51
|
Velázquez J, Mateos J, Pasaye EH, Barrios FA, Marquez-Flores JA. Cortical Thickness Estimation: A Comparison of FreeSurfer and Three Voxel-Based Methods in a Test-Retest Analysis and a Clinical Application. Brain Topogr 2021; 34:430-441. [PMID: 34008053 DOI: 10.1007/s10548-021-00852-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
The cortical thickness has been used as a biomarker to assess different cerebral conditions and to detect alterations in the cortical mantle. In this work, we compare methods from the FreeSurfer software, the Computational Anatomy Toolbox (CAT12), a Laplacian approach and a new method here proposed, based on the Euclidean Distance Transform (EDT), and its corresponding computational phantom designed to validate the calculation algorithm. At region of interest (ROI) level, within- and inter-method comparisons were carried out with a test-retest analysis, in a subset comprising 21 healthy subjects taken from the Multi-Modal MRI Reproducibility Resource (MMRR) dataset. From the Minimal Interval Resonance Imaging in Alzheimer's Disease (MIRIAD) data, classification methods were compared in their performance to detect cortical thickness differences between 23 healthy controls (HC) and 45 subjects with Alzheimer's disease (AD). The validation of the proposed EDT-based method showed a more accurate and precise distance measurement as voxel resolution increased. For the within-method comparisons, mean test-retest measures (percentages differences/intraclass correlation/Pearson correlation) were similar for FreeSurfer (1.80%/0.90/0.95), CAT12 (1.91%/0.83/0.91), Laplacian (1.27%/0.89/0.95) and EDT (2.20%/0.88/0.94). Inter-method correlations showed moderate to strong values (R > 0.77) and, in the AD comparison study, all methods were able to detect cortical alterations between groups. Surface- and voxel-based methods have advantages and drawbacks regarding computational demands and measurement precision, while thickness definition was mainly associated to the cortical thickness absolute differences among methods. However, for each method, measurements were reliable, followed similar trends along the cortex and allowed detection of cortical atrophies between HC and patients with AD.
Collapse
Affiliation(s)
- Juan Velázquez
- Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas Y Tecnología, Circuito Exterior S/N, Ciudad Universitaria, 04510, Coyoacán, Mexico City, México
| | - Julieta Mateos
- Graduate Program in Computer Science and Engineering, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Coyoacán, Ciudad de México, México
| | - Erick H Pasaye
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Boulevar Juriquilla 3001, 76230, Querétaro, Querétaro, México
| | - Fernando A Barrios
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Boulevar Juriquilla 3001, 76230, Querétaro, Querétaro, México.
| | - Jorge A Marquez-Flores
- Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas Y Tecnología, Circuito Exterior S/N, Ciudad Universitaria, 04510, Coyoacán, Mexico City, México.
| |
Collapse
|
52
|
Ruiz-Saez B, García MMB, de Aragon AM, Gil-Correa M, Melero H, Malpica NA, de Ory SJ, Zamora B, Guillen S, Rojo P, Falcon-Neyra L, Alvarez A, Fernandez P, Lorente-Jareño ML, Ramos JT, Sainz T, Velo C, Navarro ML, Gonzalez-Tomé MI. Effects of perinatal HIV-infection on the cortical thickness and subcortical gray matter volumes in young adulthood. Medicine (Baltimore) 2021; 100:e25403. [PMID: 33847637 PMCID: PMC8051971 DOI: 10.1097/md.0000000000025403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/28/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT Brain atrophy has been observed in perinatally HIV-infected patients (PHIV) despite initiation on combined antiretroviral treatment (cART), but neuroimaging studies are limited. We aimed to evaluate cortical thickness (CT) and subcortical gray matter (GM) volumes of PHIV youths with stable immunovirological situation and with a normal daily performance.A prospective cross-sectional study was conducted. A total of 25 PHIV patients on cART and 25 HIV-negative (HIV-) controls matched by age, sex, level of education, and socioeconomic status underwent a magnetic resonance imaging scan. CAT12 toolbox was used to extract CT values from T1w images using parcellations from Desikan-Killiany atlas (DK40). To measure regional brain volumes, native segmented images were parceled in regions of interest according to the Neuromorphometrics Atlas. Neuropsychological assessment and psychopathological symptoms were documented.Fifty participants were included (60% females, median age 20 years [interquartile range, IQR 19-23], 64% Whites). No differences regarding neuropsychological tests or psychopathological symptoms were found between groups (all P > .05). All participants presented an average performance in the Fluid Intelligence (FI) test (PHIV mean: -0.12, HIV- mean: 0.24), When comparing CT, PHIV-infected patients showed thinner cortices compared with their peers in fusiform gyrus (P = .000, P = .009), lateral-orbitofrontal gyrus (P = .006, P = .0024), and right parsobitalis gyrus (P = .047). Regarding subcortical GM volumes, PHIV patients showed lower right amygdala (P = .014) and left putamen (P = .016) volumes when compared with HIV- controls. Within the PHIV group, higher CD4 count was associated with higher volumes in right putamen (B = 0.00000038, P = .045). Moreover, increased age at cART initiation and lower nadir CD4 count was associated with larger volumes in left accumbens (B = 0.0000046, P = .033; B = -0.00000008, P = .045, respectively).PHIV patients showed thinner cortices of areas in temporal, orbito-frontal and occipital lobes and lower volumes of subcortical GM volumes when compared with the HIV- control group, suggesting cortical and subcortical brain alterations in otherwise neuroasymptomatic patients. Nevertheless, larger and longitudinal studies are required to determine the impact of HIV on brain structure in PHIV patients and to further identify risk and protective factors that could be implicated.
Collapse
Affiliation(s)
- Beatriz Ruiz-Saez
- Immunobiology Department, Hospital Universitario Gregorio Marañon, Instituto de Investigación Sanitaria Gregorio Marañón (IisGM)
| | - Manuela Martín-Bejarano García
- Department of Paediatric Infectious Diseases, Hospital Universitario 12 de Octubre; Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12)
| | | | - Mario Gil-Correa
- Laboratorio de Análisis de Imagen Médica y Biometría (LAIMBIO), Universidad Rey Juan Carlos
| | - Helena Melero
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento - Universidad Complutense de Madrid, Spain, y Laboratorio de Análisis de Imagen Médica y Biometría (LAIMBIO), Universidad Rey Juan Carlos
| | | | - Santiago Jimenez de Ory
- Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IisGM)
| | - Berta Zamora
- Paediatric Neuropsychology Department. Hospital Universitario 12 De Octubre, Madrid
| | - Sara Guillen
- Paediatric Infectious Diseases Department, Hospital Universitario de Getafe, Translational Research Network in Pediatric Infectious Diseases (RITIP)
| | - Pablo Rojo
- Paediatric Infectious Diseases Department. Hospital Universitario 12 De Octubre, Madrid, 28041, Spain. Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid
| | - Lola Falcon-Neyra
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Sevilla
| | | | - Pilar Fernandez
- Radiology Department. Hospital Universitario Gregorio Marañón
| | | | - Jose Tomas Ramos
- Paediatric Infectious Diseases Department, Hospital Clínico San Carlos, Madrid, 28040, Spain, Translational Research Network in Pediatric Infectious Diseases (RITIP)
| | - Talía Sainz
- Paediatric Infectious and Tropical Diseases Department, Hospital Universitario La Paz. Hospital La Paz Institute For Health Research (Idipaz), Translational Research Network in Pediatric Infectious Diseases (RITIP)
| | - Carlos Velo
- Department of Paediatric Infectious Diseases, Hospital Universitario 12 de Octubre; Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12)
| | - Maria Luisa Navarro
- Paediatric Infectious Diseases Department. Hospital Gregorio Marañon, Translational Research Network in Pediatric Infectious Diseases (RITIP)
| | | |
Collapse
|
53
|
Yuan T, Ying J, Li C, Jin L, Kang J, Shi Y, Gui S, Liu C, Wang R, Zuo Z, Zhang Y. In Vivo Characterization of Cortical and White Matter Microstructural Pathology in Growth Hormone-Secreting Pituitary Adenoma. Front Oncol 2021; 11:641359. [PMID: 33912457 PMCID: PMC8072046 DOI: 10.3389/fonc.2021.641359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background The growth hormone (GH) and insulin-like-growth factor 1 (IGF-1) axis has long been recognized for its critical role in brain growth, development. This study was designed to investigate microstructural pathology in the cortex and white matter in growth hormone-secreting pituitary adenoma, which characterized by excessive secretion of GH and IGF-1. Methods 29 patients with growth hormone-secreting pituitary adenoma (acromegaly) and 31 patients with non-functional pituitary adenoma as controls were recruited and assessed using neuropsychological test, surface-based morphometry, T1/T2-weighted myelin-sensitive magnetic resonance imaging, neurite orientation dispersion and density imaging, and diffusion tensor imaging. Results Compared to controls, we found 1) acromegaly had significantly increased cortical thickness throughout the bilateral cortex (pFDR < 0.05). 2) T1/T2-weighted ratio in the cortex were decreased in the bilateral occipital cortex and pre/postcentral central gyri but increased in the bilateral fusiform, insular, and superior temporal gyri in acromegaly (pFDR < 0.05). 3) T1/T2-weighted ratio were decreased in most bundles, and only a few areas showed increases in acromegaly (pFDR < 0.05). 4) Neurite density index (NDI) was significantly lower throughout the cortex and bundles in acromegaly (pTFCE < 0.05). 5) lower fractional anisotropy (FA) and higher mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) in extensive bundles in acromegaly (pTFCE < 0.05). 6) microstructural pathology in the cortex and white matter were associated with neuropsychological dysfunction in acromegaly. Conclusions Our findings suggested that long-term persistent and excess serum GH/IGF-1 levels alter the microstructure in the cortex and white matter in acromegaly, which may be responsible for neuropsychological dysfunction.
Collapse
Affiliation(s)
- Taoyang Yuan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianyou Ying
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lu Jin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Kang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanyu Shi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunhui Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders Brain Tumour Center, China National Clinical Research Center for Neurological Diseases, Key Laboratory of Central Nervous System Injury Research, Beijing, China
| |
Collapse
|
54
|
Schmitt S, Meller T, Stein F, Brosch K, Ringwald K, Pfarr JK, Bordin C, Peusch N, Steinsträter O, Grotegerd D, Dohm K, Meinert S, Förster K, Redlich R, Opel N, Hahn T, Jansen A, Forstner AJ, Streit F, Witt SH, Rietschel M, Müller-Myhsok B, Nöthen MM, Dannlowski U, Krug A, Kircher T, Nenadić I. Effects of polygenic risk for major mental disorders and cross-disorder on cortical complexity. Psychol Med 2021; 52:1-12. [PMID: 33827729 PMCID: PMC9811276 DOI: 10.1017/s0033291721001082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND MRI-derived cortical folding measures are an indicator of largely genetically driven early developmental processes. However, the effects of genetic risk for major mental disorders on early brain development are not well understood. METHODS We extracted cortical complexity values from structural MRI data of 580 healthy participants using the CAT12 toolbox. Polygenic risk scores (PRS) for schizophrenia, bipolar disorder, major depression, and cross-disorder (incorporating cumulative genetic risk for depression, schizophrenia, bipolar disorder, autism spectrum disorder, and attention-deficit hyperactivity disorder) were computed and used in separate general linear models with cortical complexity as the regressand. In brain regions that showed a significant association between polygenic risk for mental disorders and cortical complexity, volume of interest (VOI)/region of interest (ROI) analyses were conducted to investigate additional changes in their volume and cortical thickness. RESULTS The PRS for depression was associated with cortical complexity in the right orbitofrontal cortex (right hemisphere: p = 0.006). A subsequent VOI/ROI analysis showed no association between polygenic risk for depression and either grey matter volume or cortical thickness. We found no associations between cortical complexity and polygenic risk for either schizophrenia, bipolar disorder or psychiatric cross-disorder when correcting for multiple testing. CONCLUSIONS Changes in cortical complexity associated with polygenic risk for depression might facilitate well-established volume changes in orbitofrontal cortices in depression. Despite the absence of psychopathology, changed cortical complexity that parallels polygenic risk for depression might also change reward systems, which are also structurally affected in patients with depressive syndrome.
