miR-126 expression is coherently modulated in hippocampus and serum by α-T. These findings support the potential of a timely intervention with α-T in clinical management of SE to reduce epileptogenesis, thus preventing chronic epilepsy development. In addition, we suggest that the analysis of miRNA levels in serum could provide clinicians with a tool to evaluate disease evolution and the efficacy of α-T therapy in SE.
Collapse
Affiliation(s)
- Patrizia Ambrogini
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy.
| | - Maria Cristina Albertini
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Michele Betti
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Claudia Galati
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Davide Lattanzi
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - David Savelli
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Michael Di Palma
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Stefania Saccomanno
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Pierangelo Torquato
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Fabiola Olivieri
- Department of Molecular and Clinical Sciences, Marche Polytechnic University, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS, Ancona, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Andrea Minelli
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Riccardo Cuppini
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| |
Collapse
|
66
|
Li L, Kriukova K, Engel J, Bragin A. Seizure development in the acute intrahippocampal epileptic focus. Sci Rep 2018; 8:1423. [PMID: 29362494 PMCID: PMC5780458 DOI: 10.1038/s41598-018-19675-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/05/2018] [Indexed: 01/29/2023] Open
Abstract
Currently, an epileptic seizure is considered to involve a temporary network that exists for a finite period of time. Formation of this network evolves through spread of epileptiform activity from a seizure onset zone (SOZ). Propagation of seizures evoked by kainic acid injection in hippocampus to different brain areas was analyzed at macro- and micro-intervals. The mean latency of seizure occurrence in different brain areas varied between 0.5 sec and 85 sec (mean 14.9 ± 14.5 (SD)), and it increased after each consecutive seizure in areas located contralateral to the area of injection, but not in the ipsilateral sites. We have shown that only 41% of epileptic individual events in target brain areas were driven by epileptic events generated in the SOZ once the seizure began. Fifty-nine percent of epileptiform events in target areas occurred one millisecond before or after events in the SOZ. These data illustrate that during seizure maintenance, only some individual epileptiform events in areas outside of SOZ could be consistently triggered by the SOZ; and the majority must be triggered by a driver located outside the SOZ or brain areas involved in ictal activity could be coupled to each other via an unknown mechanism such as stochastic resonance.
Collapse
Affiliation(s)
- Lin Li
- Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Kseniia Kriukova
- Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
- Department of Neurobiology, David Geffen School of Medicine at University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
- Brain Research Institute, David Geffen School of Medicine at University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
- Brain Research Institute, David Geffen School of Medicine at University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
| |
Collapse
|
67
|
Navidhamidi M, Ghasemi M, Mehranfard N. Epilepsy-associated alterations in hippocampal excitability. Rev Neurosci 2018; 28:307-334. [PMID: 28099137 DOI: 10.1515/revneuro-2016-0059] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/03/2016] [Indexed: 11/15/2022]
Abstract
The hippocampus exhibits a wide range of epilepsy-related abnormalities and is situated in the mesial temporal lobe, where limbic seizures begin. These abnormalities could affect membrane excitability and lead to overstimulation of neurons. Multiple overlapping processes refer to neural homeostatic responses develop in neurons that work together to restore neuronal firing rates to control levels. Nevertheless, homeostatic mechanisms are unable to restore normal neuronal excitability, and the epileptic hippocampus becomes hyperexcitable or hypoexcitable. Studies show that there is hyperexcitability even before starting recurrent spontaneous seizures, suggesting although hippocampal hyperexcitability may contribute to epileptogenesis, it alone is insufficient to produce epileptic seizures. This supports the concept that the hippocampus is not the only substrate for limbic seizure onset, and a broader hyperexcitable limbic structure may contribute to temporal lobe epilepsy (TLE) seizures. Nevertheless, seizures also occur in conditions where the hippocampus shows a hypoexcitable phenotype. Since TLE seizures most often originate in the hippocampus, it could therefore be assumed that both hippocampal hypoexcitability and hyperexcitability are undesirable states that make the epileptic hippocampal network less stable and may, under certain conditions, trigger seizures.
Collapse
|
68
|
Khadjevand F, Cimbalnik J, Worrell GA. Progress and Remaining Challenges in the Application of High Frequency Oscillations as Biomarkers of Epileptic Brain. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [PMID: 29532041 DOI: 10.1016/j.cobme.2017.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
High-frequency oscillations (HFOs: 100 - 600 Hz) have been widely proposed as biomarkers of epileptic brain tissue. In addition, HFOs over a broader range of frequencies spanning 30 - 2000 Hz are potential biomarkers of both physiological and pathological brain processes. The majority of the results from humans with focal epilepsy have focused on HFOs recorded directly from the brain with intracranial EEG (iEEG) in the high gamma (65 - 100 Hz), ripple (100 - 250 Hz), and fast ripple (250 - 600 Hz) frequency ranges. These results are supplemented by reports of HFOs recorded with iEEG in the low gamma (30 - 65Hz) and very high frequency (500 - 2000 Hz) ranges. Visual detection of HFOs is laborious and limited by poor inter-rater agreement; and the need for accurate, reproducible automated HFOs detection is well recognized. In particular, the clinical translation of HFOs as a biomarker of the epileptogenic brain has been limited by the ability to reliably detect and accurately classify HFOs as physiological or pathological. Despite these challenges, there has been significant progress in the field, which is the subject of this review. Furthermore, we provide data and corresponding analytic code in an effort to promote reproducible research and accelerate clinical translation.
Collapse
Affiliation(s)
- Fatemeh Khadjevand
- Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, 200 First St SW, Rochester MN, 55905, USA
| | - Jan Cimbalnik
- Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, 200 First St SW, Rochester MN, 55905, USA.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Gregory A Worrell
- Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, 200 First St SW, Rochester MN, 55905, USA.,Department of Biomedical Engineering and Physiology, Mayo Clinic, 200 First St SW, Rochester MN, 55905, USA
| |
Collapse
|
69
|
Neumann AR, Raedt R, Steenland HW, Sprengers M, Bzymek K, Navratilova Z, Mesina L, Xie J, Lapointe V, Kloosterman F, Vonck K, Boon PAJM, Soltesz I, McNaughton BL, Luczak A. Involvement of fast-spiking cells in ictal sequences during spontaneous seizures in rats with chronic temporal lobe epilepsy. Brain 2017; 140:2355-2369. [PMID: 29050390 PMCID: PMC6248724 DOI: 10.1093/brain/awx179] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/25/2017] [Accepted: 06/08/2017] [Indexed: 11/14/2022] Open
Abstract
See Lenck-Santini (doi:10.1093/awx205) for a scientific commentary on this article. Epileptic seizures represent altered neuronal network dynamics, but the temporal evolution and cellular substrates of the neuronal activity patterns associated with spontaneous seizures are not fully understood. We used simultaneous recordings from multiple neurons in the hippocampus and neocortex of rats with chronic temporal lobe epilepsy to demonstrate that subsets of cells discharge in a highly stereotypical sequential pattern during ictal events, and that these stereotypical patterns were reproducible across consecutive seizures. In contrast to the canonical view that principal cell discharges dominate ictal events, the ictal sequences were predominantly composed of fast-spiking, putative inhibitory neurons, which displayed unusually strong coupling to local field potential even before seizures. The temporal evolution of activity was characterized by unique dynamics where the most correlated neuronal pairs before seizure onset displayed the largest increases in correlation strength during the seizures. These results demonstrate the selective involvement of fast spiking interneurons in structured temporal sequences during spontaneous ictal events in hippocampal and neocortical circuits in experimental models of chronic temporal lobe epilepsy.
