51
|
Sexton JP, Montiel J, Shay JE, Stephens MR, Slatyer RA. Evolution of Ecological Niche Breadth. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-023003] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
How ecological niche breadth evolves is central to adaptation and speciation and has been a topic of perennial interest. Niche breadth evolution research has occurred within environmental, ecological, evolutionary, and biogeographical contexts, and although some generalities have emerged, critical knowledge gaps exist. Performance breadth trade-offs, although long invoked, may not be common determinants of niche breadth evolution or limits. Niche breadth can expand or contract from specialist or generalist lineages, and so specialization need not be an evolutionary dead end. Whether niche breadth determines diversification and distribution breadth and how niche breadth is partitioned among individuals and populations within a species are important but particularly understudied topics. Molecular genetic and phylogenetic techniques have greatly expanded understanding of niche breadth evolution, but field studies of how niche breadth evolves are essential for providing mechanistic details and allowing the development of comprehensive theory and improved prediction of biological responses under global change.
Collapse
Affiliation(s)
- Jason P. Sexton
- School of Natural Sciences, University of California, Merced, California 95343
| | - Jorge Montiel
- School of Natural Sciences, University of California, Merced, California 95343
| | - Jackie E. Shay
- School of Natural Sciences, University of California, Merced, California 95343
| | - Molly R. Stephens
- School of Natural Sciences, University of California, Merced, California 95343
| | - Rachel A. Slatyer
- Department of Entomology, University of Wisconsin–Madison, Madison, Wisconsin 53706
| |
Collapse
|
52
|
Leong W, Sun PY, Edmands S. Latitudinal Clines in Temperature and Salinity Tolerance in Tidepool Copepods. J Hered 2017; 109:71-77. [DOI: 10.1093/jhered/esx061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
|
53
|
Lima TG, Willett CS. Locally adapted populations of a copepod can evolve different gene expression patterns under the same environmental pressures. Ecol Evol 2017. [PMID: 28649343 PMCID: PMC5478056 DOI: 10.1002/ece3.3016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As populations diverge in allopatry, but under similar thermal conditions, do similar thermal performance phenotypes evolve by maintaining similar gene expression patterns, or does genetic divergence lead to divergent patterns of gene expression between these populations? We used genetically divergent populations of the copepod Tigriopus californicus, whose performance at different thermal conditions is well characterized, to investigate transcriptome-wide expression responses under two different thermal regimes: (1) a nonvariable temperature regime and (2) a regime with variable temperature. Our results show the expression profiles of the response to these regimes differed substantially among populations, even for populations that are geographically close. This pattern was accentuated when populations were raised in the variable temperature environment. Less heat-tolerant populations mounted strong but divergent responses to the different thermal regimes, with a large heat-shock response observed in one population, and an apparent reduction in the expression of genes involved in basic cellular processes in the other. Our results suggest that as populations diverge in allopatry, they may evolve starkly different responses to changes in temperature, at the gene expression level, while maintaining similar thermal performance phenotypes.
Collapse
Affiliation(s)
- Thiago G Lima
- Department of Biology University of North Carolina at Chapel Hill Chapel Hill NC USA.,Present address: Marine Biology Research Division Scripps Institution of Oceanography La Jolla CA USA
| | - Christopher S Willett
- Department of Biology University of North Carolina at Chapel Hill Chapel Hill NC USA
| |
Collapse
|
54
|
Hangartner S, Dworkin I, DeNieu M, Hoffmann AA. Does increased heat resistance result in higher susceptibility to predation? A test using Drosophila melanogaster selection and hardening. J Evol Biol 2017; 30:1153-1164. [PMID: 28386918 DOI: 10.1111/jeb.13084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 11/27/2022]
Abstract
Heat resistance of ectotherms can be increased both by plasticity and evolution, but these effects may have trade-offs resulting from biotic interactions. Here, we test for predation costs in Drosophila melanogaster populations with altered heat resistance produced by adult hardening and directional selection for increased heat resistance. In addition, we also tested for genetic trade-offs by testing heat resistance in lines that have evolved under increased predation risk. We show that while 35/37 °C hardening increases heat resistance as expected, it does not increase predation risk from jumping spiders or mantids; in fact, there was an indication that survival may have increased under predation following a triple 37 °C compared to a single 35 °C hardening treatment. Flies that survived a 39 °C selection cycle showed lower survival under predation, suggesting a predation cost of exposure to a more severe heat stress. There was, however, no correlated response to selection because survival did not differ between control and selected lines after selection was relaxed for one or two generations. In addition, lines selected for increased predation risk did not differ in heat resistance. Our findings suggest independent evolutionary responses to predation and heat as measured in laboratory assays, and no costs of heat hardening on susceptibility to predation.