Collapse
Affiliation(s)
- Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus Liebig Universität Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
- Marburg University Hospital – UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus Liebig Universität Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus Liebig Universität Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus Liebig Universität Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
- Marburg University Hospital – UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Kai Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus Liebig Universität Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus Liebig Universität Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Clemens Bordin
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Nina Peusch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Olaf Steinsträter
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Dominik Grotegerd
- Department of Psychiatry, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Katharina Dohm
- Department of Psychiatry, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Susanne Meinert
- Department of Psychiatry, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Katharina Förster
- Department of Psychiatry, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Ronny Redlich
- Department of Psychiatry, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
- Department of Psychology, University of Halle, Halle, Germany
| | - Nils Opel
- Department of Psychiatry, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Tim Hahn
- Department of Psychiatry, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus Liebig Universität Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
- Faculty of Medicine, Core-Facility BrainImaging, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039, Germany
| | - Andreas J. Forstner
- Centre for Human Genetics, Philipps-Universität Marburg, Baldingerstr., 35033 Marburg, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Bertram Müller-Myhsok
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
- Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
- Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Udo Dannlowski
- Department of Psychiatry, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus Liebig Universität Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus Liebig Universität Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
- Marburg University Hospital – UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus Liebig Universität Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
- Marburg University Hospital – UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| |
Collapse
|
55
|
Li Y, Wang N, Wang H, Lv Y, Zou Q, Wang J. Surface-based single-subject morphological brain networks: Effects of morphological index, brain parcellation and similarity measure, sample size-varying stability and test-retest reliability. Neuroimage 2021; 235:118018. [PMID: 33794358 DOI: 10.1016/j.neuroimage.2021.118018] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/04/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Morphological brain networks, in particular those at the individual level, have become an important approach for studying the human brain connectome; however, relevant methodology is far from being well-established in their formation, description and reproducibility. Here, we extended our previous study by constructing and characterizing single-subject morphological similarity networks from brain volume to surface space and systematically evaluated their reproducibility with respect to effects of different choices of morphological index, brain parcellation atlas and similarity measure, sample size-varying stability and test-retest reliability. Using the Human Connectome Project dataset, we found that surface-based single-subject morphological similarity networks shared common small-world organization, high parallel efficiency, modular architecture and bilaterally distributed hubs regardless of different analytical strategies. Nevertheless, quantitative values of all interregional similarities, global network measures and nodal centralities were significantly affected by choices of morphological index, brain parcellation atlas and similarity measure. Moreover, the morphological similarity networks varied along with the number of participants and approached stability until the sample size exceeded ~70. Using an independent test-retest dataset, we found fair to good, even excellent, reliability for most interregional similarities and network measures, which were also modulated by different analytical strategies, in particular choices of morphological index. Specifically, fractal dimension and sulcal depth outperformed gyrification index and cortical thickness, higher-resolution atlases outperformed lower-resolution atlases, and Jensen-Shannon divergence-based similarity outperformed Kullback-Leibler divergence-based similarity. Altogether, our findings propose surface-based single-subject morphological similarity networks as a reliable method to characterize the human brain connectome and provide methodological recommendations and guidance for future research.
Collapse
Affiliation(s)
- Yinzhi Li
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Ningkai Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Hao Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Yating Lv
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education.
| |
Collapse
|
56
|
Ge R, Liu X, Long D, Frangou S, Vila-Rodriguez F. Sex effects on cortical morphological networks in healthy young adults. Neuroimage 2021; 233:117945. [PMID: 33711482 DOI: 10.1016/j.neuroimage.2021.117945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 12/30/2022] Open
Abstract
Understanding sex-related differences across the human cerebral cortex is an important step in elucidating the basis of psychological, behavioural and clinical differences between the sexes. Prior structural neuroimaging studies primarily focused on regional sex differences using univariate analyses. Here we focus on sex differences in cortical morphological networks (CMNs) derived using multivariate modelling of regional cortical measures of volume and surface from high-quality structural MRI scans from healthy participants in the Human Connectome Project (HCP) (n = 1,063) and the Southwest University Longitudinal Imaging Multimodal (SLIM) study (n = 549). The functional relevance of the CMNs was inferred using the NeuroSynth decoding function. Sex differences were widespread but not uniform. In general, females had higher volume, thickness and cortical folding in networks that involve prefrontal (both ventral and dorsal regions including the anterior cingulate) and parietal regions while males had higher volume, thickness and cortical folding in networks that primarily include temporal and posterior cortical regions. CMN loading coefficients were used as input features to linear discriminant analyses that were performed separately in the HCP and SLIM; sex was predicted with a high degree of accuracy (81%-85%) across datasets. The availability of behavioral data in the HCP enabled us to show that male-biased surface-based CMNs were associated with externalizing behaviors. These results extend previous literature on regional sex-differences by identifying CMNs that can reliably predict sex, are relevant to the expression of psychopathology and provide the foundation for the future investigation of their functional significance in clinical populations.
Collapse
Affiliation(s)
- Ruiyang Ge
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, BC, Canada
| | - Xiang Liu
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, BC, Canada
| | - David Long
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, BC, Canada
| | - Sophia Frangou
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, BC, Canada; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, BC, Canada.
| |
Collapse
|
57
|
Yu J, Rawtaer I, Feng L, Fam J, Kumar AP, Kee-Mun Cheah I, Honer WG, Su W, Lee YK, Tan EC, Kua EH, Mahendran R. Mindfulness intervention for mild cognitive impairment led to attention-related improvements and neuroplastic changes: Results from a 9-month randomized control trial. J Psychiatr Res 2021; 135:203-211. [PMID: 33497874 DOI: 10.1016/j.jpsychires.2021.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 12/23/2020] [Accepted: 01/16/2021] [Indexed: 01/18/2023]
Abstract
Mindfulness-based interventions can enhance cognitive abilities among older adults, thereby effectively delaying cognitive decline. These cognitive enhancements are theorized to accompany neuroplastic changes in the brain. However, this mindfulness-associated neuroplasticity has yet to be documented adequately. A randomized controlled trial was carried out among participants with mild cognitive impairment (MCI) to examine the effects of a mindfulness-based intervention on various cognitive outcomes and cortical thickness (CT) in the context of age-related cognitive impairment. Participants were assigned to a mindfulness awareness program (MAP)(n = 27) and an active control condition - health education program (n = 27). In both, they attended weekly sessions for three months and subsequently, monthly sessions for six months. Cognitive assessments and structural scans were carried out across three time-points. Whole brain analyses on CT were carried out and were supplemented with region of interest-based analyses. ROI values and cognitive outcomes were analyzed with mixed MANOVAs and followed up with univariate ANOVAs. Nine-month MAP-associated gains in working memory span and divided attention, along with an increased CT in the right frontal pole and decreased CT in the left anterior cingulate were observed. Three-month MAP-associated CT increase was observed in the left inferior temporal gyrus but did not sustain thereafter. MAP led to significant cognitive gains and various CT changes. Most of these neurobehavioral changes, may require sustained effort across nine months, albeit at a reduced intensity. MAP can remediate certain cognitive impairments and engender neuroplastic effects even among those with MCI.
Collapse
Affiliation(s)
- Junhong Yu
- Department of Psychological Medicine, Mind Science Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Iris Rawtaer
- Department of Psychiatry, Sengkang General Hospital, Singhealth Duke-Nus Academic Medical Centre, Singapore
| | - Lei Feng
- Department of Psychological Medicine, Mind Science Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Johnson Fam
- Department of Psychological Medicine, Mind Science Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, And Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Irwin Kee-Mun Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Wayne Su
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Yuan Kun Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Hospital, Singapore
| | - Ene Choo Tan
- KK Research Laboratory, KK Women's and Children's Hospital, Singapore; SingHealth Duke-NUS Paediatrics Academic Clinical Program, Singapore
| | - Ee Heok Kua
- Department of Psychological Medicine, Mind Science Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rathi Mahendran
- Department of Psychological Medicine, Mind Science Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Academic Development Department, Duke-NUS Medical School, 8 College Road, Singapore.
| |
Collapse
|
58
|
Li H, Zhang H, Yin L, Zhang F, Chen Z, Chen T, Jia Z, Gong Q. Altered cortical morphology in major depression disorder patients with suicidality. PSYCHORADIOLOGY 2021; 1:13-22. [PMID: 38665310 PMCID: PMC10917214 DOI: 10.1093/psyrad/kkaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023]
Abstract
Background Major depressive disorder (MDD) is associated with high risk of suicide, but the biological underpinnings of suicidality in MDD patients are far from conclusive. Previous neuroimaging studies using voxel-based morphometry (VBM) demonstrated that depressed individuals with suicidal thoughts or behaviors exhibit specific cortical structure alterations. To complement VBM findings, surface-based morphometry (SBM) can provide more details into gray matter structure, including the cortical complexity, cortical thickness and sulcal depth for brain images. Objective This study aims to use SBM to investigate cortical morphology alterations to obtain evidence for neuroanatomical alterations in depressed patients with suicidality. Methods Here, 3D T1-weighted MR images of brain from 39 healthy controls, 40 depressed patients without suicidality (patient controls), and 39 with suicidality (suicidal groups) were analyzed based on SBM to estimate the fractal dimension, gyrification index, sulcal depth, and cortical thickness using the Computational Anatomy Toolbox. Correlation analyses were performed between clinical data and cortical surface measurements from patients. Results Surface-based morphometry showed decreased sulcal depth in the parietal, frontal, limbic, occipital and temporal regions and decreased fractal dimension in the frontal regions in depressed patients with suicidality compared to both healthy and patient controls. Additionally, in patients with depression, the sulcal depth of the left caudal anterior cingulate cortex was negatively correlated with Hamilton Depression Rating Scale scores. Conclusions Depressed patients with suicidality had abnormal cortical morphology in some brain regions within the default mode network, frontolimbic circuitry and temporal regions. These structural deficits may be associated with the dysfunction of emotional processing and impulsivity control. This study provides insights into the underlying neurobiology of the suicidal brain.
Collapse
Affiliation(s)
- Huiru Li
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China, 610041
| | - Huawei Zhang
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China, 610041
| | - Li Yin
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China, 610041
| | - Feifei Zhang
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China, 610041
| | - Ziqi Chen
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China, 610041
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China, 610041
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China, 610041
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China, 610041
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and molecular imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China, 610041
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Chengdu, China, 610041
| |
Collapse
|
59
|
Liu X, Li L, Li M, Ren Z, Ma P. Characterizing the subtype of anhedonia in major depressive disorder: A symptom-specific multimodal MRI study. Psychiatry Res Neuroimaging 2021; 308:111239. [PMID: 33453684 DOI: 10.1016/j.pscychresns.2020.111239] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 01/19/2023]
Abstract
Anhedonia is a core symptom of major depressive disorder (MDD). Two subtypes of anhedonia: anticipatory anhedonia and consummatory anhedonia has been recognized in MDD patients. However, our knowledge regarding the distinction of anticipatory anhedonia and consummatory anhedonia in MDD remains limited. This study aimed to characterize the anticipatory anhedonia and consummatory anhedonia in first-episode, drug-naïve MDD patients. Resting-state functional MRI and T1-structural MRI were acquired for 38 MDD patients and 65 matched healthy controls (HCs). The ALFF and cortical surface indexes were compared between MDD and HCs. Then the correlations between the ALFF and cortical surface indexes alternations and the scores of anticipatory and consummatory pleasure measured by Temporal Experience of Pleasure Scale were evaluated. The elevated ALFF of left dorsal anterior cingulate cortex (dACC) and the reduced cortical thickness (CT) of left rostral ACC and lateral orbitofrontal cortex (lOFC) were respectively correlated with anticipatory anhedonia and consummatory anhedonia in MDD patients. These findings suggested the dissociated pathophysiological basis and imaging characteristics of anticipatory anhedonia and consummatory anhedonia. The ALFF and CT values of ACC and lOFC might serve as the imaging biomarker of the subtypes of anhedonia in early onset of MDD.
Collapse
Affiliation(s)
- Xiaodan Liu
- Medical Imaging Center, First affiliated hospital of JINAN University, Guangzhou, 510630, China.
| | - Lingsheng Li
- Medical Imaging Center, First affiliated hospital of JINAN University, Guangzhou, 510630, China
| | - Meng Li
- Medical Imaging Center, First affiliated hospital of JINAN University, Guangzhou, 510630, China
| | - Zepu Ren
- Department of Psychiatry, First affiliated hospital of JINAN University, Guangzhou, China
| | - Ping Ma
- Department of Psychiatry, First affiliated hospital of JINAN University, Guangzhou, China
| |
Collapse
|
60
|
Mak E, Holland N, Jones PS, Savulich G, Low A, Malpetti M, Kaalund SS, Passamonti L, Rittman T, Romero-Garcia R, Manavaki R, Williams GB, Hong YT, Fryer TD, Aigbirhio FI, O'Brien JT, Rowe JB. In vivo coupling of dendritic complexity with presynaptic density in primary tauopathies. Neurobiol Aging 2021; 101:187-198. [PMID: 33631470 PMCID: PMC8209289 DOI: 10.1016/j.neurobiolaging.2021.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/03/2023]
Abstract
Understanding the cellular underpinnings of neurodegeneration remains a challenge; loss of synapses and dendritic arborization are characteristic and can be quantified in vivo, with [11C]UCB-J PET and MRI-based Orientation Dispersion Imaging (ODI), respectively. We aimed to assess how both measures are correlated, in 4R-tauopathies of progressive supranuclear palsy - Richardson's Syndrome (PSP-RS; n = 22) and amyloid-negative (determined by [11C]PiB PET) Corticobasal Syndrome (Cortiobasal degeneration, CBD; n =14), as neurodegenerative disease models, in this proof-of-concept study. Compared to controls (n = 27), PSP-RS and CBD patients had widespread reductions in cortical ODI, and [11C]UCB-J non-displaceable binding potential (BPND) in excess of atrophy. In PSP-RS and CBD separately, regional cortical ODI was significantly associated with [11C]UCB-J BPND in disease-associated regions (p < 0.05, FDR corrected). Our findings indicate that reductions in synaptic density and dendritic complexity in PSP-RS and CBD are more severe and extensive than atrophy. Furthermore, both measures are tightly coupled in vivo, furthering our understanding of the pathophysiology of neurodegeneration, and applicable to studies of early neurodegeneration with a safe and widely available MRI platform.