Collapse
Affiliation(s)
- Adam R Neumann
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
| | - Robrecht Raedt
- Department of Neurology, Ghent University, Gent, Belgium
| | - Hendrik W Steenland
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
| | | | - Katarzyna Bzymek
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
| | - Zaneta Navratilova
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
- Neuro-Electronics Research Flanders, Leuven, Belgium
| | - Lilia Mesina
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
| | - Jeanne Xie
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
| | - Valerie Lapointe
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
| | - Fabian Kloosterman
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Brain and Cognition Research unit, KU Leuven, Leuven, Belgium
| | - Kristl Vonck
- Department of Neurology, Ghent University, Gent, Belgium
| | | | - Ivan Soltesz
- Department of Neurosurgery, and Stanford Neurosciences Institute,
Stanford University, Stanford, CA, USA
| | - Bruce L McNaughton
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
- Department of Neurobiology and Behavior, University of California at
Irvine, Center for the Neurobiology of Learning and Memory, Irvine, CA, USA
| | - Artur Luczak
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
- Department of Neurosurgery, and Stanford Neurosciences Institute,
Stanford University, Stanford, CA, USA
| |
Collapse
|
70
|
Jiruska P, Alvarado-Rojas C, Schevon CA, Staba R, Stacey W, Wendling F, Avoli M. Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders. Epilepsia 2017; 58:1330-1339. [PMID: 28681378 DOI: 10.1111/epi.13830] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2017] [Indexed: 12/11/2022]
Abstract
High-frequency oscillations (HFOs) are a type of brain activity that is recorded from brain regions capable of generating seizures. Because of the close association of HFOs with epileptogenic tissue and ictogenesis, understanding their cellular and network mechanisms could provide valuable information about the organization of epileptogenic networks and how seizures emerge from the abnormal activity of these networks. In this review, we summarize the most recent advances in the field of HFOs and provide a critical evaluation of new observations within the context of already established knowledge. Recent improvements in recording technology and the introduction of optogenetics into epilepsy research have intensified experimental work on HFOs. Using advanced computer models, new cellular substrates of epileptic HFOs were identified and the role of specific neuronal subtypes in HFO genesis was determined. Traditionally, the pathogenesis of HFOs was explored mainly in patients with temporal lobe epilepsy and in animal models mimicking this condition. HFOs have also been reported to occur in other epileptic disorders and models such as neocortical epilepsy, genetically determined epilepsies, and infantile spasms, which further support the significance of HFOs in the pathophysiology of epilepsy. It is increasingly recognized that HFOs are generated by multiple mechanisms at both the cellular and network levels. Future studies on HFOs combining novel high-resolution in vivo imaging techniques and precise control of neuronal behavior using optogenetics or chemogenetics will provide evidence about the causal role of HFOs in seizures and epileptogenesis. Detailed understanding of the pathophysiology of HFOs will propel better HFO classification and increase their information yield for clinical and diagnostic purposes.
Collapse
Affiliation(s)
- Premysl Jiruska
- Department of Developmental Epileptology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | | | | | - Richard Staba
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, U.S.A
| | - William Stacey
- Department of Neurology, Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, U.S.A
| | - Fabrice Wendling
- Laboratory of Signal and Image Processing, INSERM U1099, Rennes, France.,Laboratoire de Traitement du Signal et de l'Image, University of Rennes 1, Rennes, France
| | - Massimo Avoli
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery and of Physiology, McGill University, Montréal, Québec, Canada.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
71
|
Spike densities of the amygdala and neocortex reflect progression of kindled motor seizures. Med Biol Eng Comput 2017; 56:99-112. [PMID: 28674781 DOI: 10.1007/s11517-017-1672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
Abstract
Amygdala kindling is a common temporal lobe-like seizure model. In the present study, temporal and spectral analyses of the ictal period were investigated throughout amygdala kindling in response to different behavioral seizures. Right-side amygdala was kindled to induce epileptiform afterdischarges (ADs). ADs of both the frontal cortex and amygdala were analyzed. Powers of the low (0-9 Hz)- and high (12-30 Hz)-frequency bands in response to different behavioral seizures were calculated. Densities of upward and downward peaks of spikes, which reflected information of spike count and spike pattern, throughout kindle-induced ADs were calculated. Progression was seen in the temporal and spectral characteristics of amygdala-kindled ADs in response to behaviors. Numbers of significant differences of all 1-s AD segments between two Racine's seizure stages were significantly higher in upward and downward indexes of the temporal spike than those using the spectral method in both the amygdala and neocortex. Ability for distinguishing seizure stages was significantly higher in temporal spike density of amygdala ADs compared to those of frontal ADs. Our results showed that amygdala kindling caused spectrotemporal changes of activities in the amygdala and frontal cortex. The density of spike-related peaks had better distinguishability in response to behavioral seizures, particularly in a seizure zone of amygdala. The present study provides a new temporal index of spike's peak density to understand progression of motor seizures in the kindling process.
Collapse
|
72
|
Frauscher B, Bartolomei F, Kobayashi K, Cimbalnik J, van 't Klooster MA, Rampp S, Otsubo H, Höller Y, Wu JY, Asano E, Engel J, Kahane P, Jacobs J, Gotman J. High-frequency oscillations: The state of clinical research. Epilepsia 2017; 58:1316-1329. [PMID: 28666056 DOI: 10.1111/epi.13829] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2017] [Indexed: 01/03/2023]
Abstract
Modern electroencephalographic (EEG) technology contributed to the appreciation that the EEG signal outside the classical Berger frequency band contains important information. In epilepsy, research of the past decade focused particularly on interictal high-frequency oscillations (HFOs) > 80 Hz. The first large application of HFOs was in the context of epilepsy surgery. This is now followed by other applications such as assessment of epilepsy severity and monitoring of antiepileptic therapy. This article reviews the evidence on the clinical use of HFOs in epilepsy with an emphasis on the latest developments. It highlights the growing literature on the association between HFOs and postsurgical seizure outcome. A recent meta-analysis confirmed a higher resection ratio for HFOs in seizure-free versus non-seizure-free patients. Residual HFOs in the postoperative electrocorticogram were shown to predict epilepsy surgery outcome better than preoperative HFO rates. The review further discusses the different attempts to separate physiological from epileptic HFOs, as this might increase the specificity of HFOs. As an example, analysis of sleep microstructure demonstrated a different coupling between HFOs inside and outside the epileptogenic zone. Moreover, there is increasing evidence that HFOs are useful to measure disease activity and assess treatment response using noninvasive EEG and magnetoencephalography. This approach is particularly promising in children, because they show high scalp HFO rates. HFO rates in West syndrome decrease after adrenocorticotropic hormone treatment. Presence of HFOs at the time of rolandic spikes correlates with seizure frequency. The time-consuming visual assessment of HFOs, which prevented their clinical application in the past, is now overcome by validated computer-assisted algorithms. HFO research has considerably advanced over the past decade, and use of noninvasive methods will make HFOs accessible to large numbers of patients. Prospective multicenter trials are awaited to gather information over long recording periods in large patient samples.
Collapse
Affiliation(s)
- Birgit Frauscher
- Department of Medicine and Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Fabrice Bartolomei
- National Institute of Health and Medical Research, Institute of Neurosciences of Systems, Aix Marseille University, Marseille, France
| | - Katsuhiro Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Kita-ku, Okayama, Japan
| | - Jan Cimbalnik
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Maryse A van 't Klooster
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
| | - Hiroshi Otsubo
- Division of Neurology, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yvonne Höller
- Department of Neurology, Christian Doppler Medical Center and Center for Cognitive Neuroscience, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Joyce Y Wu
- Division of Pediatric Neurology, Mattel Children's Hospital at UCLA, Los Angeles, California, U.S.A
| | - Eishi Asano
- Departments of Pediatrics and Neurology, Detroit Medical Center, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan, U.S.A
| | - Jerome Engel
- Departments of Neurology, Neurobiology, and Psychiatry, Brain Research Institute, University of California, Los Angeles, Los Angeles, California, U.S.A
| | - Philippe Kahane
- Department of Neurology, Grenoble-Alpes University Hospital and Grenoble-Alpes University, Grenoble, France
| | - Julia Jacobs
- Department of Neuropediatrics and Muscular Diseases, University Medical Center Freiburg, Freiburg, Germany
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
73
|
Janz P, Savanthrapadian S, Häussler U, Kilias A, Nestel S, Kretz O, Kirsch M, Bartos M, Egert U, Haas CA. Synaptic Remodeling of Entorhinal Input Contributes to an Aberrant Hippocampal Network in Temporal Lobe Epilepsy. Cereb Cortex 2017; 27:2348-2364. [PMID: 27073230 DOI: 10.1093/cercor/bhw093] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hippocampus is reciprocally connected with the entorhinal cortex. Although several studies emphasized a role for the entorhinal cortex in mesial temporal lobe epilepsy (MTLE), it remains uncertain whether its synaptic connections with the hippocampus are altered. To address this question, we traced hippocampo-entorhinal and entorhino-hippocampal projections, assessed their connectivity with the respective target cells and examined functional alterations in a mouse model for MTLE. We show that hippocampal afferents to the dorsal entorhinal cortex are lost in the epileptic hippocampus. Conversely, entorhino-dentate projections via the medial perforant path (MPP) are preserved, but appear substantially altered on the synaptic level. Confocal imaging and 3D-reconstruction revealed that new putative contacts are established between MPP fibers and dentate granule cells (DGCs). Immunohistochemical identification of pre- and postsynaptic elements indicated that these contacts are functionally mature synapses. On the ultrastructural level, pre- and postsynaptic compartments of MPP synapses were strongly enlarged. The length and complexity of postsynaptic densities were also increased pointing to long-term potentiation-related morphogenesis. Finally, whole-cell recordings of DGCs revealed an enhancement of evoked excitatory postsynaptic currents. In conclusion, the synaptic rearrangement of excitatory inputs to DGCs from the medial entorhinal cortex may contribute to the epileptogenic circuitry in MTLE.