Collapse
Affiliation(s)
- Elijah Mak
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - George Savulich
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Audrey Low
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Sanne S Kaalund
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Rafael Romero-Garcia
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Roido Manavaki
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Guy B Williams
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Franklin I Aigbirhio
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
61
|
Lv Y, Wei W, Han X, Song Y, Han Y, Zhou C, Zhou D, Zhang F, Wu X, Liu J, Zhao L, Zhang C, Wang N, Wang J. Multiparametric and multilevel characterization of morphological alterations in patients with transient ischemic attack. Hum Brain Mapp 2021; 42:2045-2060. [PMID: 33463862 PMCID: PMC8046078 DOI: 10.1002/hbm.25344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Accepted: 01/07/2021] [Indexed: 11/07/2022] Open
Abstract
Transient ischemic attack (TIA), an important risk factor for stroke, is associated with widespread disruptions of functional brain architecture. However, TIA-related structural alterations are not well established. By analyzing structural MRI data from 50 TIA patients versus 40 healthy controls (HCs), here we systematically investigated TIA-related morphological alterations in multiple cortical surface-based indices (cortical thickness [CT], fractal dimension [FD], gyrification index [GI], and sulcal depth [SD]) at multiple levels (local topography, interregional connectivity and whole-brain network topology). For the observed alterations, their associations with clinical risk factors and abilities as diagnostic and prognostic biomarkers were further examined. We found that compared with the HCs, the TIA patients showed widespread morphological alterations and the alterations depended on choices of morphological index and analytical level. Specifically, the patients exhibited: (a) regional CT decreases in the transverse temporal gyrus and lateral sulcus; (b) impaired FD- and GI-based connectivity mainly involving visual, somatomotor and ventral attention networks and interhemispheric connections; and (c) altered GI-based whole-brain network efficiency and decreased FD-based nodal centrality in the middle frontal gyrus. Moreover, the impaired morphological connectivity showed high sensitivities and specificities for distinguishing the patients from HCs. Altogether, these findings demonstrate the emergence of morphological index-dependent and analytical level-specific alterations in TIA, which provide novel insights into neurobiological mechanisms underlying TIA and may serve as potential biomarkers to help diagnosis of the disease. Meanwhile, our findings highlight the necessity of using multiparametric and multilevel approaches for a complete mapping of cerebral morphology in health and disease.
Collapse
Affiliation(s)
- Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Zhejiang, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China.,Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Wei Wei
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Zhejiang, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China.,Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Xiujie Han
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Yu Han
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Chengshu Zhou
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Dan Zhou
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Fuding Zhang
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Xiaoyan Wu
- Department of Image, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Jinling Liu
- Department of Ultrasonics, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Lijuan Zhao
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Cairong Zhang
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Ningkai Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China
| |
Collapse
|
62
|
Brain Cortical Complexity Alteration in Amyotrophic Lateral Sclerosis: A Preliminary Fractal Dimensionality Study. BIOMED RESEARCH INTERNATIONAL 2021; 2020:1521679. [PMID: 32280675 PMCID: PMC7115147 DOI: 10.1155/2020/1521679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/26/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
Objective Fractal dimensionality (FD) analysis provides a quantitative description of brain structural complexity. The application of FD analysis has provided evidence of amyotrophic lateral sclerosis- (ALS-) related white matter degeneration. This study is aimed at evaluating, for the first time, FD alterations in a gray matter in ALS and determining its association with clinical parameters. Materials and Methods. This study included 22 patients diagnosed with ALS and 20 healthy subjects who underwent high-resolution T1-weighted imaging scanning. Disease severity was assessed using the revised ALS Functional Rating Scale (ALSFRS-R). The duration of symptoms and rate of disease progression were also assessed. The regional FD value was calculated by a computational anatomy toolbox and compared among groups. The relationship between cortical FD values and clinical parameters was evaluated by Spearman correlation analysis. Results ALS patients showed decreased FD values in the left precentral gyrus and central sulcus, left circular sulcus of insula (superior segment), left cingulate gyrus and sulcus (middle-posterior part), right precentral gyrus, and right postcentral gyrus. The FD values in the right precentral gyrus were positively correlated to ALSFRS-R scores (r = 0.44 and P = 0.023), whereas negatively correlated to the rate of disease progression (r = 0.44 and P = 0.023), whereas negatively correlated to the rate of disease progression (r = 0.44 and P = 0.023), whereas negatively correlated to the rate of disease progression ( Conclusions Our results suggest an ALS-related reduction in structural complexity involving the gray matter. FD analysis may shed more light on the pathophysiology of ALS.
Collapse
|
63
|
Liao X, Sun J, Jin Z, Wu D, Liu J. Cortical Morphological Changes in Congenital Amusia: Surface-Based Analyses. Front Psychiatry 2021; 12:721720. [PMID: 35095585 PMCID: PMC8794692 DOI: 10.3389/fpsyt.2021.721720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Congenital amusia (CA) is a rare disorder characterized by deficits in pitch perception, and many structural and functional magnetic resonance imaging studies have been conducted to better understand its neural bases. However, a structural magnetic resonance imaging analysis using a surface-based morphology method to identify regions with cortical features abnormalities at the vertex-based level has not yet been performed. Methods: Fifteen participants with CA and 13 healthy controls underwent structural magnetic resonance imaging. A surface-based morphology method was used to identify anatomical abnormalities. Then, the surface parameters' mean value of the identified clusters with statistically significant between-group differences were extracted and compared. Finally, Pearson's correlation analysis was used to assess the correlation between the Montreal Battery of Evaluation of Amusia (MBEA) scores and surface parameters. Results: The CA group had significantly lower MBEA scores than the healthy controls (p = 0.000). The CA group exhibited a significant higher fractal dimension in the right caudal middle frontal gyrus and a lower sulcal depth in the right pars triangularis gyrus (p < 0.05; false discovery rate-corrected at the cluster level) compared to healthy controls. There were negative correlations between the mean fractal dimension values in the right caudal middle frontal gyrus and MBEA score, including the mean MBEA score (r = -0.5398, p = 0.0030), scale score (r = -0.5712, p = 0.0015), contour score (r = -0.4662, p = 0.0124), interval score (r = -0.4564, p = 0.0146), rhythmic score (r = -0.5133, p = 0.0052), meter score (r = -0.3937, p = 0.0382), and memory score (r = -0.3879, p = 0.0414). There was a significant positive correlation between the mean sulcal depth in the right pars triangularis gyrus and the MBEA score, including the mean score (r = 0.5130, p = 0.0052), scale score (r = 0.5328, p = 0.0035), interval score (r = 0.4059, p = 0.0321), rhythmic score (r = 0.5733, p = 0.0014), meter score (r = 0.5061, p = 0.0060), and memory score (r = 0.4001, p = 0.0349). Conclusion: Individuals with CA exhibit cortical morphological changes in the right hemisphere. These findings may indicate that the neural basis of speech perception and memory impairments in individuals with CA is associated with abnormalities in the right pars triangularis gyrus and middle frontal gyrus, and that these cortical abnormalities may be a neural marker of CA.
Collapse
Affiliation(s)
- Xuan Liao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Junjie Sun
- Department of Radiology, The Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Zhishuai Jin
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - DaXing Wu
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China.,Department of Radiology Quality Control Center, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
64
|
The Art of Remediating Age-Related Cognitive Decline: Art Therapy Enhances Cognition and Increases Cortical Thickness in Mild Cognitive Impairment. J Int Neuropsychol Soc 2021; 27:79-88. [PMID: 32762792 DOI: 10.1017/s1355617720000697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Previous research on art therapy (AT) in cognitive aging has been lacking. AT can potentially engender significant cognitive gains, due to its rigorous cognitive involvement, making it useful to tackle age-related cognitive decline. Along with these cognitive gains, associated neuroplastic changes are hypothesized to arise from AT as well. The current intervention examined the effects of an AT intervention on cognitive outcomes and cortical thickness (CT) among participants with mild cognitive impairment. METHOD Participants were assigned to AT (n = 22) and an active control group (n = 27). In both, weekly 45-min sessions were carried out across 3 months. Cognitive assessments and structural magnetic resonance imaging scans were carried out at baseline and 3-month follow-up. Whole brain analyses on CT were carried out. Cognitive outcomes were analyzed using hierarchical linear models. RESULTS Significant gains in immediate memory and working memory span were observed in the AT group, relative to the control group. Significantly increased CT in the AT group, relative to controls, was observed in a right middle frontal gyrus (MFG) cluster. Furthermore, CT changes in this cluster were significantly and positively correlated with changes in immediate memory. CONCLUSION These findings highlighted the role of MFG neuroplasticity in enhancing certain cognitive functions in AT. AT is a neuroplastic intervention capable of engendering significant cognitive gains and associated cortical changes in the context of age-related cognitive decline, even when executed as a low-intensity intervention across 3 months. Given the preliminary nature of these findings, future larger sampled studies are needed.
Collapse
|
65
|
Inuggi A, Pichiecchio A, Ciacchini B, Signorini S, Morelli F, Gori M. Multisystemic Increment of Cortical Thickness in Congenital Blind Children. Cereb Cortex Commun 2020; 1:tgaa071. [PMID: 34296131 PMCID: PMC8152892 DOI: 10.1093/texcom/tgaa071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
It has been shown that the total or partial lack of visual experience is associated with a plastic reorganization at the brain level, more prominent in congenital blind. Cortical thickness (CT) studies, to date involving only adult subjects, showed that only congenital blind have a thicker cortex than age-matched sighted population while late blind do not. This was explained as a deviation from the physiological mechanism of initial neural growth followed by a pruning mechanism that, in congenital blind children, might be reduced by their visual deprivation, thus determining a thicker cortex. Since those studies involved only adults, it is unknown when these changes may appear and whether they are related to impairment degree. To address this question, we compared the CT among 28 children, from 2 to 12 years, with congenital visual impairments of different degree and an age-matched sighted population. Vertex-wise analysis showed that blind children, but not low vision one, had a thicker cortical surface in few clusters located in occipital, superior parietal, anterior-cingular, orbito-frontal, and mesial precentral regions. Our data suggest that the effect of visual impairment on determining thicker cortex is an early phenomenon, is multisystemic, and occurs only when blindness is almost complete.
Collapse
Affiliation(s)
- Alberto Inuggi
- Unit for Visually Impaired People (U-VIP), Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - Anna Pichiecchio
- Department of Brain and Behavioural Neuroscience, University of Pavia, 27100 Pavia, Italy
| | | | - Sabrina Signorini
- Centre of Child Neuro-Ophthalmology, Child Neuropsychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Federica Morelli
- Department of Brain and Behavioural Neuroscience, University of Pavia, 27100 Pavia, Italy
| | - Monica Gori
- Unit for Visually Impaired People (U-VIP), Istituto Italiano di Tecnologia, 16152 Genova, Italy
| |
Collapse
|
66
|
Wu YJ, Wu N, Huang X, Rao J, Yan L, Shi L, Huang H, Li SY, Zhou FQ, Wu XR. Evidence of cortical thickness reduction and disconnection in high myopia. Sci Rep 2020; 10:16239. [PMID: 33004887 PMCID: PMC7530748 DOI: 10.1038/s41598-020-73415-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/21/2020] [Indexed: 01/22/2023] Open
Abstract
High myopia (HM) is associated with impaired long-distance vision. accumulating evidences reported that abnormal visual experience leads to dysfunction in brain activity in HM even corrected. However, whether the long-term of abnormal visual experience lead to neuroanatomical changes remain unknown, the aim at this study is to investigate the alternation of cortical surface thickness in HM patients. 82 patients with HM (HM groups), 57 healthy controls (HC groups) were recruited. All participants underwent high-resolution T1 and resting-state functional magnetic resonance imaging (MRI) scans. The cortical thickness analysis was preformed to investigate the neuroanatomical changes in HM patients using computational anatomy toolbox (CAT 12) toolbox. Compare with HCs, HM patients showed decreased the cortical surface thickness in the left middle occipital gyrus (MOG), left inferior parietal lobule (IPL), right inferior temporal gyrus (ITG), right precuneus, right primary visual area 1 (V1), right superior temporal gyrus (STG), right superior parietal lobule (SPL), right occipital pole, and right the primary motor cortex (M1), and increased to the parietal operculum (OP4) (P < 0.01, FWE-corrected), the mean cortical thickness of right orbitofrontal cortex (OFC), right dorsolateral prefrontal cortex (DLPFC) and right subcallosal cortex showed negatively correlation between clinical variables (axis length (ALM), the average macular thickness (AMT), keratometer (KER) 1, KER2, the mean KER, the mean macular fovea thickness (MFK), the refractive diopter) in HM patients. Our result mainly provided an evidence of cortical thickness reduction and disconnection in visual center and visual processing area, and cortical thickness increase in left multimodal integration region in HM patients. This may provide important significance of the study of the neural mechanism of HM.
Collapse
Affiliation(s)
- Ya-Jun Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Na Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jie Rao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Li Yan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ling Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hui Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Si-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Fu-Qing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xiao-Rong Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
67
|
Montesino-Goicolea S, Valdes-Hernandez PA, Hoyos L, Woods AJ, Cohen R, Huo Z, Riley JL, Porges EC, Fillingim RB, Cruz-Almeida Y. Cortical Thickness Mediates the Association Between Self-Reported Pain and Sleep Quality in Community-Dwelling Older Adults. J Pain Res 2020; 13:2389-2400. [PMID: 33061554 PMCID: PMC7522519 DOI: 10.2147/jpr.s260611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Musculoskeletal pain is prevalent in older adults representing the leading cause of disability in this population. Similarly, nearly half of older adults complain of difficulty sleeping. We aimed to explore the relationship between sleep quality with self-reported musculoskeletal pain, somatosensory and pain thresholds in community-dwelling older adults and further explore brain regions that may contribute to this association. METHODS Older adults (>60 years old, n=69) from the NEPAL study completed demographic, pain and sleep assessments followed by a quantitative sensory testing battery. A subset (n=49) also underwent a 3T high-resolution, T1-weighted anatomical scan. RESULTS Poorer sleep quality using the Pittsburgh Sleep Quality Index was positively associated with self-reported pain measures (all p's >0.05), but not somatosensory and pain thresholds (all p's >0.05). Using a non-parametric threshold-free cluster enhancement (TFCE) approach, worse sleep quality was significantly associated with lower cortical thickness in the precentral, postcentral, precuneus, superior parietal, and lateral occipital regions (TFCE-FWE-corrected at p < 0.05). Further, only postcentral cortical thickness significantly mediated the association between sleep quality and self-reported pain intensity using bootstrapped mediation methods. CONCLUSION Our findings in older adults are similar to previous studies in younger individuals where sleep is significantly associated with self-reported pain. Specifically, our study implicates brain structure as a significant mediator of this association in aging. Future larger studies are needed to replicate our findings and to further understand if the brain can be a therapeutic target for both improved sleep and pain relief in older individuals.
Collapse
Affiliation(s)
- Soamy Montesino-Goicolea
- Department of Community Dentistry & Behavioral Sciences, University of Florida, Gainesville, FL, USA
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
| | - Pedro A Valdes-Hernandez
- Department of Community Dentistry & Behavioral Sciences, University of Florida, Gainesville, FL, USA
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
| | - Lorraine Hoyos
- University of Central, Florida College of Medicine, Orlando, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Health Professions, University of Florida, Gainesville, FL, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Health Professions, University of Florida, Gainesville, FL, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health and Health Professions College of Medicine, University of Florida, Gainesville, FL, USA
| | - Joseph L Riley
- Department of Community Dentistry & Behavioral Sciences, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Eric C Porges
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Health Professions, University of Florida, Gainesville, FL, USA
| | - Roger B Fillingim
- Department of Community Dentistry & Behavioral Sciences, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- Department of Community Dentistry & Behavioral Sciences, University of Florida, Gainesville, FL, USA
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
| |
Collapse
|
68
|
Proskovec AL, Rezich MT, O’Neill J, Morsey B, Wang T, Ideker T, Swindells S, Fox HS, Wilson TW. Association of Epigenetic Metrics of Biological Age With Cortical Thickness. JAMA Netw Open 2020; 3:e2015428. [PMID: 32926115 PMCID: PMC7490648 DOI: 10.1001/jamanetworkopen.2020.15428] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
IMPORTANCE Magnetic resonance imaging (MRI) studies of aging adults have shown substantial intersubject variability across various brain metrics, and some of this variability is likely attributable to chronological age being an imprecise measure of age-related change. Accurately quantifying one's biological age could allow better quantification of healthy and pathological changes in the aging brain. OBJECTIVE To investigate the association of DNA methylation (DNAm)-based biological age with cortical thickness and to assess whether biological age acceleration compared with chronological age captures unique variance in cortical thinning. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study used high-resolution structural brain MRI data collected from a sample of healthy aging adults who were participating in a larger ongoing neuroimaging study that began in May 2014. This population-based study accrued participants from the greater Omaha, Nebraska, metropolitan area. One hundred sixty healthy adults were contacted for the MRI component, 82 of whom participated in both DNAm and MRI study components. Data analysis was performed from March to June 2019. MAIN OUTCOMES AND MEASURES Vertexwise cortical thickness, DNAm-based biological age, and biological age acceleration compared with chronological age were measured. A pair of multivariable regression models were computed in which cortical thickness was regressed on DNAm-based biological age, controlling for sex in the first model and also controlling for chronological age in the second model. RESULTS Seventy-nine adult participants (38 women; mean [SD] age, 43.82 [14.50] years; age range, 22-72 years) were included in all final analyses. Advancing biological age was correlated with cortical thinning across frontal, superior temporal, inferior parietal, and medial occipital regions. In addition, biological age acceleration relative to chronological age was associated with cortical thinning in orbitofrontal, superior and inferior temporal, somatosensory, parahippocampal, and fusiform regions. Specifically, for every 1 year of biological age acceleration, cortical thickness would be expected to decrease by 0.024 mm (95% CI, -0.04 to -0.01 mm) in the left orbitofrontal cortex (partial r, -0.34; P = .002), 0.014 mm (95% CI, -0.02 to -0.01 mm) in the left superior temporal gyrus (partial r, -0.36; P = .001), 0.015 mm (95% CI, -0.02 to -0.01 mm) in the left fusiform gyrus (partial r, -0.38; P = .001), 0.015 mm (95% CI, -0.02 to -0.01 mm) in the right fusiform gyrus (partial r, -0.43; P < .001), 0.019 mm (95% CI, -0.03 to -0.01 mm) in the right inferior temporal sulcus (partial r, -0.34; P = .002), and 0.011 mm (95% CI, -0.02 to -0.01 mm) in the right primary somatosensory cortex (partial r, -0.37; P = .001). CONCLUSIONS AND RELEVANCE To our knowledge, this is the first study to investigate vertexwise cortical thickness in relation to DNAm-based biological age, and the findings suggest that this metric of biological age may yield additional insight on healthy and pathological cortical aging compared with standard measures of chronological age alone.
Collapse
Affiliation(s)
- Amy L. Proskovec
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha
- Department of Psychology, University of Nebraska Omaha, Omaha
- Magnetoencephalography Center of Excellence, University of Texas Southwestern Medical Center, Dallas
| | - Michael T. Rezich
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha
| | - Jennifer O’Neill
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha
| | - Brenda Morsey
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha
| | - Tina Wang
- Department of Medicine, University of California San Diego, La Jolla
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha
| | - Tony W. Wilson
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha
- Department of Psychology, University of Nebraska Omaha, Omaha
- Cognitive Neuroscience of Development & Aging Center, University of Nebraska Medical Center, Omaha
| |
Collapse
|
69
|
Brain structural evidence for a frontal pole specialization in glossolalia. IBRO Rep 2020; 9:32-36. [PMID: 32671282 PMCID: PMC7338610 DOI: 10.1016/j.ibror.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/20/2020] [Indexed: 11/22/2022] Open
Abstract
Glossolalia is defined as the ritual oral production of phoneme sequences without recognizable semantic content. The functional underpinnings of glossolalia, and notably whether it consists of a highly specific or ordinary behavior, remain largely unresolved. We addressed this question by measuring the structural brain remodeling associated with the extensive practice of glossolalia in thirty experts. This approach enabled us to circumvent the limitations of functional imaging to reveal the neural correlates of behaviors elicited in specific contexts and involving movements incompatible with most imaging methods. Whole-brain regression analyses of glossolalia expertise with indices of grey and white matter structure revealed positive associations between practice time and grey matter volume within the left frontal pole and the right middle frontal gyrus. These findings suggest that glossolalia involves a degree of neurocognitive specialization, though not at the level of language control and production networks, but within domain-general executive areas. They further call for including multi-tasking and interference suppression as key processes in models of unrecognizable speech production. Our results also concur with current demonstrations that measures of brain structural remodeling may help identifying whether cognitive skills depend on networks specialization or on a recycling of already existing processes.
Collapse
|
70
|
A Systematic Characterization of Structural Brain Changes in Schizophrenia. Neurosci Bull 2020; 36:1107-1122. [PMID: 32495122 DOI: 10.1007/s12264-020-00520-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 01/10/2023] Open
Abstract
A systematic characterization of the similarities and differences among different methods for detecting structural brain abnormalities in schizophrenia, such as voxel-based morphometry (VBM), tensor-based morphometry (TBM), and projection-based thickness (PBT), is important for understanding the brain pathology in schizophrenia and for developing effective biomarkers for a diagnosis of schizophrenia. However, such studies are still lacking. Here, we performed VBM, TBM, and PBT analyses on T1-weighted brain MR images acquired from 116 patients with schizophrenia and 116 healthy controls. We found that, although all methods detected wide-spread structural changes, different methods captured different information - only 10.35% of the grey matter changes in cortex were detected by all three methods, and VBM only detected 11.36% of the white matter changes detected by TBM. Further, pattern classification between patients and controls revealed that combining different measures improved the classification accuracy (81.9%), indicating that fusion of different structural measures serves as a better neuroimaging marker for the objective diagnosis of schizophrenia.
Collapse
|
71
|
Chaudhary S, Kumaran SS, Goyal V, Kaloiya GS, Kalaivani M, Jagannathan NR, Sagar R, Mehta N, Srivastava AK. Cortical thickness and gyrification index measuring cognition in Parkinson's disease. Int J Neurosci 2020; 131:984-993. [PMID: 32423354 DOI: 10.1080/00207454.2020.1766459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Cortical dynamics is driven by cortico-cortical connectivity and it characterizes cortical morphological features. These brain surface features complement volumetric changes and may offer improved understanding of disease pathophysiology. Hence, present study aims to investigate surface features; cortical thickness (CT) and gyrification index (GI) in Parkinson's disease (PD) patients of normal cognition (PD-CN), cognitively impaired patients with PD (PD-CI) in comparison with cognitively normal healthy controls (HC) to better elucidate cognition linked features in PD. METHOD Anatomical MRI (3DT1) was carried out in 30 HC (56.53 ± 8.42 years), 30 PD-CN (58.8 ± 6.07 years), and 30 PD-CI (60.3 ± 6.43 years) subjects. Whole brain ROI based parcellation using Desikan-Killiany (DK-40) atlas followed by regional CT and GI differentiation [with 'age' and 'total intracranial volume' (TIV) correction], multiple linear regression (with 'age', 'TIV', and 'education' correction) with clinical variables, ROC analysis, and CT-GI correlation across the groups was used for data analysis. RESULTS Widespread cortical thinning with regional GI reduction was evident in PD-CI with respect to other two groups (HC and PD-CN), and with absence of such alterations in PD-CN compared to HC. Frontal, parietal, and temporal CT/GI significantly correlated with cognition and presented classification abilities for cognitive state in PD. Mean regional CT and GI were found negatively correlated across groups with heterogeneous regions. CONCLUSION Fronto-parietal and temporal regions suffer cognition associated cortical thinning and GI reduction. CT may serve better discriminator properties and may be more consistent than GI in studying cognition in PD. Heterogeneous surface dynamics across the groups may signify neuro-developmental alterations in PD.
Collapse
Affiliation(s)
| | | | - Vinay Goyal
- Department of Neurology, AIIMS, New Delhi, India
| | - G S Kaloiya
- National Drug Dependence Treatment Centre, AIIMS, New Delhi, India
| | - M Kalaivani
- Department of Biostatistics, AIIMS, New Delhi, India
| | | | - Rajesh Sagar
- Department of Psychiatry, AIIMS, New Delhi, India
| | - Nalin Mehta
- Department of Physiology, AIIMS, New Delhi, India
| | | |
Collapse
|
72
|
Vogt NM, Hunt JF, Adluru N, Dean DC, Johnson SC, Asthana S, Yu JPJ, Alexander AL, Bendlin BB. Cortical Microstructural Alterations in Mild Cognitive Impairment and Alzheimer's Disease Dementia. Cereb Cortex 2020; 30:2948-2960. [PMID: 31833550 PMCID: PMC7197091 DOI: 10.1093/cercor/bhz286] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In Alzheimer's disease (AD), neurodegenerative processes are ongoing for years prior to the time that cortical atrophy can be reliably detected using conventional neuroimaging techniques. Recent advances in diffusion-weighted imaging have provided new techniques to study neural microstructure, which may provide additional information regarding neurodegeneration. In this study, we used neurite orientation dispersion and density imaging (NODDI), a multi-compartment diffusion model, in order to investigate cortical microstructure along the clinical continuum of mild cognitive impairment (MCI) and AD dementia. Using gray matter-based spatial statistics (GBSS), we demonstrated that neurite density index (NDI) was significantly lower throughout temporal and parietal cortical regions in MCI, while both NDI and orientation dispersion index (ODI) were lower throughout parietal, temporal, and frontal regions in AD dementia. In follow-up ROI analyses comparing microstructure and cortical thickness (derived from T1-weighted MRI) within the same brain regions, differences in NODDI metrics remained, even after controlling for cortical thickness. Moreover, for participants with MCI, gray matter NDI-but not cortical thickness-was lower in temporal, parietal, and posterior cingulate regions. Taken together, our results highlight the utility of NODDI metrics in detecting cortical microstructural degeneration that occurs prior to measurable macrostructural changes and overt clinical dementia.
Collapse
Affiliation(s)
- Nicholas M Vogt
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792 USA
| | - Jack F Hunt
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792 USA
| | - Nagesh Adluru
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705 USA
| | - Douglas C Dean
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705 USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792 USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705 USA
| | - Sterling C Johnson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792 USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705 USA
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792 USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705 USA
| | - John-Paul J Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792 USA
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719 USA
| | - Andrew L Alexander
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705 USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705 USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792 USA
| |
Collapse
|
73
|
Zhang K, Wang M, Zhang J, Du X, Chen Z. Brain Structural Plasticity Associated with Maternal Caregiving in Mothers: A Voxel- and Surface-Based Morphometry Study. NEURODEGENER DIS 2020; 19:192-203. [PMID: 32396895 DOI: 10.1159/000506258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pregnancy constitutes a significant period in the lives of women, after which they often experience numerous crucial physiological and psychological changes. Functional neuroimaging studies have shown longitudinal changes in functional brain activity in mothers responding to infant-related stimuli. However, the structural changes that occur in the brains of mothers after delivery remain to be explored. OBJECTIVE We aimed to evaluate the structural changes in mothers during the postpartum phase. METHODS We recruited 35 primiparous mothers and 26 nonmothers to participate in this voxel- and surface-based morphometry study, and 22 mothers were scanned twice with a follow-up of approximately 2 years. RESULTS Compared to nonmothers, mothers exhibited reduced gray matter (GM) volumes and increased white matter (WM) volumes in regions associated with empathy and reward networks (supplementary motor area, precuneus, inferior parietal lobe, insula, and striatum), decreased cortical thickness in the precentral gyrus and increased gyrification index in the orbitofrontal cortex. Furthermore, mothers showed longitudinal changes in the GM and WM volumes and cortical thickness of several of these regions (including the superior and medial frontal gyrus, insula, limbic lobe, superior and middle temporal gyrus, and precentral gyrus), which have been associated with maternal networks during the postpartum period. Additionally, the changes in GM and WM volumes were related to changes in empathetic abilities in mothers. CONCLUSION These results suggest that the brains of mothers exhibit adaptive structural dynamic plasticity. These findings provide a neuroanatomical basis for understanding how mothers process emotional sensory information during the postpartum period.