Collapse
Affiliation(s)
- Philipp Janz
- Experimental Epilepsy Research, Department of Neurosurgery.,Faculty of Biology
| | | | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery
| | - Antje Kilias
- Faculty of Biology.,Laboratory for Biomicrotechnology, Department of Microsystems Engineering, Freiburg im Breisgau 79110, Germany.,Bernstein Center Freiburg, Freiburg im Breisgau 79104, Germany
| | - Sigrun Nestel
- Neuroanatomy, Department of Anatomy and Cell Biology
| | - Oliver Kretz
- Renal Division, Department of Medicine, University Medical Center Freiburg, Freiburg im Breisgau 79106, Germany
| | | | - Marlene Bartos
- Institute for Physiology I, Systemic and Cellular Neurophysiology.,Bernstein Center Freiburg, Freiburg im Breisgau 79104, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg im Breisgau 79110, Germany
| | - Ulrich Egert
- Laboratory for Biomicrotechnology, Department of Microsystems Engineering, Freiburg im Breisgau 79110, Germany.,Bernstein Center Freiburg, Freiburg im Breisgau 79104, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg im Breisgau 79110, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery.,Bernstein Center Freiburg, Freiburg im Breisgau 79104, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg im Breisgau 79110, Germany
| |
Collapse
|
74
|
Kanamori K. Faster flux of neurotransmitter glutamate during seizure - Evidence from 13C-enrichment of extracellular glutamate in kainate rat model. PLoS One 2017; 12:e0174845. [PMID: 28403176 PMCID: PMC5389799 DOI: 10.1371/journal.pone.0174845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/16/2017] [Indexed: 01/05/2023] Open
Abstract
The objective is to examine how the flux of neurotransmitter glutamate from neurons to the extracellular fluid, as measured by the rate of 13C enrichment of extracellular glutamate (GLUECF), changes in response to seizures in the kainate-induced rat model of temporal-lobe epilepsy. Following unilateral intrahippocampal injection of kainate, GLUECF was collected by microdialysis from the CA1/CA3 region of awake rats, in combination with EEG recording of chronic-phase recurrent seizures and intravenous infusion of [2,5-13C]glucose. The 13C enrichment of GLUECF C5 at ~ 10 picomol level was measured by gas-chromatography mass-spectrometry. The rate of 13C enrichment, expressed as the increase of the fractional enrichment/min, was 0.0029 ± 0.0001/min in frequently seizing rats (n = 4); this was significantly higher (p < 0.01) than in the control (0.00167 ± 0.0001/min; n = 6) or in rats with infrequent seizures (0.00172 ± 0.0001/min; n = 6). This result strongly suggests that the flux of the excitatory neurotransmitter from neurons to the extracellular fluid is significantly increased by frequent seizures. The extracellular [12C + 13C]glutamate concentration increased progressively in frequently seizing rats. Taken together, these results strongly suggest that the observed seizure-induced high flux of glutamate overstimulated glutamate receptors, which triggered a chain reaction of excitation in the CA3 recurrent glutamatergic networks. The rate of 13C enrichment of extracellular glutamine (GLNECF) at C5 was 0.00299 ± 0.00027/min in frequently seizing rats, which was higher (p < 0.05) than in controls (0.00227 ± 0.00008/min). For the first time in vivo, this study examined the effects of epileptic seizures on fluxes of the neurotransmitter glutamate and its precursor glutamine in the extracellular fluid of the hippocampus. The advantages, limitations and the potential for improvement of this approach for pre-clinical and clinical studies of temporal-lobe epilepsy are discussed.
Collapse
Affiliation(s)
- Keiko Kanamori
- Department of Epilepsy, Huntington Medical Research Institutes, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
75
|
A Novel Focal Seizure Pattern Generated in Superficial Layers of the Olfactory Cortex. J Neurosci 2017; 37:3544-3554. [PMID: 28264979 DOI: 10.1523/jneurosci.2239-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/06/2016] [Accepted: 12/16/2016] [Indexed: 02/03/2023] Open
Abstract
Seizure patterns identified in focal epilepsies caused by diverse etiologies are likely due to different pathogenic mechanisms. We describe here a novel, region-specific focal seizure pattern that mimics seizure activity observed in a subpopulation of patients submitted to presurgical monitoring with intracerebral electrodes. Distinctive seizure-like events (SLEs) are induced in the olfactory regions by acute treatment of both tangential brain slices and the isolated guinea pig brain with the potassium channel blocker 4-aminopyridine. Analysis of field potentials, intracellular activities, and extracellular potassium changes demonstrates that SLEs in the piriform cortex initiate in the superficial layer 1 lacking principal neurons with an activity-dependent increase of extracellular potassium. SLE progression (but not onset) does not require the participation of synaptic transmission and is mediated by diffusion of potassium to deep cortical layers. The novel seizure pattern here described is not observed in other cortical regions; it is proposed to rely on the peculiar organization of the superficial piriform cortex layers, which are characterized by unmyelinated axons and perisynaptic astroglial envelopes. This study reveals a sequence of ictogenic events in the olfactory cortex that were never described before in other cortical structures and supports the notion that altered potassium homeostasis and unmyelinated fibers may represent a potential vehicle for focal ictogenesis.SIGNIFICANCE STATEMENT We describe a novel seizure pattern peculiar of the olfactory cortex that resembles focal seizures with low-voltage fast activity at onset observed in humans. The findings suggest that network mechanisms responsible for seizure onset can be region specific.
Collapse
|
76
|
Tamilia E, Madsen JR, Grant PE, Pearl PL, Papadelis C. Current and Emerging Potential of Magnetoencephalography in the Detection and Localization of High-Frequency Oscillations in Epilepsy. Front Neurol 2017; 8:14. [PMID: 28194133 PMCID: PMC5276819 DOI: 10.3389/fneur.2017.00014] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/11/2017] [Indexed: 01/19/2023] Open
Abstract
Up to one-third of patients with epilepsy are medically intractable and need resective surgery. To be successful, epilepsy surgery requires a comprehensive preoperative evaluation to define the epileptogenic zone (EZ), the brain area that should be resected to achieve seizure freedom. Due to lack of tools and methods that measure the EZ directly, this area is defined indirectly based on concordant data from a multitude of presurgical non-invasive tests and intracranial recordings. However, the results of these tests are often insufficiently concordant or inconclusive. Thus, the presurgical evaluation of surgical candidates is frequently challenging or unsuccessful. To improve the efficacy of the surgical treatment, there is an overriding need for reliable biomarkers that can delineate the EZ. High-frequency oscillations (HFOs) have emerged over the last decade as new potential biomarkers for the delineation of the EZ. Multiple studies have shown that HFOs are spatially associated with the EZ. Despite the encouraging findings, there are still significant challenges for the translation of HFOs as epileptogenic biomarkers to the clinical practice. One of the major barriers is the difficulty to detect and localize them with non-invasive techniques, such as magnetoencephalography (MEG) or scalp electroencephalography (EEG). Although most literature has studied HFOs using invasive recordings, recent studies have reported the detection and localization of HFOs using MEG or scalp EEG. MEG seems to be particularly advantageous compared to scalp EEG due to its inherent advantages of being less affected by skull conductivity and less susceptible to contamination from muscular activity. The detection and localization of HFOs with MEG would largely expand the clinical utility of these new promising biomarkers to an earlier stage in the diagnostic process and to a wider range of patients with epilepsy. Here, we conduct a thorough critical review of the recent MEG literature that investigates HFOs in patients with epilepsy, summarizing the different methodological approaches and the main findings. Our goal is to highlight the emerging potential of MEG in the non-invasive detection and localization of HFOs for the presurgical evaluation of patients with medically refractory epilepsy (MRE).
Collapse
Affiliation(s)
- Eleonora Tamilia
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R. Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Patricia Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L. Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
77
|
Lévesque M, Shiri Z, Chen LY, Avoli M. High-frequency oscillations and mesial temporal lobe epilepsy. Neurosci Lett 2017; 667:66-74. [PMID: 28115239 DOI: 10.1016/j.neulet.2017.01.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/25/2023]
Abstract
The interest of epileptologists has recently shifted from the macroscopic analysis of interictal spikes and seizures to the microscopic analysis of short events in the EEG that are not visible to the naked eye but are observed once the signal has been filtered in specific frequency bands. With the use of new technologies that allow multichannel recordings at high sampling rates and the development of computer algorithms that permit the automated analysis of extensive amounts of data, it is now possible to extract high-frequency oscillations (HFOs) between 80 and 500Hz from the EEG; HFOs have been further categorised as ripples (80-200Hz) and fast ripples (250-500Hz). Within the context of epileptic disorders, HFOs should reflect the pathological activity of neural networks that sustain seizure generation, and could serve as biomarkers of epileptogenesis and ictogenesis. We review here the presumptive cellular mechanisms of ripples and fast ripples in mesial temporal lobe epilepsy. We also focus on recent findings regarding the occurrence of HFOs during epileptiform activity observed in in vitro models of epileptiform synchronization, in in vivo models of mesial temporal lobe epilepsy and in epileptic patients. Finally, we address the effects of anti-epileptic drugs on HFOs and raise some questions and issues related to the definition of HFOs.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Zahra Shiri
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Li-Yuan Chen
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Massimo Avoli
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
78
|
Huang L, Ni X, Ditto WL, Spano M, Carney PR, Lai YC. Detecting and characterizing high-frequency oscillations in epilepsy: a case study of big data analysis. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160741. [PMID: 28280577 PMCID: PMC5319343 DOI: 10.1098/rsos.160741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/22/2016] [Indexed: 05/08/2023]
Abstract
We develop a framework to uncover and analyse dynamical anomalies from massive, nonlinear and non-stationary time series data. The framework consists of three steps: preprocessing of massive datasets to eliminate erroneous data segments, application of the empirical mode decomposition and Hilbert transform paradigm to obtain the fundamental components embedded in the time series at distinct time scales, and statistical/scaling analysis of the components. As a case study, we apply our framework to detecting and characterizing high-frequency oscillations (HFOs) from a big database of rat electroencephalogram recordings. We find a striking phenomenon: HFOs exhibit on-off intermittency that can be quantified by algebraic scaling laws. Our framework can be generalized to big data-related problems in other fields such as large-scale sensor data and seismic data analysis.
Collapse
Affiliation(s)
- Liang Huang
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xuan Ni
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - William L. Ditto
- College of Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Mark Spano
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Paul R. Carney
- Pediatric Neurology and Epilepsy, Department of Neurology, University of North Carolina, 170 Manning Drive, Chapel Hill, NC 27599-7025, USA
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Author for correspondence: Ying-Cheng Lai e-mail:
| |
Collapse
|
79
|
Abstract
PURPOSE OF REVIEW Localization of focal epileptic brain is critical for successful epilepsy surgery and focal brain stimulation. Despite significant progress, roughly half of all patients undergoing focal surgical resection, and most patients receiving focal electrical stimulation, are not seizure free. There is intense interest in high-frequency oscillations (HFOs) recorded with intracranial electroencephalography as potential biomarkers to improve epileptogenic brain localization, resective surgery, and focal electrical stimulation. The present review examines the evidence that HFOs are clinically useful biomarkers. RECENT FINDINGS Performing the PubMed search 'High-Frequency Oscillations and Epilepsy' for 2013-2015 identifies 308 articles exploring HFO characteristics, physiological significance, and potential clinical applications. SUMMARY There is strong evidence that HFOs are spatially associated with epileptic brain. There remain, however, significant challenges for clinical translation of HFOs as epileptogenic brain biomarkers: Differentiating true HFO from the high-frequency power changes associated with increased neuronal firing and bandpass filtering sharp transients. Distinguishing pathological HFO from normal physiological HFO. Classifying tissue under individual electrodes as normal or pathological. Sharing data and algorithms so research results can be reproduced across laboratories. Multicenter prospective trials to provide definitive evidence of clinical utility.
Collapse
|
80
|
Liu C, Zhang R, Zhang G, Yu T, Tai J, Du W, Li L, Wang Y. High frequency oscillations for lateralizing suspected bitemporal epilepsy. Epilepsy Res 2016; 127:233-240. [PMID: 27639348 DOI: 10.1016/j.eplepsyres.2016.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 07/28/2016] [Accepted: 09/04/2016] [Indexed: 11/18/2022]
Abstract
OBJECTIVE In some cases of single focus epilepsy, conventional video electroencephalography (EEG) cannot reveal the epileptogenic focus even when intracranial electrodes are used. Here, we tested whether analyzing high frequency oscillations (HFOs) can be used to determine the ictal onset zone in suspected bitemporal epilepsy and improve seizure outcome. METHODS We prospectively studied 13 patients with refractory temporal seizures who were treated over a 4-year period and underwent bilateral placement of intracranial electrodes. Subdural strips were used in all cases, and depth electrodes were implanted into mesial temporal lobes in 10 patients. The mean patient age was 30.92 years, and 30.7% of patients were male. Patients were monitored by conventional and wide-band frequency amplifiers. RESULTS Conventional invasive EEG monitoring of interictal periods showed bilateral epileptiform abnormalities in 12 patients (92.3%) and unilateral epileptiform abnormalities in one (7.7%), and monitoring of ictal periods revealed unilateral seizure origins in nine patients (69.2%) and bilateral origins in four (30.8%). In contrast, high frequency invasive EEG monitoring of interictal periods showed bilateral HFOs in seven patients (53.8%) and unilateral HFOs in six (46.2%), and monitoring of ictal periods revealed unilateral HFOs in all 10 patients who were tested. Three patients were not monitored during ictal periods because of time limitations. All 13 patients subsequently underwent a standard unilateral temporal lobectomy and have been followed-up for a minimum of 12 months. Eleven (84%) had a Class I outcome, one (8%) a Class II outcome, and one a Class III outcome. SIGNIFICANCE Bilateral placement of subdural strip and depth electrodes for seizure monitoring in patients with suspected bitemporal epilepsy is both safe and effective. Monitoring high frequency oscillations can help determine the laterality of the onset zone when localization using conventional EEG or brain MRI fails.