Collapse
Affiliation(s)
- Kaihua Zhang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.,Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, China
| | - Mengxing Wang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, China
| | - Jilei Zhang
- Clinical Science, Philips Healthcare, Shanghai, China
| | - Xiaoxia Du
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China,
| |
Collapse
|
74
|
Kharabian Masouleh S, Eickhoff SB, Zeighami Y, Lewis LB, Dahnke R, Gaser C, Chouinard-Decorte F, Lepage C, Scholtens LH, Hoffstaedter F, Glahn DC, Blangero J, Evans AC, Genon S, Valk SL. Influence of Processing Pipeline on Cortical Thickness Measurement. Cereb Cortex 2020; 30:5014-5027. [PMID: 32377664 PMCID: PMC7391418 DOI: 10.1093/cercor/bhaa097] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 11/13/2022] Open
Abstract
In recent years, replicability of neuroscientific findings, specifically those concerning correlates of morphological properties of gray matter (GM), have been subject of major scrutiny. Use of different processing pipelines and differences in their estimates of the macroscale GM may play an important role in this context. To address this issue, here, we investigated the cortical thickness estimates of three widely used pipelines. Based on analyses in two independent large-scale cohorts, we report high levels of within-pipeline reliability of the absolute cortical thickness-estimates and comparable spatial patterns of cortical thickness-estimates across all pipelines. Within each individual, absolute regional thickness differed between pipelines, indicating that in-vivo thickness measurements are only a proxy of actual thickness of the cortex, which shall only be compared within the same software package and thickness estimation technique. However, at group level, cortical thickness-estimates correlated strongly between pipelines, in most brain regions. The smallest between-pipeline correlations were observed in para-limbic areas and insula. These regions also demonstrated the highest interindividual variability and the lowest reliability of cortical thickness-estimates within each pipeline, suggesting that structural variations within these regions should be interpreted with caution.
Collapse
Affiliation(s)
- Shahrzad Kharabian Masouleh
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), 52425, Jülich, Germany
| | - Simon B Eickhoff
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), 52425, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Yashar Zeighami
- Montreal Neurological Institute, McGill University, Quebec, H3A 2B4, Canada
| | - Lindsay B Lewis
- Montreal Neurological Institute, McGill University, Quebec, H3A 2B4, Canada
| | - Robert Dahnke
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark.,Department of Psychiatry and Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Christian Gaser
- Department of Psychiatry and Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | | | - Claude Lepage
- Montreal Neurological Institute, McGill University, Quebec, H3A 2B4, Canada
| | | | - Felix Hoffstaedter
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), 52425, Jülich, Germany
| | - David C Glahn
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Quebec, H3A 2B4, Canada
| | - Sarah Genon
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), 52425, Jülich, Germany
| | - Sofie L Valk
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), 52425, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
75
|
Lai KL, Niddam DM, Fuh JL, Chen WT, Wu JC, Wang SJ. Cortical morphological changes in chronic migraine in a Taiwanese cohort: Surface- and voxel-based analyses. Cephalalgia 2020; 40:575-585. [PMID: 32299230 DOI: 10.1177/0333102420920005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previous voxel- or surface-based morphometric analysis studies have revealed alterations in cortical structure in patients with chronic migraine, yet with inconsistent results. The discrepancies may be derived partly from the sample heterogeneity. Employing both methods in a clinically homogenous group may provide a clearer view. METHODS Structural MRI data from 30 prevention-naïve patients with chronic migraine without medication overuse headache or a history of major depression and 30 healthy controls were analyzed. Vertex-wise (surface-based) or voxel-wise (voxel-based) linear models were applied, after controlling for age and gender, to investigate between-group differences. Averaged cortical thicknesses and volumes from regions showing group differences were correlated with parameters related to clinical profiles. RESULTS Surface-based morphometry showed significantly thinner cortices in the bilateral insular cortex, caudal middle frontal gyrus, precentral gyrus, and parietal lobes in patients with chronic migraine relative to healthy controls. Additionally, the number of migraine days in the month preceding MRI examination was correlated negatively with right insular cortical thickness. Voxel-based morphometry (VBM) did not show any group differences or clinical correlations. CONCLUSION Patients with chronic migraine without medication overuse headache, major depression, or prior preventive treatment had reduced cortical thickness in regions within the pain-processing network. Compared to voxel-based morphometry, surface-based morphometry analysis may be more sensitive to subtle structural differences between healthy controls and patients with chronic migraine.
Collapse
Affiliation(s)
- Kuan-Lin Lai
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - David M Niddam
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Ta Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Ching Wu
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
76
|
Proskovec AL, Spooner RK, Wiesman AI, Wilson TW. Local cortical thickness predicts somatosensory gamma oscillations and sensory gating: A multimodal approach. Neuroimage 2020; 214:116749. [PMID: 32199953 DOI: 10.1016/j.neuroimage.2020.116749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/26/2020] [Accepted: 03/13/2020] [Indexed: 12/24/2022] Open
Abstract
Two largely distinct bodies of research have demonstrated age-related alterations and disease-specific aberrations in both local gamma oscillations and patterns of cortical thickness. However, seldom has the relationship between gamma activity and cortical thickness been investigated. Herein, we combine the spatiotemporal precision of magnetoencephalography (MEG) with high-resolution magnetic resonance imaging and surface-based morphometry to characterize the relationships between somatosensory gamma oscillations and the thickness of the cortical tissue generating the oscillations in 94 healthy adults (age range: 22-72). Specifically, a series of regressions were computed to assess the relationships between thickness of the primary somatosensory cortex (S1), S1 gamma response power, peak gamma frequency, and somatosensory gating of identical stimuli. Our results indicated that increased S1 thickness significantly predicted greater S1 gamma response power, reduced peak gamma frequency, and improved somatosensory gating. Furthermore, peak gamma frequency significantly and partially mediated the relationship between S1 thickness and the magnitude of the S1 gamma response. Finally, advancing age significantly predicted reduced S1 thickness and decreased gating of redundant somatosensory stimuli. Notably, this is the first study to directly link somatosensory gamma oscillations to local cortical thickness. Our results demonstrate a multi-faceted relationship between structure and function, and have important implications for understanding age- and disease-related deficits in basic sensory processing and higher-order inhibitory function.
Collapse
Affiliation(s)
- Amy L Proskovec
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA; Department of Neurological Sciences, UNMC, Omaha, NE, 68198, USA; Department of Psychology, University of Nebraska - Omaha, Omaha, NE, 68182, USA; Magnetoencephalography Center of Excellence, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Rachel K Spooner
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA; Department of Neurological Sciences, UNMC, Omaha, NE, 68198, USA
| | - Alex I Wiesman
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA; Department of Neurological Sciences, UNMC, Omaha, NE, 68198, USA
| | - Tony W Wilson
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA; Department of Neurological Sciences, UNMC, Omaha, NE, 68198, USA; Department of Psychology, University of Nebraska - Omaha, Omaha, NE, 68182, USA
| |
Collapse
|
77
|
Reduced Cortical Complexity in Cirrhotic Patients with Minimal Hepatic Encephalopathy. Neural Plast 2020; 2020:7364649. [PMID: 32256557 PMCID: PMC7104259 DOI: 10.1155/2020/7364649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/28/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023] Open
Abstract
Purpose Gray matter volume loss, regional cortical thinning, and local gyrification index alteration have been documented in minimal hepatic encephalopathy (MHE). Fractal dimension (FD), another morphological parameter, has been widely used to describe structural complexity alterations in neurological or psychiatric disease. Here, we conducted the first study to investigate FD alterations in MHE. Methods and Materials We performed high-resolution structural magnetic resonance imaging on cirrhotic patients with MHE (n = 20) and healthy controls (n = 21). We evaluated their cognitive performance using the psychometric hepatic encephalopathy score (PHES). The regional FD value was calculated by Computational Anatomy Toolbox (CAT12) and compared between groups. We further estimated the association between patients' cognitive performance and FD values. Results MHE patients presented significantly decreased FD values in the left precuneus, left supramarginal gyrus, right caudal anterior cingulate cortex, right isthmus cingulate cortex, right insula, bilateral pericalcarine cortex, and bilateral paracentral cortex compared to normal controls. In addition, the FD values in the right isthmus cingulate cortex and right insula were shown to be positively correlated with patients' cognitive performance. Conclusion Aberrant cortical complexity is an additional characteristic of MHE, and FD analysis may provide novel insight into the neurobiological basis of cognitive dysfunction in MHE.
Collapse
|
78
|
Schmitgen MM, Kubera KM, Depping MS, Nolte HM, Hirjak D, Hofer S, Hasenkamp JH, Seidl U, Stieltjes B, Maier-Hein KH, Sambataro F, Sartorius A, Thomann PA, Wolf RC. Exploring cortical predictors of clinical response to electroconvulsive therapy in major depression. Eur Arch Psychiatry Clin Neurosci 2020; 270:253-261. [PMID: 31278421 DOI: 10.1007/s00406-019-01033-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/15/2019] [Indexed: 12/11/2022]
Abstract
Electroconvulsive therapy (ECT) is a rapid and highly effective treatment option for treatment-resistant major depressive disorder (TRD). The neural mechanisms underlying such beneficial effects are poorly understood. Exploring associations between changes of brain structure and clinical response is crucial for understanding ECT mechanisms of action and relevant for the validation of potential biomarkers that can facilitate the prediction of ECT efficacy. The aim of this explorative study was to identify cortical predictors of clinical response in TRD patients treated with ECT. We longitudinally investigated 12 TRD patients before and after ECT. Twelve matched healthy controls were studied cross sectionally. Demographical, clinical, and structural magnetic resonance imaging data at 3 T and multiple cortical markers derived from surface-based morphometry (SBM) analyses were considered. Multiple regression models were computed to identify predictors of clinical response to ECT, as reflected by Hamilton Depression Rating Scale (HAMD) score changes. Symptom severity differences pre-post-ECT were predicted by models including demographic data, clinical data and SBM of frontal, cingulate, and entorhinal structures. Using all-subsets regression, a model comprising HAMD score at baseline and cortical thickness of the left rostral anterior cingulate gyrus explained most variance in the data (multiple R2 = 0.82). The data suggest that SBM provides powerful measures for identifying biomarkers for ECT response in TRD. Rostral anterior cingulate thickness and HAMD score at baseline showed the greatest predictive power of clinical response, in contrast to cortical complexity, cortical gyrification, or demographical data.
Collapse
Affiliation(s)
- Mike M Schmitgen
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Vosstrasse 4, 69115, Heidelberg, Germany
| | - Katharina M Kubera
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Vosstrasse 4, 69115, Heidelberg, Germany
| | - Malte S Depping
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Vosstrasse 4, 69115, Heidelberg, Germany
| | - Henrike M Nolte
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Vosstrasse 4, 69115, Heidelberg, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefan Hofer
- Department of Anesthesiology, Westpfalz-Klinikum GmbH, Kaiserslautern, Germany
| | - Julia H Hasenkamp
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Vosstrasse 4, 69115, Heidelberg, Germany
| | - Ulrich Seidl
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Vosstrasse 4, 69115, Heidelberg, Germany
- Department of Psychiatry and Psychotherapy, SHG-Kliniken, Saarbrücken, Germany
| | - Bram Stieltjes
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Klaus H Maier-Hein
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabio Sambataro
- Department of Neuroscience, University of Padova, Padua, Italy
| | - Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Philipp A Thomann
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Vosstrasse 4, 69115, Heidelberg, Germany
- Center for Mental Health, Odenwald District Healthcare Center, Erbach, Germany
| | - Robert C Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Vosstrasse 4, 69115, Heidelberg, Germany.
| |
Collapse
|
79
|
Serra L, Bianchi G, Bruschini M, Giulietti G, Domenico CD, Bonarota S, Petrucci A, Silvestri G, Perna A, Meola G, Caltagirone C, Bozzali M. Abnormal Cortical Thickness Is Associated With Deficits in Social Cognition in Patients With Myotonic Dystrophy Type 1. Front Neurol 2020; 11:113. [PMID: 32180756 PMCID: PMC7059122 DOI: 10.3389/fneur.2020.00113] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Aim: To investigate the cortical thickness in myotonic dystrophy type 1 (DM1) and its potential association with patients' genetic triplet expansion and social cognition deficits. Methods: Thirty patients with DM1 underwent the Social Cognition Battery Test and magnetic resonance imaging (MRI) scanning at 3 T. Twenty-five healthy subjects (HSs) were enrolled in the study to serve as a control group for structural MRI data. To assess changes in cortical thickness in DM1 patients, they were compared to HSs using a t-test model. Correlations were used to assess potential associations between genetic and clinical characteristics and social cognition performances in the patient group. Additionally, multiple regression models were used to explore associations between cortical thickness, CTG triplet expansion size, and scores obtained by DM1 patients on the Social Cognition Battery. Results: DM1 patients showed low performances in several subtests of the Social Cognition Battery. Specifically, they obtained pathological scores at Emotion Attribution Test (i.e., Sadness, Embarrassment, Happiness, and Anger) and at the Social Situations Test (i.e., recognition of normal situation, recognition of aberrant behavior). Significant negative correlations were found between CTG triplet expansion size and Embarrassment, and Severity of Aberrant Behavior. Similarly, a negative correlation was found between patients' MIRS scores and Sadness. DM1 patients compared to HSs showed reduced thickness in the right premotor cortex, angular gyrus, precuneus, and inferior parietal lobule. Significant associations were found between patients' CTG triplet expansion size and thickness in left postcentral gyrus and in the left primary somatosensory cortex, in the posterior cingulate cortex bilaterally, and in the right lingual gyrus. Finally, significant associations were found between cortical thickness and sadness in the superior temporal gyrus, the right precentral gyrus, the right angular gyrus, and the left medial frontal gyrus bilaterally. DM1 patients showed a negative correlation between cortical thickness in the bilateral precuneus and in the left lateral occipital cortex and performance at the Social Situations Test. Finally, DM1 patients showed a negative correlation between cortical thickness in the left precuneus and in the superior frontal gyrus and scores at the Moral Distinction Test. Discussion: The present study shows both cortical thickness changes in DM1 patients compared to controls and significant associations between cortical thickness and patients' social cognition performances. These data confirm the presence of widespread brain damages associated with cognitive impairment in DM1 patients.