Collapse
Affiliation(s)
- Chunyan Liu
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
| | - Ruihua Zhang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China; Department of Functional Neurology, Lu He Hospital, Capital Medical University, Beijing 101149, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Junli Tai
- Department of Functional Neurosurgery, Lu He Hospital, Capital Medical University, Beijing 101149, China
| | - Wei Du
- Beijing Institute of Functional Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Liping Li
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuping Wang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China.
| |
Collapse
|
81
|
Spontaneous ripples in the hippocampus correlate with epileptogenicity and not memory function in patients with refractory epilepsy. Epilepsy Behav 2016; 62:258-66. [PMID: 27517349 DOI: 10.1016/j.yebeh.2016.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/22/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022]
Abstract
INTRODUCTION High-frequency oscillations (HFOs, 80-500Hz) are newly-described EEG markers of epileptogenicity. The proportion of physiological and pathological HFOs is unclear, as frequency analysis is insufficient for separating the two types of events. For instance, ripples (80-250Hz) also occur physiologically during memory consolidation processes in medial temporal lobe structures. We investigated the correlation between HFO rates and memory performance. METHODS Patients investigated with bilateral medial temporal electrodes and an intellectual capacity allowing for memory testing were included. High-frequency oscillations were visually marked, and rates of HFOs were calculated for each channel during slow-wave sleep. Patients underwent three verbal and three nonverbal memory tests. They were grouped into severe impairment, some impairment, mostly intact, or intact for verbal and nonverbal memory. We calculated a Pearson correlation between HFO rates in the hippocampi and the memory category and compared HFO rates in each hippocampus with the corresponding (verbal - left, nonverbal - right) memory result using Wilcoxon rank-sum test. RESULTS Twenty patients were included; ten had bilateral, five had unilateral, and five had no memory impairment. Unilateral memory impairment was verbal in one patient and nonverbal in four. There was no correlation between HFO rates and memory performance in seizure onset areas. There was, however, a significant negative correlation between the overall memory performance and ripple rates (r=-0.50, p=0.03) outside the seizure onset zone. CONCLUSION Our results suggest that the majority of spontaneous hippocampal ripples, as defined in the present study, may reflect pathological activity, taking into account the association with memory impairment. The absence of negative correlation between memory performance and HFO rates in seizure onset areas could be explained by HFO rates in the SOZ being generally so high that differences between areas with remaining and impaired memory function cannot be seen.
Collapse
|
82
|
The cannabinoid receptor agonist WIN55.212 reduces consequences of status epilepticus in rats. Neuroscience 2016; 334:191-200. [PMID: 27520083 DOI: 10.1016/j.neuroscience.2016.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 12/29/2022]
Abstract
An acute brain insult can cause a spectrum of primary and secondary pathologies including increased risk for epilepsy, mortality and neurodegeneration. The endocannabinoid system, involved in protecting the brain against network hyperexcitability and excitotoxicity, is profoundly dysregulated by acute brain insults. We hypothesize that post-insult dysregulation of the endocannabinoid signaling may contribute to deleterious effects of an acute brain injury and potentiation of endocannabinoid transmission soon after an insult may reduce its pathological outcomes. Effects of an acute post-insult administration of the endocannabinoid receptor agonist WIN55,212-2 on early seizure occurrence, animal mortality and hippocampal cell loss were studied in the lithium-pilocarpine status model. A single dose of WIN55,212-2 (5mg/kg) administered four hours after the end of status epilepticus (SE) reduced the incidence of early seizures during the first two post-SE days though did not change their duration and latency. Brief 4-6-Hz spike-wave discharges appeared de novo in the latent post-SE period and the acute administration of WIN55,212-2 also reduced the incidence of the epileptiform events. A single dose of WIN55,212-2 administered soon after SE improved survival of animals and reduced cell loss in the dentate hilus but did not prevent appearance of spontaneous recurrent seizures in the chronic period. Thus, a brief pharmacological stimulation of the endocannabinoid system soon after a brain insult exerts beneficial effects on its pathological outcome though does not prevent epileptogenesis.
Collapse
|
83
|
Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW. Mesial Temporal Lobe Epilepsy: Pathogenesis, Induced Rodent Models and Lesions. Toxicol Pathol 2016; 35:984-99. [PMID: 18098044 DOI: 10.1080/01926230701748305] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mesial temporal lobe epilepsy (MTLE), the most common epilepsy in adults, is generally intractable and is suspected to be the result of recurrent excitation or inhibition circuitry. Recurrent excitation and the development of seizures have been associated with aberrant mossy fiber sprouting in the hippocampus. Of the animal models developed to investigate the pathogenesis of MTLE, post-status epilepticus models have received the greatest acceptance because they are characterized by a latency period, the development of spontaneous motor seizures, and a spectrum of lesions like those of MTLE. Among post-status epilepticus models, induction of systemic kainic acid or pilocarpine-induced epilepsy is less labor-intensive than electrical-stimulation models and these models mirror the clinicopathologic features of MTLE more closely than do kindling, tetanus toxin, hyperthermia, post-traumatic, and perinatal hypoxia/ischemia models. Unfortunately, spontaneous motor seizures do not develop in kindling or adult hyperthermia models and are not a consistent finding in tetanus toxin-induced or perinatal hypoxia/ischemia models. This review presents the mechanistic hypotheses for seizure induction, means of model induction, and associated pathology, especially as compared to MTLE patients. Animal models are valuable tools not only to study the pathogenesis of MTLE, but also to evaluate potential antiepileptogenic drugs.
Collapse
Affiliation(s)
- Alok K. Sharma
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Department of Pathology, Covance Laboratories Inc., Madison, WI, 53704, USA
| | - Rachel Y. Reams
- Department of Pathology, Lilly Research Laboratories, Division of Eli Lilly and Co., Greenfield, IN, 46140, USA
| | - William H. Jordan
- Department of Pathology, Lilly Research Laboratories, Division of Eli Lilly and Co., Greenfield, IN, 46140, USA
| | - Margaret A. Miller
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - H. Leon Thacker
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Paul W. Snyder
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
84
|
Multiscale Aspects of Generation of High-Gamma Activity during Seizures in Human Neocortex. eNeuro 2016; 3:eN-NWR-0141-15. [PMID: 27257623 PMCID: PMC4876490 DOI: 10.1523/eneuro.0141-15.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/14/2023] Open
Abstract
High-gamma (HG; 80-150 Hz) activity in macroscopic clinical records is considered a marker for critical brain regions involved in seizure initiation; it is correlated with pathological multiunit firing during neocortical seizures in the seizure core, an area identified by correlated multiunit spiking and low frequency seizure activity. High-gamma (HG; 80-150 Hz) activity in macroscopic clinical records is considered a marker for critical brain regions involved in seizure initiation; it is correlated with pathological multiunit firing during neocortical seizures in the seizure core, an area identified by correlated multiunit spiking and low frequency seizure activity. However, the effects of the spatiotemporal dynamics of seizure on HG power generation are not well understood. Here, we studied HG generation and propagation, using a three-step, multiscale signal analysis and modeling approach. First, we analyzed concurrent neuronal and microscopic network HG activity in neocortical slices from seven intractable epilepsy patients. We found HG activity in these networks, especially when neurons displayed paroxysmal depolarization shifts and network activity was highly synchronized. Second, we examined HG activity acquired with microelectrode arrays recorded during human seizures (n = 8). We confirmed the presence of synchronized HG power across microelectrode records and the macroscale, both specifically associated with the core region of the seizure. Third, we used volume conduction-based modeling to relate HG activity and network synchrony at different network scales. We showed that local HG oscillations require high levels of synchrony to cross scales, and that this requirement is met at the microscopic scale, but not within macroscopic networks. Instead, we present evidence that HG power at the macroscale may result from harmonics of ongoing seizure activity. Ictal HG power marks the seizure core, but the generating mechanism can differ across spatial scales.
Collapse
|
85
|
Noé FM, Bellistri E, Colciaghi F, Cipelletti B, Battaglia G, de Curtis M, Librizzi L. Kainic acid-induced albumin leak across the blood-brain barrier facilitates epileptiform hyperexcitability in limbic regions. Epilepsia 2016; 57:967-76. [PMID: 27173148 DOI: 10.1111/epi.13394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Systemic administration of kainic acid (KA) is a widely used procedure utilized to develop a model of temporal lobe epilepsy (TLE). Despite its ability to induce status epilepticus (SE) in vivo, KA applied to in vitro preparations induces only interictal-like activity and/or isolated ictal discharges. The possibility that extravasation of the serum protein albumin from the vascular compartment enhances KA-induced brain excitability is investigated here. METHODS Epileptiform activity was induced by arterial perfusion of 6 μm KA in the in vitro isolated guinea pig brain preparation. Simultaneous field potential recordings were carried out bilaterally from limbic (CA1, dentate gyrus [DG], and entorhinal cortex) and extralimbic regions (piriform cortex and neocortex). Blood-brain barrier (BBB) breakdown associated with KA-induced epileptiform activity was assessed by parenchymal leakage of intravascular fluorescein-isothiocyanate albumin. Seizure-induced brain inflammation was evaluated by western blot analysis of interleukin (IL)-1β expression in brain tissue. RESULTS KA infusion caused synchronized activity at 15-30 Hz in limbic (but not extralimbic) cortical areas, associated with a brief, single seizure-like event. A second bolus of KA, 60 min after the induction of the first ictal event, did not further enhance excitability. Perfusion of serum albumin between the two administrations of KA enhanced epileptiform discharges and allowed a recurrent ictal event during the second KA infusion. SIGNIFICANCE Our data show that arterial KA administration selectively alters the synchronization of limbic networks. However, KA is not sufficient to generate recurrent seizures unless serum albumin is co-perfused during KA administration. These findings suggest a role of serum albumin in facilitating acute seizure generation.
Collapse
Affiliation(s)
- Francesco M Noé
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Elisa Bellistri
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Francesca Colciaghi
- Unit of Molecular Neuroanatomy and Pathogenesis, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Barbara Cipelletti
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Giorgio Battaglia
- Unit of Molecular Neuroanatomy and Pathogenesis, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Marco de Curtis
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Laura Librizzi
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| |
Collapse
|
86
|
Shiri Z, Manseau F, Lévesque M, Williams S, Avoli M. Activation of specific neuronal networks leads to different seizure onset types. Ann Neurol 2016; 79:354-65. [PMID: 26605509 DOI: 10.1002/ana.24570] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/12/2015] [Accepted: 11/15/2015] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Ictal events occurring in temporal lobe epilepsy patients and in experimental models mimicking this neurological disorder can be classified, based on their onset pattern, into low-voltage, fast versus hypersynchronous onset seizures. It has been suggested that the low-voltage, fast onset pattern is mainly contributed by interneuronal (γ-aminobutyric acidergic) signaling, whereas the hypersynchronous onset involves the activation of principal (glutamatergic) cells. METHODS Here, we tested this hypothesis using the optogenetic control of parvalbumin-positive or somatostatin-positive interneurons and of calmodulin-dependent, protein kinase-positive, principal cells in the mouse entorhinal cortex in the in vitro 4-aminopyridine model of epileptiform synchronization. RESULTS We found that during 4-aminopyridine application, both spontaneous seizure-like events and those induced by optogenetic activation of interneurons displayed low-voltage, fast onset patterns that were associated with a higher occurrence of ripples than of fast ripples. In contrast, seizures induced by the optogenetic activation of principal cells had a hypersynchronous onset pattern with fast ripple rates that were higher than those of ripples. INTERPRETATION Our results firmly establish that under a similar experimental condition (ie, bath application of 4-aminopyridine), the initiation of low-voltage, fast and of hypersynchronous onset seizures in the entorhinal cortex depends on the preponderant involvement of interneuronal and principal cell networks, respectively.
Collapse
Affiliation(s)
- Zahra Shiri
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, and Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Frédéric Manseau
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Maxime Lévesque
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, and Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Sylvain Williams
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Massimo Avoli
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, and Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
87
|
Jefferys J, Steinhäuser C, Bedner P. Chemically-induced TLE models: Topical application. J Neurosci Methods 2016; 260:53-61. [DOI: 10.1016/j.jneumeth.2015.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 12/26/2022]
|
88
|
Computational models of epileptiform activity. J Neurosci Methods 2016; 260:233-51. [DOI: 10.1016/j.jneumeth.2015.03.027] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/24/2022]
|
89
|
Wang YL, Chen YL, Su AWY, Shaw FZ, Liang SF. Epileptic Pattern Recognition and Discovery of the Local Field Potential in Amygdala Kindling Process. IEEE Trans Neural Syst Rehabil Eng 2016; 24:374-85. [PMID: 26766378 DOI: 10.1109/tnsre.2015.2512258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epileptogenesis, which occurs in an epileptic brain, is an important focus for epilepsy. The spectral analysis has been popularly applied to study the electrophysiological activities. However, the resolution is dominated by the window function of the algorithm used and the sample size. In this report, a temporal waveform analysis method is proposed to investigate the relationship of electrophysiological discharges and motor outcomes with a kindling process. Wistar rats were subjected to electrical amygdala kindling to induce temporal lobe epilepsy. During the kindling process, different morphologies of afterdischarges (ADs) were found and a recognition method, using template matching techniques combined with morphological comparators, was developed to automatically detect the epileptic patterns. The recognition results were compared to manually labeled results, and 79%-91% sensitivity was found. In addition, the initial ADs (the first 10 s) of different seizure stages were specifically utilized for recognition, and an average of 85% sensitivity was achieved. Our study provides an alternative viewpoint away from frequency analysis and time-frequency analysis to investigate epileptogenesis in an epileptic brain. The recognition method can be utilized as a preliminary inspection tool to identify remarkable changes in a patient's electrophysiological activities for clinical use. Moreover, we demonstrate the feasibility of predicting behavioral seizure stages from the early epileptiform discharges.
Collapse
|
90
|
Jones RT, Barth AM, Ormiston LD, Mody I. Evolution of temporal and spectral dynamics of pathologic high-frequency oscillations (pHFOs) during epileptogenesis. Epilepsia 2015; 56:1879-89. [PMID: 26514993 PMCID: PMC4679703 DOI: 10.1111/epi.13218] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 02/01/2023]
Abstract
OBJECTIVE In temporal lobe epilepsy (TLE), pathologic high frequency oscillations (pHFOs, 200-600 Hz) are present in the hippocampus, especially the dentate gyrus (DG). The pHFOs emerge during a latent period prior to the onset of spontaneous generalized seizures. We used a unilateral suprahippocampal injection of kainic acid (KA) mouse model of TLE to characterize the properties of hippocampal pHFOs during epileptogenesis. METHODS In awake head-fixed mice, 4-14 days after KA-induced status epilepticus (SE), we recorded local field potentials (LFPs) with 64-channel silicon probes spanning from CA1 alveus to the DG hilus, or with glass pipettes in the DC mode in the CA1 str radiatum. RESULTS The pHFOs, are observed simultaneously in the CA1 and the DG, or in the DG alone, as early as 4 days post-SE. The pHFOs ride on top of DC deflections, occur during motionless periods, persist through the onset of TLE, and are generated in bursts. Burst parameters remain remarkably constant during epileptogenesis, with a random number of pHFOs generated per burst. In contrast, pHFO duration and spectral dynamics evolve from short events at 4 days post-SE to prolonged discharges with complex spectral characteristics by 14 days post-SE. Simultaneous dural EEG recordings were exceedingly unreliable for detecting hippocampal pHFOs; therefore, such recordings may deceptively indicate a "silent" period even when massive hippocampal activity is present. SIGNIFICANCE Our results demonstrate that hippocampal pHFOs exhibit a dynamic evolution during the epileptogenic period following SE, consistent with their role in transitioning to the chronic stage of TLE.