Collapse
Affiliation(s)
- Laura Serra
- Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | | | | | - Sabrina Bonarota
- Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Petrucci
- UOC Neurologia e Neurofisiopatologia, AO San Camillo Forlanini, Rome, Italy
| | - Gabriella Silvestri
- Department of Geriatrics, Orthopedic and Neuroscience, Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Alessia Perna
- Department of Geriatrics, Orthopedic and Neuroscience, Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Giovanni Meola
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marco Bozzali
- Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.,Brighton & Sussex Medical School, CISC, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
80
|
Fluid intelligence is associated with cortical volume and white matter tract integrity within multiple-demand system across adult lifespan. Neuroimage 2020; 212:116576. [PMID: 32105883 DOI: 10.1016/j.neuroimage.2020.116576] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/23/2019] [Accepted: 01/19/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Fluid intelligence (Gf) is the innate ability of an individual to respond to complex and unexpected situations. Although some studies have considered that the multiple-demand (MD) system of the brain was the biological foundation for Gf, further characterization of their relationships in the context of aging is limited. The present study hypothesized that the structural metrics of the MD system, including cortical thickness, cortical volumes, and white matter (WM) tract integrity, was the brain correlates for Gf across the adult life span. Partial correlation analysis was performed to investigate whether the MD system could still explain Gf independent of the age effect. Moreover, the partial correlations between Gf and left/right structural metrics within the MD regions were compared to test whether the correlations displayed distinct lateralization. METHODS The participants were recruited from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) databank, comprising the images of 603 healthy participants aged 18-88 years acquired on a 3-T system. The MRI data included high-resolution T1-weighted and diffusion-weighted images, from which gray matter and WM structural metrics of the MD system were analyzed, respectively. The structural metrics of gray matter were quantified in terms of cortical volume/thickness of five pairs of cortical regions, and those of WM were quantified in terms of the mean axial diffusivity (DA), radial diffusivity (DR), mean diffusivity (DM), and generalized fractional anisotropy (GFA) on five pairs of tracts. Partial correlation controlling for age and sex effects, was performed to investigate the associations of Gf scores with the mean DA, DR, DM and GFA of all tracts in the MD system, those of left and right hemispheric tracts, and those of each tract. Fisher's exact test was used to compare the partial correlations between left and right MD regions. RESULTS The linear relationship between cortical volumes and Gf was evident across all levels of the MD system even after controlling for age and sex. For the WM integrity, diffusion indices including DA, DR, DM and GFA displayed linear relationships with Gf scores at various levels of the MD system. Among the 10 WM tracts connecting the MD regions, bilateral superior longitudinal fasciculus I and bilateral frontal aslant tracts exhibited the strongest and significant associations. Our results did not show significant inter-hemispheric differences in the associations between structural metrics of the MD system and Gf. CONCLUSION Our results demonstrate significant associations between Gf and both cortical volumes and tract integrity of the MD system across the adult lifespan in a population-based cohort. We found that the association remained significant in the entire adult lifespan despite simultaneous decline of Gf and the MD system. Our results suggest that the MD system might be a structural underpinning of Gf and support the fronto-parietal model of cognitive aging. However, we did not find hemispheric differences in the Gf-MD correlations, not supporting the hemi-aging hypothesis.
Collapse
|
81
|
Lew BJ, O'Neill J, Rezich MT, May PE, Fox HS, Swindells S, Wilson TW. Interactive effects of HIV and ageing on neural oscillations: independence from neuropsychological performance. Brain Commun 2020; 2:fcaa015. [PMID: 32322820 PMCID: PMC7158235 DOI: 10.1093/braincomms/fcaa015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/23/2019] [Accepted: 01/17/2020] [Indexed: 01/24/2023] Open
Abstract
HIV infection is associated with increased age-related co-morbidities including cognitive deficits, leading to hypotheses of HIV-related premature or accelerated ageing. Impairments in selective attention and the underlying neural dynamics have been linked to HIV-associated neurocognitive disorder; however, the effect of ageing in this context is not yet understood. Thus, the current study aimed to identify the interactive effects of ageing and HIV on selective attention processing. A total of 165 participants (92 controls, 73 participants with HIV) performed a visual selective attention task while undergoing magnetoencephalography and were compared cross-sectionally. Spectrally specific oscillatory neural responses during task performance were imaged and linked with selective attention function. Reaction time on the task and regional neural activity were analysed with analysis of covariance (ANCOVA) models aimed at examining the age-by-HIV interaction term. Finally, these metrics were evaluated with respect to clinical measures such as global neuropsychological performance, duration of HIV infection and medication regimen. Reaction time analyses showed a significant HIV-by-age interaction, such that in controls older age was associated with greater susceptibility to attentional interference, while in participants with HIV, such susceptibility was uniformly high regardless of age. In regard to neural activity, theta-specific age-by-HIV interaction effects were found in the prefrontal and posterior parietal cortices. In participants with HIV, neuropsychological performance was associated with susceptibility to attentional interference, while time since HIV diagnosis was associated with parietal activity above and beyond global neuropsychological performance. Finally, current efavirenz therapy was also related to increased parietal interference activity. In conclusion, susceptibility to attentional interference in younger participants with HIV approximated that of older controls, suggesting evidence of HIV-related premature ageing. Neural activity serving attention processing indicated compensatory recruitment of posterior parietal cortex as participants with HIV infection age, which was related to the duration of HIV infection and was independent of neuropsychological performance, suggesting an altered trajectory of neural function.
Collapse
Affiliation(s)
- Brandon J Lew
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael T Rezich
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pamela E May
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
82
|
Baima CB, Fim NC, Alves KF, Resende LADL, Fonseca RG, Betting LE. Analysis of patients with obstructive sleep apnea with and without pharyngeal myopathy using brain neuroimaging. Sleep 2020; 43:5573423. [PMID: 31552419 DOI: 10.1093/sleep/zsz216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 07/20/2019] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Elements impairing upper airway anatomy or muscle function (e.g. pharyngeal neuromyopathy) contribute to obstructive sleep apnea syndrome (OSAS). Structural brain imaging may differ in patients with OSAS according to dilator muscle dysfunction. Magnetic resonance imaging (MRI) with voxel-based morphometry (VBM) and surface-based morphometry (SBM) was used to investigate this hypothesis. METHODS Eighteen patients with OSAS and 32 controls underwent 3T brain MRI. T1 volumetric images were used for structural analysis. Pharyngeal electroneuromyography was performed; patients with OSAS were classified as with or without neuromyopathy. VBM and SBM analyses were conducted using SPM12 and CAT12 software. Image processing was standard. Cortical surface parameters and gray and white matter volumes from participants with OSAS with and without neuromyopathy were compared with those from controls. RESULTS Eleven patients had OSAS with neuromyopathy and seven patients had OSAS without neuromyopathy (normal pharyngeal electroneuromyography). Comparing these groups to the controls, VBM revealed: four clusters (total volume 15,368 mm3) for patients with neuromyopathy, the largest cluster in the left cerebellum (9,263 mm3, p = 0.0001), and three clusters (total 8,971 mm3) for patients without neuromyopathy, the largest cluster in the left cerebellum (5,017 mm3, p = 0.002). Patients with OSAS with neuromyopathy showed increased proportion of atrophy (p < 0.0001). SBM showed abnormalities in patients without neuromyopathy (decreased cortical thickness, left precentral gyrus [672 vertices, p = 0.04]; increased cortical complexity, right middle temporal gyrus [578 vertices, p = 0.032]). CONCLUSION Damaged areas were larger in patients with OSAS with than in those without neuromyopathy, suggesting differences in brain involvement. Patients with OSAS and neuromyopathy may be more susceptible to cerebral damage.
Collapse
Affiliation(s)
- Camila Bonfanti Baima
- Departamento de Neurologia, Psicologia e Psiquiatria, Universidade Estadual Paulista (UNESP), Faculdade de Medicina, Botucatu, SP, Brazil
| | - Natália Castro Fim
- Departamento de Neurologia, Psicologia e Psiquiatria, Universidade Estadual Paulista (UNESP), Faculdade de Medicina, Botucatu, SP, Brazil
| | - Karen Fernanda Alves
- Departamento de Neurologia, Psicologia e Psiquiatria, Universidade Estadual Paulista (UNESP), Faculdade de Medicina, Botucatu, SP, Brazil
| | - Luiz Antonio de Lima Resende
- Departamento de Neurologia, Psicologia e Psiquiatria, Universidade Estadual Paulista (UNESP), Faculdade de Medicina, Botucatu, SP, Brazil
| | - Ronaldo Guimarães Fonseca
- Departamento de Neurologia, Psicologia e Psiquiatria, Universidade Estadual Paulista (UNESP), Faculdade de Medicina, Botucatu, SP, Brazil
| | | |
Collapse
|
83
|
Reduced gray matter volume and cortical thickness associated with traffic-related air pollution in a longitudinally studied pediatric cohort. PLoS One 2020; 15:e0228092. [PMID: 31978108 PMCID: PMC6980590 DOI: 10.1371/journal.pone.0228092] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Early life exposure to air pollution poses a significant risk to brain development from direct exposure to toxicants or via indirect mechanisms involving the circulatory, pulmonary or gastrointestinal systems. In children, exposure to traffic related air pollution has been associated with adverse effects on cognitive, behavioral and psychomotor development. We aimed to determine whether childhood exposure to traffic related air pollution is associated with regional differences in brain volume and cortical thickness among children enrolled in a longitudinal cohort study of traffic related air pollution and child health. We used magnetic resonance imaging to obtain anatomical brain images from a nested subset of 12 year old participants characterized with either high or low levels of traffic related air pollution exposure during their first year of life. We employed voxel-based morphometry to examine group differences in regional brain volume, and with separate analyses, changes in cortical thickness. Smaller regional gray matter volumes were determined in the left pre- and post-central gyri, the cerebellum, and inferior parietal lobe of participants in the high traffic related air pollution exposure group relative to participants with low exposure. Reduced cortical thickness was observed in participants with high exposure relative to those with low exposure, primarily in sensorimotor regions of the brain including the pre- and post-central gyri and the paracentral lobule, but also within the frontal and limbic regions. These results suggest that significant childhood exposure to traffic related air pollution is associated with structural alterations in brain.
Collapse
|
84
|
Hassanzadeh-Behbahani S, Shattuck KF, Bronshteyn M, Dawson M, Diaz M, Kumar P, Moore DJ, Ellis RJ, Jiang X. Low CD4 nadir linked to widespread cortical thinning in adults living with HIV. NEUROIMAGE-CLINICAL 2019; 25:102155. [PMID: 31901790 PMCID: PMC6948363 DOI: 10.1016/j.nicl.2019.102155] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The history of immune suppression, especially CD4 nadir, has been shown to be a strong predictor of HIV-associated neurocognitive disorders (HAND). However, the potential mechanism of this association is not well understood. METHODS High resolution structural MRI images and neuropsychological data were obtained from fifty-nine HIV+ adults (mean age, 56.5 ± 5.8) to investigate the correlation between CD4 nadir and cortical thickness. RESULTS Low CD4 nadir was associated with widespread cortical thinning, especially in the frontal and temporal regions, and global mean cortical thickness correlated with CD4 nadir. In addition, worse global neurocognitive function was associated with bilateral frontal cortical thinning, and the association largely persisted (especially in the left frontal cortex) in the subset of participants who did not meet HAND criteria. CONCLUSIONS These results suggest that low CD4 nadir may be associated with widespread neural injury in the brain, especially in the frontal and temporal regions. The diffuse neural injury might contribute to the prevalence and the phenotypes of HAND, as well as the difficulty treating HAND due to a broad network of brain regions affected. Low CD4 nadir related neural injury to the frontal cortex might contribute to subtle neurocognitive impairment/decline, even in the absence of HAND diagnosis.
Collapse
Affiliation(s)
| | - Kyle F Shattuck
- Departments of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Margarita Bronshteyn
- Departments of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Matthew Dawson
- Department of Psychiatry, University of California, La Jolla, San Diego, CA 92093, United States
| | - Monica Diaz
- Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093, United States
| | - Princy Kumar
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057, United States
| | - David J Moore
- Department of Psychiatry, University of California, La Jolla, San Diego, CA 92093, United States
| | - Ronald J Ellis
- Department of Psychiatry, University of California, La Jolla, San Diego, CA 92093, United States; Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093, United States
| | - Xiong Jiang
- Departments of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, United States.
| |
Collapse
|
85
|
Sharma AA, Nenert R, Allendorfer JB, Gaston TE, Grayson LP, Hernando K, Szaflarski JP. A preliminary study of the effects of cannabidiol (CBD) on brain structure in patients with epilepsy. Epilepsy Behav Rep 2019; 12:100341. [PMID: 32322816 PMCID: PMC7170322 DOI: 10.1016/j.ebr.2019.100341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/13/2019] [Accepted: 10/12/2019] [Indexed: 11/25/2022] Open
Abstract
Cannabis use is associated with changes in brain structure and function; its neurotoxic effects are largely attributed to Δ9-tetrahydrocannabidiol. Whether such effects are present in patients with epilepsy exposed to a highly-purified cannabidiol isolate (CBD; Epidiolex®; Greenwich Biosciences, Inc.) has not been investigated to date. This preliminary study examines whether daily CBD dose of 15-25 mg/kg produces cerebral macrostructure changes and, if present, how they relate to changes in seizure frequency. Twenty-seven patients with treatment-resistant epilepsy were recruited from the University of Alabama at Birmingham CBD Program. Participants provided seizure frequency diaries (SF), completed the Chalfont Seizure Severity Scale (CSSS) and Adverse Events Profile (AEP), and underwent MRI before CBD (baseline) and after achieving a stable CBD dosage (on-CBD). We examined T1-weighted structural images for gray matter volume (GMV) and cortical thickness changes from baseline to on-CBD in 18 participants. Repeated measures t-tests confirmed decreases in SF [t(17) = 3.08, p = 0.0069], CSSS [t(17) = 5.77, p < 0.001], and AEP [t(17) = 3.04, p = 0.0074] between the two time-points. Voxel-level paired samples t-tests did not identify significant changes in GMV or cortical thickness between these two time-points. In conclusion, short-term exposure to highly purified CBD may not affect cortical macrostructure.
Collapse
Affiliation(s)
- Ayushe A Sharma
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rodolphe Nenert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jane B Allendorfer
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,University of Alabama at Birmingham Epilepsy Center, Birmingham, AL, USA
| | - Tyler E Gaston
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,University of Alabama at Birmingham Epilepsy Center, Birmingham, AL, USA.,Veteran's Administration Medical Center, Birmingham, AL, USA
| | - Leslie P Grayson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,University of Alabama at Birmingham Epilepsy Center, Birmingham, AL, USA.,Veteran's Administration Medical Center, Birmingham, AL, USA
| | - Kathleen Hernando
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,University of Alabama at Birmingham Epilepsy Center, Birmingham, AL, USA
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,University of Alabama at Birmingham Epilepsy Center, Birmingham, AL, USA
| |
Collapse
|
86
|
Tarrano C, Wattiez N, Delorme C, McGovern EM, Brochard V, Thobois S, Tranchant C, Grabli D, Degos B, Corvol J, Pedespan J, Krystkoviak P, Houeto J, Degardin A, Defebvre L, Valabrègue R, Vidailhet M, Pouget P, Roze E, Worbe Y. Visual Sensory Processing is Altered in Myoclonus Dystonia. Mov Disord 2019; 35:151-160. [DOI: 10.1002/mds.27857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Clément Tarrano
- Sorbonne Université Paris, France; Inserm U1127, CNRS UMR 7225, UM 75, ICM Paris France
- Assistance Publique‐Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié‐Salpêtrière, Paris, France; Department of Neurology Groupe Hospitalier Pitié‐Salpêtrière Paris France
- Department of Neurology CHU Côte de Nacre, Université Caen Normandie Caen France
| | - Nicolas Wattiez
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique Paris France
| | - Cécile Delorme
- Sorbonne Université Paris, France; Inserm U1127, CNRS UMR 7225, UM 75, ICM Paris France
- Assistance Publique‐Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié‐Salpêtrière, Paris, France; Department of Neurology Groupe Hospitalier Pitié‐Salpêtrière Paris France
| | - Eavan M. McGovern
- Assistance Publique‐Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié‐Salpêtrière, Paris, France; Department of Neurology Groupe Hospitalier Pitié‐Salpêtrière Paris France
- Department of Neurology St Vincent's University Hospital Dublin Dublin Ireland
| | | | - Stéphane Thobois
- University of Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France; Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C Bron France
| | - Christine Tranchant
- Service de Neurologie Hôpitaux Universitaires de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM‐U964/CNRS‐UMR7104/Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg Strasbourg France
| | - David Grabli
- Sorbonne Université Paris, France; Inserm U1127, CNRS UMR 7225, UM 75, ICM Paris France
- Assistance Publique‐Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié‐Salpêtrière, Paris, France; Department of Neurology Groupe Hospitalier Pitié‐Salpêtrière Paris France
| | - Bertrand Degos
- Assistance Publique‐Hôpitaux de Paris, Department of Neurology Hôpital Avicennes Bobigny France
| | - Jean‐Christophe Corvol
- Assistance Publique‐Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié‐Salpêtrière, Paris, France; Department of Neurology Groupe Hospitalier Pitié‐Salpêtrière Paris France
| | | | | | - Jean‐Luc Houeto
- Service de Neurologie, CIC‐INSERM 1402, CHU de Poitiers Poitiers France
| | - Adrian Degardin
- Department of Neurology Centre hospitalier de Tourcoing Tourcoing France
| | - Luc Defebvre
- Université de Lille, CHU Lille, INSERM, U1171–Degenerative & Vascular Cognitive Disorders, Lille, France; Lille Centre of Excellence for Neurodegenerative Diseases (LiCEND) Lille France
| | - Romain Valabrègue
- Sorbonne Université Paris, France; Inserm U1127, CNRS UMR 7225, UM 75, ICM Paris France
- Centre de NeuroImagerie de Recherche (CENIR) Sorbonne Université, UMR S 975, CNRS UMR 7225, ICM Paris France
| | - Marie Vidailhet
- Sorbonne Université Paris, France; Inserm U1127, CNRS UMR 7225, UM 75, ICM Paris France
- Assistance Publique‐Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié‐Salpêtrière, Paris, France; Department of Neurology Groupe Hospitalier Pitié‐Salpêtrière Paris France
| | - Pierre Pouget
- Sorbonne Université Paris, France; Inserm U1127, CNRS UMR 7225, UM 75, ICM Paris France
| | - Emmanuel Roze
- Sorbonne Université Paris, France; Inserm U1127, CNRS UMR 7225, UM 75, ICM Paris France
- Assistance Publique‐Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié‐Salpêtrière, Paris, France; Department of Neurology Groupe Hospitalier Pitié‐Salpêtrière Paris France
| | - Yulia Worbe
- Sorbonne Université Paris, France; Inserm U1127, CNRS UMR 7225, UM 75, ICM Paris France
- Department of Neurophysiology Saint‐Antoine Hospital, Assistance Publique‐Hôpitaux de Paris Paris France
| |
Collapse
|
87
|
Lee D, Kwak S, Chey J. Parallel Changes in Cognitive Function and Gray Matter Volume After Multi-Component Training of Cognitive Control (MTCC) in Adolescents. Front Hum Neurosci 2019; 13:246. [PMID: 31379541 PMCID: PMC6646454 DOI: 10.3389/fnhum.2019.00246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
Adolescence is a unique period in which higher cognition develops to adult-level, while plasticity of neuron and behavior is at one of its peak. Notably, cognitive training studies for adolescents has been sparse and neural correlates of the training effects yet to be established. This study investigated the effects of multi-component training of cognitive control (MTCC) in order to examine whether the training enhanced adolescents' cognitive control ability and if the effects were generalizable to other cognitive domains. Cognitive control refers to the ability to adjust a series of thoughts and behaviors in correspondence to an internal goal, and involves inhibition, working memory, shifting, and dual tasking as subcomponents. The participants were middle school students (aged 11-14) and randomly assigned to either a training group or an active control group. The training group performed 30 min of MTCC per day for 6 weeks. To identify the training effects, we examined the cognitive performance, regional gray matter, and their relationship. The training group showed modest improvement in a visuospatial fluid intelligence test (Block Design) after MTCC, which was not significant after correcting for multiple comparisons. In addition, the training effect on the gray matter volume (time × group interaction) was observed in the right inferior cortex (rIFC). While the control group showed a typical reduction in the rIFC volume, the training group showed a relative increase in the homologous region. The relative change in rIFC volume was associated with the change in Stroop performance. These results imply that MTCC may affect brain structure relevant to inhibitory control process.
Collapse
Affiliation(s)
| | | | - Jeanyung Chey
- Department of Psychology, Seoul National University, Seoul, South Korea
| |
Collapse
|
88
|
Schmitgen MM, Depping MS, Bach C, Wolf ND, Kubera KM, Vasic N, Hirjak D, Sambataro F, Wolf RC. Aberrant cortical neurodevelopment in major depressive disorder. J Affect Disord 2019; 243:340-347. [PMID: 30261449 DOI: 10.1016/j.jad.2018.09.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/07/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND There is strong neuroimaging evidence that cortical alterations represent a core pathophysiological feature of major depressive disorder (MDD). Differential contributions of cortical features of neurodevelopmental origin, which may distinctly contribute to MDD vulnerability, disease-onset, or symptom expression, are unclear at present. METHODS We investigated distinct markers of cortical neurodevelopment, i.e. local cortical gyrification (LGI) and thickness (CT) in patients with MDD (n = 38) and healthy controls (HC, n = 22) using 3 T structural magnetic resonance imaging data and surface-based data analysis techniques. CT and LGI were computed using the Computational Anatomy Toolbox (CAT12). Analyses were performed for the entire cortical surface followed by a complementary regions-of-interest approach. RESULTS MDD patients showed significantly greater LGI in frontal, cingulate, parietal, temporal, and occipital regions compared to HC (FDR-corrected at p < 0.05 using threshold-free cluster enhancement). No significant differences of CT were found. In the MDD-group, correlations were found between duration of illness in years and number of depressive episodes and LGI of frontal, temporal, and parietal regions (p < 0.05). LIMITATIONS Main limitations are the relatively modest sample size and a cross-sectional study design. We did not control for early environmental factors potentially influencing neurodevelopment, such as childhood trauma. We report associations uncorrected for multiple comparisons. CONCLUSIONS The data suggest different local trajectories of cortical change in MDD. In addition, our data support the notion that aberrant cortical development may serve as a vulnerability marker of MDD, as well as a potential predictor of disease course.
Collapse
Affiliation(s)
- Mike M Schmitgen
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Vosstrasse 4, 69115 Heidelberg, Germany
| | - Malte S Depping
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Vosstrasse 4, 69115 Heidelberg, Germany
| | - Claudia Bach
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Vosstrasse 4, 69115 Heidelberg, Germany
| | - Nadine D Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Vosstrasse 4, 69115 Heidelberg, Germany
| | - Katharina M Kubera
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Vosstrasse 4, 69115 Heidelberg, Germany
| | - Nenad Vasic
- Department of Psychiatry and Psychotherapy, Clinical Center Christophsbad, Göppingen, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences (DISM), University of Udine, Italy
| | - Robert C Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Vosstrasse 4, 69115 Heidelberg, Germany.
| |
Collapse
|
89
|
Momi D, Smeralda C, Sprugnoli G, Ferrone S, Rossi S, Rossi A, Di Lorenzo G, Santarnecchi E. Acute and long-lasting cortical thickness changes following intensive first-person action videogame practice. Behav Brain Res 2018; 353:62-73. [PMID: 29944915 DOI: 10.1016/j.bbr.2018.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/01/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Recent evidence shows how an extensive gaming experience might positively impact cognitive and perceptual functioning, leading to brain structural changes observed in cross-sectional studies. Importantly, changes seem to be game-specific, reflecting gameplay styles and therefore opening to the possibility of tailoring videogames according to rehabilitation and enhancement purposes. However, whether if such brain effects can be induced even with limited gaming experience, and whether if they can outlast the gaming period, is still unknown. Here we quantified both cognitive and grey matter thickness changes following 15 daily gaming sessions based on a modified version of a 3D first-person shooter (FPS) played in laboratory settings. Twenty-nine healthy participants were randomly assigned to a control or a gaming group and underwent a cognitive assessment, an in-game performance evaluation and structural magnetic resonance imaging before (T0), immediately after (T1) and three months after the end of the experiment (T2). At T1, a significant increase in thickness of the bilateral parahippocampal cortex (PHC), somatosensory cortex (S1), superior parietal lobule (SPL) and right insula were observed. Changes in S1 matched the hand representation bilaterally, while PHC changes corresponded to the parahippocampal place area (PPA). Surprisingly, changes in thickness were still present at T2 for S1, PHC, SPL and right insula as compared to T0. Finally, surface-based regression identified the lingual gyrus as the best predictor of changes in game performance at T1. Results stress the specific impact of core game elements, such as spatial navigation and visuomotor coordination on structural brain properties, with effects outlasting even a short intensive gaming period.