Collapse
Affiliation(s)
- Ryan T. Jones
- Department of Neurobiology Graduate Program, The David Geffen School of Medicine, University of California Los Angeles, Los Angeles California, USA; present address: Department of Biochemistry and Biophysics, UCSF, San Francisco, CA
| | - Albert M. Barth
- Department of Neurology, The David Geffen School of Medicine, University of California Los Angeles, Los Angeles California, USA
| | - Laurel D. Ormiston
- Department of Neurology, The David Geffen School of Medicine, University of California Los Angeles, Los Angeles California, USA
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine, University of California Los Angeles, Los Angeles California, USA
- Department of Physiology, The David Geffen School of Medicine, University of California Los Angeles, Los Angeles California, USA
| |
Collapse
|
91
|
Ledri LN, Melin E, Christiansen SH, Gøtzsche CR, Cifra A, Woldbye DPD, Kokaia M. Translational approach for gene therapy in epilepsy: Model system and unilateral overexpression of neuropeptide Y and Y2 receptors. Neurobiol Dis 2015; 86:52-61. [PMID: 26607785 DOI: 10.1016/j.nbd.2015.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/12/2015] [Accepted: 11/18/2015] [Indexed: 11/27/2022] Open
Abstract
Although novel treatment strategies based on the gene therapy approach for epilepsy has been encouraging, there is still a gap in demonstrating a proof-of-concept in a clinically relevant animal model and study design. In the present study, a conceptually novel framework reflecting a plausible clinical trial for gene therapy of temporal lobe epilepsy was explored: We investigated (i) whether the post intrahippocampal kainate-induced status epilepticus (SE) model of chronic epilepsy in rats could be clinically relevant; and (ii) whether a translationally designed neuropeptide Y (NPY)/Y2 receptor-based gene therapy approach targeting only the seizure-generating focus unilaterally can decrease seizure frequency in this chronic model of epilepsy. Our data suggest that the intrahippocampal kainate model resembles the disease development of human chronic mesial temporal lobe epilepsy (mTLE): (i) spontaneous seizures originate in the sclerotic hippocampus; (ii) only a part of the animals develops chronic epilepsy; (iii) animals show largely variable seizure frequency that (iv) tends to progressively increase over time. Despite significant hippocampal degeneration caused by the kainate injection, the use of MRI allowed targeting the recombinant adeno-associated viral (rAAV) vectors encoding NPY and Y2 receptor genes to the remaining dorsal and ventral hippocampal areas ipsilateral to the kainate injection. Continuous video-EEG monitoring demonstrated not only prevention of the progressive increase in seizure frequency in rAAV-NPY/Y2 treated animals as compared to the controls, but even 45% decrease of seizure frequency in 80% of the epileptic animals. This translationally designed study in a clinically relevant model of epilepsy suggests that simultaneous overexpression of NPY and Y2 receptors unilaterally in the seizure focus is a relevant and promising approach that can be further validated in more extensive preclinical studies to develop a future treatment strategy for severe, often pharmacoresistant focal epilepsy cases that cannot be offered alternative therapeutic options.
Collapse
Affiliation(s)
- Litsa Nikitidou Ledri
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden
| | - Esbjörn Melin
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden
| | - Søren H Christiansen
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Nørregade 10, 1017 Copenhagen, Denmark
| | - Casper R Gøtzsche
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Nørregade 10, 1017 Copenhagen, Denmark
| | - Alessandra Cifra
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden
| | - David P D Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Nørregade 10, 1017 Copenhagen, Denmark
| | - Mérab Kokaia
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden.
| |
Collapse
|
92
|
|
93
|
Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 2015; 25:1073-188. [PMID: 26135716 PMCID: PMC4648295 DOI: 10.1002/hipo.22488] [Citation(s) in RCA: 1012] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/23/2022]
Abstract
Sharp wave ripples (SPW-Rs) represent the most synchronous population pattern in the mammalian brain. Their excitatory output affects a wide area of the cortex and several subcortical nuclei. SPW-Rs occur during "off-line" states of the brain, associated with consummatory behaviors and non-REM sleep, and are influenced by numerous neurotransmitters and neuromodulators. They arise from the excitatory recurrent system of the CA3 region and the SPW-induced excitation brings about a fast network oscillation (ripple) in CA1. The spike content of SPW-Rs is temporally and spatially coordinated by a consortium of interneurons to replay fragments of waking neuronal sequences in a compressed format. SPW-Rs assist in transferring this compressed hippocampal representation to distributed circuits to support memory consolidation; selective disruption of SPW-Rs interferes with memory. Recently acquired and pre-existing information are combined during SPW-R replay to influence decisions, plan actions and, potentially, allow for creative thoughts. In addition to the widely studied contribution to memory, SPW-Rs may also affect endocrine function via activation of hypothalamic circuits. Alteration of the physiological mechanisms supporting SPW-Rs leads to their pathological conversion, "p-ripples," which are a marker of epileptogenic tissue and can be observed in rodent models of schizophrenia and Alzheimer's Disease. Mechanisms for SPW-R genesis and function are discussed in this review.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, New York
| |
Collapse
|
94
|
Abbasi S, Kumar SS. Layer-specific modulation of entorhinal cortical excitability by presubiculum in a rat model of temporal lobe epilepsy. J Neurophysiol 2015; 114:2854-66. [PMID: 26378210 DOI: 10.1152/jn.00823.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/09/2015] [Indexed: 11/22/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of epilepsy in adults and is often refractory to antiepileptic medications. The medial entorhinal area (MEA) is affected in TLE but mechanisms underlying hyperexcitability of MEA neurons require further elucidation. Previous studies suggest that inputs from the presubiculum (PrS) contribute to MEA pathophysiology. We assessed electrophysiologically how PrS influences MEA excitability using the rat pilocarpine model of TLE. PrS-MEA connectivity was confirmed by electrically stimulating PrS afferents while recording from neurons within superficial layers of MEA. Assessment of alterations in PrS-mediated synaptic drive to MEA neurons was made following focal application of either glutamate or NBQX to the PrS in control and epileptic animals. Here, we report that monosynaptic inputs to MEA from PrS neurons are conserved in epileptic rats, and that PrS modulation of MEA excitability is layer-specific. PrS contributes more to synaptic inhibition of LII stellate cells than excitation. Under epileptic conditions, stellate cell inhibition is significantly reduced while excitatory synaptic drive is maintained at levels similar to control. PrS contributes to both synaptic excitation and inhibition of LIII pyramidal cells in control animals. Under epileptic conditions, overall excitatory synaptic drive to these neurons is enhanced while inhibitory synaptic drive is maintained at control levels. Additionally, neither glutamate nor NBQX applied focally to PrS now affected EPSC and IPSC frequency of LIII pyramidal neurons. These layer-specific changes in PrS-MEA interactions are unexpected and of significance in unraveling pathophysiological mechanisms underlying TLE.
Collapse
Affiliation(s)
- Saad Abbasi
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
95
|
Hakimova H, Kim S, Chu K, Lee SK, Jeong B, Jeon D. Ultrasound stimulation inhibits recurrent seizures and improves behavioral outcome in an experimental model of mesial temporal lobe epilepsy. Epilepsy Behav 2015; 49:26-32. [PMID: 25940106 DOI: 10.1016/j.yebeh.2015.04.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 02/06/2023]
Abstract
Current therapies for epilepsy consist mostly of pharmacological agents or invasive surgery. Recently, ultrasound (US) stimulation has been considered a promising tool for the noninvasive treatment of brain diseases, including epilepsy. However, in temporal lobe epilepsy (TLE), a common form of epilepsy, neurophysiological and functional outcomes following US stimulation are not well defined. To address this, we developed a paradigm of transcranial pulsed US stimulation to efficiently suppress seizure activity in the initial/acute period in a kainate (KA)-induced mouse model of mesial TLE. Pulsed US stimulation inhibited acute seizure activity and either delayed the onset of or suppressed status epilepticus (SE). Kainate-treated mice that had received US stimulation in the initial period exhibited fewer spontaneous recurrent seizures (SRSs) and improved performance in behavioral tasks assessing sociability and depression in the chronic period of epilepsy. Our results demonstrate that US stimulation in the acute period of epilepsy can inhibit SRSs and improve behavioral outcomes in a mouse model of mesial TLE. The present study suggests that noninvasive transcranial pulsed US stimulation may be feasible as an adjuvant therapy in patients with epilepsy. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
Affiliation(s)
- Hilola Hakimova
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sangwoo Kim
- Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital (SNUH), Seoul, Republic of Korea
| | - Kon Chu
- Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital (SNUH), Seoul, Republic of Korea
| | - Sang Kun Lee
- Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital (SNUH), Seoul, Republic of Korea
| | - Bumseok Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Daejong Jeon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital (SNUH), Seoul, Republic of Korea.
| |
Collapse
|
96
|
de Curtis M, Avoli M. Initiation, Propagation, and Termination of Partial (Focal) Seizures. Cold Spring Harb Perspect Med 2015; 5:a022368. [PMID: 26134843 PMCID: PMC4484951 DOI: 10.1101/cshperspect.a022368] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The neurophysiological patterns that correlate with partial (focal) seizures are well defined in humans by standard electroencephalogram (EEG) and presurgical depth electrode recordings. Seizure patterns with similar features are reproduced in animal models of partial seizures and epilepsy. However, the network determinants that support interictal spikes, as well as the initiation, progression, and termination of seizures, are still elusive. Recent findings show that inhibitory networks are prominently involved at the onset of these seizures, and that extracellular changes in potassium contribute to initiate and sustain seizure progression. The end of a partial seizure correlates with an increase in network synchronization, which possibly involves both excitatory and inhibitory mechanisms.
Collapse
Affiliation(s)
- Marco de Curtis
- Unit of Epileptology and Experimental Neurophysiology and Fondazione Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| | - Massimo Avoli
- Montreal Neurological Institute and Departments of Neurology and Neurosurgery and Physiology, McGill University, Montréal, H3A 2B4 Québec, Canada Department of Experimental Medicine, Facoltà di Medicina e Odontoiatria, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
97
|
Kim CH. Cav3.1 T-type calcium channel modulates the epileptogenicity of hippocampal seizures in the kainic acid-induced temporal lobe epilepsy model. Brain Res 2015; 1622:204-16. [PMID: 26111648 DOI: 10.1016/j.brainres.2015.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
Abstract
The molecular mechanism of temporal lobe epilepsy has not been clearly identified. T-type calcium channels play a role in burst firing in neurons and have been implicated in several seizure models. In this study, the role of Cav3.1 T-type (α1G) calcium channel has been investigated in the kainic acid (KA)-induced temporal lobe epilepsy model (TLE) by using conventional α1G knock-out (ko) mice. After intraperitoneal (i.p.) administration or intrahippocampal injection of KA, depth hippocampal and cortical electroencephalogram (EEG) and behavioral monitoring were recorded, and timm and Nissl staining of brain sections were made later. Seizure was mainly identified by EEG signals, rather than behaviorally, with analytic criteria. During the acute status epilepticus (SE) period, both the duration and the frequency of hippocampal seizures were significantly reduced and increased, respectively, in αlG ko mice compared to those of wild type mice. Epileptogenicity, the total period of seizures (hr(-1)), was also significantly reduced in α1G ko mice. However, the latency of seizure occurrence was not significantly different between wild type and ko mice. These differential effects were not observed in cortical seizures. Furthermore, the injection of KA caused a strong increase in δ rhythm power spectrum density (PSD) of EEG in αlG ko mice compared to that in wild type mice. The results with conventional ko mice indicate that α1G T-type calcium channel plays a modulatory role in the duration and frequency of hippocampal seizures as well as the epileptogenicity of KA-induced TLE in mice, mostly during acute periods.
Collapse
Affiliation(s)
- Chong-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science & Technology, Seoul 136-791, Republic of Korea; Department of Neuroscience, Korea University of Science & Technology, Daejeon 305-333, Republic of Korea.
| |
Collapse
|
98
|
Krook-Magnuson E, Armstrong C, Bui A, Lew S, Oijala M, Soltesz I. In vivo evaluation of the dentate gate theory in epilepsy. J Physiol 2015; 593:2379-88. [PMID: 25752305 PMCID: PMC4457198 DOI: 10.1113/jp270056] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/25/2015] [Indexed: 01/21/2023] Open
Abstract
The dentate gyrus is a region subject to intense study in epilepsy because of its posited role as a 'gate', acting to inhibit overexcitation in the hippocampal circuitry through its unique synaptic, cellular and network properties that result in relatively low excitability. Numerous changes predicted to produce dentate hyperexcitability are seen in epileptic patients and animal models. However, recent findings question whether changes are causative or reactive, as well as the pathophysiological relevance of the dentate in epilepsy. Critically, direct in vivo modulation of dentate 'gate' function during spontaneous seizure activity has not been explored. Therefore, using a mouse model of temporal lobe epilepsy with hippocampal sclerosis, a closed-loop system and selective optogenetic manipulation of granule cells during seizures, we directly tested the dentate 'gate' hypothesis in vivo. Consistent with the dentate gate theory, optogenetic gate restoration through granule cell hyperpolarization efficiently stopped spontaneous seizures. By contrast, optogenetic activation of granule cells exacerbated spontaneous seizures. Furthermore, activating granule cells in non-epileptic animals evoked acute seizures of increasing severity. These data indicate that the dentate gyrus is a critical node in the temporal lobe seizure network, and provide the first in vivo support for the dentate 'gate' hypothesis.
Collapse
Affiliation(s)
| | - Caren Armstrong
- Department of Anatomy and Neurobiology, University of CaliforniaIrvine, USA
| | - Anh Bui
- Department of Anatomy and Neurobiology, University of CaliforniaIrvine, USA
| | - Sean Lew
- Department of Anatomy and Neurobiology, University of CaliforniaIrvine, USA
| | - Mikko Oijala
- Department of Anatomy and Neurobiology, University of CaliforniaIrvine, USA
| | - Ivan Soltesz
- Department of Anatomy and Neurobiology, University of CaliforniaIrvine, USA
| |
Collapse
|
99
|
Synchronous inhibitory potentials precede seizure-like events in acute models of focal limbic seizures. J Neurosci 2015; 35:3048-55. [PMID: 25698742 DOI: 10.1523/jneurosci.3692-14.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interictal spikes in models of focal seizures and epilepsies are sustained by the synchronous activation of glutamatergic and GABAergic networks. The nature of population spikes associated with seizure initiation (pre-ictal spikes; PSs) is still undetermined. We analyzed the networks involved in the generation of both interictal and PSs in acute models of limbic cortex ictogenesis induced by pharmacological manipulations. Simultaneous extracellular and intracellular recordings from both principal cells and interneurons were performed in the medial entorhinal cortex of the in vitro isolated guinea pig brain during focal interictal and ictal discharges induced in the limbic network by intracortical and brief arterial infusions of either bicuculline methiodide (BMI) or 4-aminopyridine (4AP). Local application of BMI in the entorhinal cortex did not induce seizure-like events (SLEs), but did generate periodic interictal spikes sensitive to the glutamatergic non-NMDA receptor antagonist DNQX. Unlike local applications, arterial perfusion of either BMI or 4AP induced focal limbic SLEs. PSs just ahead of SLE were associated with hyperpolarizing potentials coupled with a complete blockade of firing in principal cells and burst discharges in putative interneurons. Interictal population spikes recorded from principal neurons between two SLEs correlated with a depolarizing potential. We demonstrate in two models of acute limbic SLE that PS events are different from interictal spikes and are sustained by synchronous activation of inhibitory networks. Our findings support a prominent role of synchronous network inhibition in the initiation of a focal seizure.
Collapse
|
100
|
de Curtis M, Librizzi L, Uva L. The in vitro isolated whole guinea pig brain as a model to study epileptiform activity patterns. J Neurosci Methods 2015; 260:83-90. [PMID: 25843067 DOI: 10.1016/j.jneumeth.2015.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Research on ictogenesis is based on the study of activity between seizures and during seizures in animal models of epilepsy (chronic condition) or in in vitro slices obtained from naïve non-epileptic brains after treatment with pro-convulsive drugs, manipulations of the extracellular medium and specific stimulation protocols. NEW METHOD The in vitro isolated guinea pig brain retains the functional connectivity between brain structures and maintains interactions between neuronal, glial and vascular compartments. It is a close-to-in vivo preparation that offers experimental advantages not achieved with the use of other experimental models. Neurophysiological and imaging techniques can be utilized in this preparation to study brain activity during and between seizures induced by pharmacological or functional manipulations. RESULTS Cellular and network determinants of interictal and ictal discharges that reproduce abnormal patterns observed in human focal epilepsies and the associated changes in extracellular ion and blood-brain permeability can be identified and analyzed in the isolated guinea pig brain. COMPARISON WITH EXISTING METHODS Ictal and interictal patterns recorded in in vitro slices may show substantial differences from seizure activity recorded in vivo due to slicing procedure itself. The isolated guinea pig brain maintained in vitro by arterial perfusion combines the typical facilitated access of in vitro preparations, that are difficult to approach during in vivo experiments, with the preservation of larger neuronal networks. CONCLUSIONS The in vitro whole isolated guinea pig brain preparation offers an unique experimental model to study systemic and neurovascular changes during ictogenesis.
Collapse
Affiliation(s)
- Marco de Curtis
- Unit of Epileptology and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy.
| | - Laura Librizzi
- Unit of Epileptology and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Laura Uva
- Unit of Epileptology and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|