Collapse
Affiliation(s)
- Davide Momi
- Brain Investigation & Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - Carmelo Smeralda
- Brain Investigation & Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - Giulia Sprugnoli
- Brain Investigation & Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - Salvatore Ferrone
- Brain Investigation & Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - Simone Rossi
- Brain Investigation & Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Siena Robotics and Systems Lab (SIRS-Lab), Engineering and Mathematics Department, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandro Rossi
- Brain Investigation & Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology, Chair of Psychiatry, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Emiliano Santarnecchi
- Brain Investigation & Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
90
|
Seiger R, Ganger S, Kranz GS, Hahn A, Lanzenberger R. Cortical Thickness Estimations of FreeSurfer and the CAT12 Toolbox in Patients with Alzheimer's Disease and Healthy Controls. J Neuroimaging 2018; 28:515-523. [PMID: 29766613 PMCID: PMC6174993 DOI: 10.1111/jon.12521] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/23/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Automated cortical thickness (CT) measurements are often used to assess gray matter changes in the healthy and diseased human brain. The FreeSurfer software is frequently applied for this type of analysis. The computational anatomy toolbox (CAT12) for SPM, which offers a fast and easy‐to‐use alternative approach, was recently made available. METHODS In this study, we compared region of interest (ROI)‐wise CT estimations of the surface‐based FreeSurfer 6 (FS6) software and the volume‐based CAT12 toolbox for SPM using 44 elderly healthy female control subjects (HC). In addition, these 44 HCs from the cross‐sectional analysis and 34 age‐ and sex‐matched patients with Alzheimer's disease (AD) were used to assess the potential of detecting group differences for each method. Finally, a test‐retest analysis was conducted using 19 HC subjects. All data were taken from the OASIS database and MRI scans were recorded at 1.5 Tesla. RESULTS A strong correlation was observed between both methods in terms of ROI mean CT estimates (R2 = .83). However, CAT12 delivered significantly higher CT estimations in 32 of the 34 ROIs, indicating a systematic difference between both approaches. Furthermore, both methods were able to reliably detect atrophic brain areas in AD subjects, with the highest decreases in temporal areas. Finally, FS6 as well as CAT12 showed excellent test‐retest variability scores. CONCLUSION Although CT estimations were systematically higher for CAT12, this study provides evidence that this new toolbox delivers accurate and robust CT estimates and can be considered a fast and reliable alternative to FreeSurfer.
Collapse
Affiliation(s)
- Rene Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Sebastian Ganger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Laboratory of Neuropsychology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
91
|
Muthulingam J, Haas S, Hansen TM, Laurberg S, Lundby L, Jørgensen HS, Drewes AM, Krogh K, Frøkjaer JB. Microstructural white matter brain abnormalities in patients with idiopathic fecal incontinence. Neurogastroenterol Motil 2018; 30. [PMID: 28730720 DOI: 10.1111/nmo.13164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/20/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abnormal central nervous system processing of visceral sensation may be a part of the pathogenesis behind idiopathic fecal incontinence (IFI). Our aim was to characterize brain differences in patients with IFI and healthy controls by means of structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). METHODS In 21 female patients with IFI and 15 female healthy controls, whole-brain structural differences in gray matter volume (GMV), cortical thickness, and white matter tracts fractional anisotropy (FA) were quantified. For this purpose, we used voxel-based morphometry, surface based morphometry and tract-based spatial statistic, respectively. Furthermore, associations between structural brain characteristics and latencies of rectal sensory evoked electroencephalography potentials were determined. KEY RESULTS Compared to healthy controls, IFI patients had significantly reduced FA values, reflecting reduced white matter tract integrity, in the left hemisphere superior longitudinal fasciculus (SLF), posterior thalamic radiation, and middle frontal gyrus (MFG), all P<.05. No differences were observed in GMV or in cortical thickness. The reduced FA values in the SLF and MFG were correlated with prolonged latencies of cortical potentials evoked by rectal stimuli (all P<.05). CONCLUSIONS & INFERENCES This explorative study suggests that IFI patients have no macrostructural brain changes, but exhibit microstructural changes in white matter tracts relevant for sensory processing. The clinical relevance of this finding is supported by its correlations with prolonged latencies of cortical potentials evoked by rectal stimulation. This supports the theories of central nervous system changes as part of the pathogenesis in IFI patients.
Collapse
Affiliation(s)
- J Muthulingam
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - S Haas
- Department of Surgery P, Aarhus University Hospital, Aarhus, Denmark
| | - T M Hansen
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - S Laurberg
- Department of Surgery P, Aarhus University Hospital, Aarhus, Denmark
| | - L Lundby
- Department of Surgery P, Aarhus University Hospital, Aarhus, Denmark
| | - H S Jørgensen
- Institute for Clinical Medicine - The MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - A M Drewes
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark.,Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - K Krogh
- Neurogastroenterology Unit, Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - J B Frøkjaer
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
92
|
Kinno R, Shiromaru A, Mori Y, Futamura A, Kuroda T, Yano S, Murakami H, Ono K. Differential Effects of the Factor Structure of the Wechsler Memory Scale-Revised on the Cortical Thickness and Complexity of Patients Aged Over 75 Years in a Memory Clinic Setting. Front Aging Neurosci 2017; 9:405. [PMID: 29270122 PMCID: PMC5725440 DOI: 10.3389/fnagi.2017.00405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/24/2017] [Indexed: 11/26/2022] Open
Abstract
The Wechsler Memory Scale-Revised (WMS-R) is one of the internationally well-known batteries for memory assessment in a general memory clinic setting. Several factor structures of the WMS-R for patients aged under 74 have been proposed. However, little is known about the factor structure of the WMS-R for patients aged over 75 years and its neurological significance. Thus, we conducted exploratory factor analysis to determine the factor structure of the WMS-R for patients aged over 75 years in a memory clinic setting. Regional cerebral blood flow (rCBF) was calculated from single-photon emission computed tomography data. Cortical thickness and cortical fractal dimension, as the marker of cortical complexity, were calculated from high resolution magnetic resonance imaging data. We found that the four factors appeared to be the most appropriate solution to the model, including recognition memory, paired associate memory, visual-and-working memory, and attention as factors. Patients with mild cognitive impairments showed significantly higher factor scores for paired associate memory, visual-and-working memory, and attention than patients with Alzheimer's disease. Regarding the neuroimaging data, the factor scores for paired associate memory positively correlated with rCBF in the left pericallosal and hippocampal regions. Moreover, the factor score for paired associate memory showed most robust correlations with the cortical thickness in the limbic system, whereas the factor score for attention correlated with the cortical thickness in the bilateral precuneus. Furthermore, each factor score correlated with the cortical fractal dimension in the bilateral frontotemporal regions. Interestingly, the factor scores for the visual-and-working memory and attention selectively correlated with the cortical fractal dimension in the right posterior cingulate cortex and right precuneus cortex, respectively. These findings demonstrate that recognition memory, paired associate memory, visual-and-working memory, and attention can be crucial factors for interpreting the WMS-R results of elderly patients aged over 75 years in a memory clinic setting. Considering these findings, the results of WMS-R in elderly patients aged over 75 years in a memory clinic setting should be cautiously interpreted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
93
|
Zhuang Y, Zeng X, Wang B, Huang M, Gong H, Zhou F. Cortical Surface Thickness in the Middle-Aged Brain with White Matter Hyperintense Lesions. Front Aging Neurosci 2017; 9:225. [PMID: 28769784 PMCID: PMC5511819 DOI: 10.3389/fnagi.2017.00225] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/30/2017] [Indexed: 12/27/2022] Open
Abstract
Background and purpose: Previous voxel-based morphometry (VBM) studies have suggested that cortical atrophy is regionally distributed in middle-aged subjects with white matter hyperintense (WMH) lesions. However, few studies have assessed cortical thickness in middle-aged WMH subjects. In this study, we examined cortical thickness as well as cortical morphometry associated with the presence of WMH lesion load in middle-aged subjects. Participants and methods: Thirty-six middle-aged subjects with WMH lesions (WMH group) and without clinical cognitive impairment, and 34 demographically matched healthy control subjects (HCS group) participated in the study. Cortical thickness was estimated using an automated Computational Anatomy Toolbox (CAT12) as the distance between the gray-white matter border and the pial surface. Individual WMH lesions were manually segmented, and WMH loads were measured. Statistical cortical maps were created to estimate differences in cortical thickness between groups based on this cortex-wide analysis. The relationship between WMH lesion loads and cerebral cortical thickness was also analyzed in CAT12. Results: Cortical thickness was significantly lower in the WMH group than in the controls in multimodal integration regions, including the right and left dorsal anterior cingulate cortex (dACC), right and left frontal operculum (fO), right and left operculum parietale (OP), right and left middle temporal gyrus (MTG), and left superior temporal gyrus (STG; P < 0.01, family-wise error (FWE)-corrected). Additionally, cortical thickness was also lower in the recognition regions that contained the right temporal pole (TP), the right and left fusiform gyrus, and the left rolandic operculum (RO; P < 0.01, FWE-corrected). The results revealed that in the left superior parietal lobule (SPL), cortical thickness was higher in the WMH group than in the HCS group (P < 0.01, FWE-corrected). A voxel-wise negative correlation was found between cortical thickness and WMH lesion loads in the right orbitofrontal cortex (OFC), right dorsolateral prefrontal cortex (DLPFC), and right subcallosal cortex (P < 0.01, FWE-corrected). Conclusion: The main findings of this study suggest that middle-aged WMH subjects are more likely to exhibit cortical thinning, especially in multimodal integration and recognition- and motor-related regions. The current morphometry data provide further evidence for WMH-associated structural plasticity.
Collapse
Affiliation(s)
- Ying Zhuang
- Department of Oncology, The Second Hospital of Nanchang CityNanchang, China
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital, Nanchang UniversityNanchang, China
| | - Bo Wang
- Department of Radiology, The First Affiliated Hospital, Nanchang UniversityNanchang, China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital, Nanchang UniversityNanchang, China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital, Nanchang UniversityNanchang, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang UniversityNanchang, China
| |
Collapse
|
94
|
Volume versus surface-based cortical thickness measurements: A comparative study with healthy controls and multiple sclerosis patients. PLoS One 2017; 12:e0179590. [PMID: 28683072 PMCID: PMC5500013 DOI: 10.1371/journal.pone.0179590] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/01/2017] [Indexed: 12/21/2022] Open
Abstract
The cerebral cortex is a highly folded outer layer of grey matter tissue that plays a key role in cognitive functions. In part, alterations of the cortex during development and disease can be captured by measuring the cortical thickness across the whole brain. Available software tools differ with regard to labor intensity and computational demands. In this study, we compared the computational anatomy toolbox (CAT), a recently proposed volume-based tool, with the well-established surface-based tool FreeSurfer. We observed that overall thickness measures were highly inter-correlated, although thickness estimates were systematically lower in CAT than in FreeSurfer. Comparison of multiple sclerosis (MS) patients with age-matched healthy control subjects showed highly comparable clusters of MS-related thinning for both methods. Likewise, both methods yielded comparable clusters of age-related cortical thinning, although correlations between age and average cortical thickness were stronger for FreeSurfer. Our data suggest that, for the analysis of cortical thickness, the volume-based CAT tool can be regarded a considerable alternative to the well-established surface-based FreeSurfer tool.
Collapse
|
95
|
Henderson JA, Robinson PA. Using geometry to uncover relationships between isotropy, homogeneity, and modularity in cortical connectivity. Brain Connect 2013; 3:423-37. [PMID: 23802922 DOI: 10.1089/brain.2013.0151] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inferences of strong modular and hierarchical structure from some cortical network studies conflict with the broadly isotropic homogeneous connectivity that has been found to a first approximation in classical anatomical studies. This conflict is resolved via consideration of the geometry of the cortex. A new geometrically based connection matrix (CM) visualization method is used to better compare experimental CMs with model CMs and thereby minimize appearance of artifacts. Model networks based on spherical geometry containing similar isotropic, homogeneous connection distributions to the experiment are shown to reproduce, interrelate, and explain key properties of experimentally derived networks, such as clustering coefficient (CC), path length, mean degree, and modularity score, using only two parameters that are fitted to an experimental spatial connectivity distribution. A greater CC in the experiment than the model indicates that, while isotropy and homogeneity of connections is a good first approximation, connections at shorter range may exhibit additional perturbations that increase clustering. These geometrically based models provide a comparative framework to assist in the next stage of revealing and analyzing anisotropic and/or inhomogeneous connections in data and their effects on network properties and visualization.
Collapse
|
96
|
Yotter RA, Dahnke R, Thompson PM, Gaser C. Topological correction of brain surface meshes using spherical harmonics. Hum Brain Mapp 2011; 32:1109-24. [PMID: 20665722 PMCID: PMC6869946 DOI: 10.1002/hbm.21095] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 03/23/2010] [Accepted: 04/19/2010] [Indexed: 11/06/2022] Open
Abstract
Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological defects using a surface reconstruction that relies on spherical harmonics. First, during reparameterization of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to select either a "fill" or "cut" operation for each topological defect. We modify the spherical map of the uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding triangle during reparameterization. Then, a low-pass filtered alternative reconstruction based on spherical harmonics is patched into the reconstructed surface in areas that previously contained defects. Self-intersections are repaired using a local smoothing algorithm that limits the number of affected points to less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity. We found that the corrected reconstructions have reduced distance error metrics compared with a "gold standard" surface created by averaging 12 scans of the same brain. Ninety-three percent of the topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process takes 6-8 min of computation time. Further improvements are discussed, especially regarding the use of the T1-weighted image to make corrections.
Collapse
|