Collapse
Affiliation(s)
- S Hangartner
- School of Biological Sciences, Monash University, Clayton, Vic., Australia.,School of BioSciences, University of Melbourne, Bio21 Institute, Parkville, Vic., Australia
| | - I Dworkin
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - M DeNieu
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - A A Hoffmann
- School of BioSciences, University of Melbourne, Bio21 Institute, Parkville, Vic., Australia
| |
Collapse
|
55
|
Comte L, Olden JD. Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity. GLOBAL CHANGE BIOLOGY 2017; 23:728-736. [PMID: 27406402 DOI: 10.1111/gcb.13427] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/16/2016] [Accepted: 07/04/2016] [Indexed: 05/26/2023]
Abstract
Understanding the extent to which phylogenetic constraints and adaptive evolutionary forces help define the physiological sensitivity of species is critical for anticipating climate-related impacts in aquatic environments. Yet, whether upper thermal tolerance and plasticity are shaped by common evolutionary and environmental mechanisms remains to be tested. Based on a systematic literature review, we investigated this question in 82 freshwater fish species (27 families) representing 829 experiments for which data existed on upper thermal limits and it was possible to estimate plasticity using upper thermal tolerance reaction norms. Our findings indicated that there are strong phylogenetic signals in both thermal tolerances and acclimation capacity, although it is weaker in the latter. We found that upper thermal tolerances are correlated with the temperatures experienced by species across their range, likely because of spatially autocorrelated processes in which closely related species share similar selection pressures and limited dispersal from ancestral environments. No association with species thermal habitat was found for acclimation capacity. Instead, species with the lowest physiological plasticity also displayed the highest thermal tolerances, reflecting to some extent an evolutionary trade-off between these two traits. Although our study demonstrates that macroecological climatic niche features measured from species distributions are likely to provide a good approximation of freshwater fish sensitivity to climate change, disentangling the mechanisms underlying both acute and chronic heat tolerances may help to refine predictions regarding climate change-related range shifts and extinctions.
Collapse
Affiliation(s)
- Lise Comte
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
56
|
Kelly MW, Pankey MS, DeBiasse MB, Plachetzki DC. Adaptation to heat stress reduces phenotypic and transcriptional plasticity in a marine copepod. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12725] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Morgan W. Kelly
- Department of Biological Sciences Louisiana State University Baton Rouge LA70803 USA
| | - M. Sabrina Pankey
- Molecular, Cellular, & Biomedical Sciences University of New Hampshire Rudman Hall 46 College Rd. Durham NH03824‐2618 USA
| | - Melissa B. DeBiasse
- Department of Biological Sciences Louisiana State University Baton Rouge LA70803 USA
| | - David C. Plachetzki
- Molecular, Cellular, & Biomedical Sciences University of New Hampshire Rudman Hall 46 College Rd. Durham NH03824‐2618 USA
| |
Collapse
|
57
|
Kelly MW, DeBiasse MB, Villela VA, Roberts HL, Cecola CF. Adaptation to climate change: trade-offs among responses to multiple stressors in an intertidal crustacean. Evol Appl 2016; 9:1147-1155. [PMID: 27695522 PMCID: PMC5039327 DOI: 10.1111/eva.12394] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/12/2016] [Indexed: 01/06/2023] Open
Abstract
Trade-offs may influence both physiological and evolutionary responses to co-occurring stressors, but their effects on both plastic and adaptive responses to climate change are poorly understood. To test for genetic and physiological trade-offs incurred in tolerating multiple stressors, we hybridized two populations of the intertidal copepod Tigriopus californicus that were divergent for both heat and salinity tolerance. Starting in the F2 generation, we selected for increased tolerance of heat, low salinity, and high salinity in replicate lines. After five generations of selection, heat-selected lines had greater heat tolerance but lower fecundity, indicating an energetic cost to tolerance. Lines selected for increased salinity tolerance did not show evidence of adaptation to their respective environments; however, hypo-osmotic selection lines showed substantial loss of tolerance to hyperosmotic stress. Neither of the salinity selection regimes resulted in diminished heat tolerance at ambient salinity; however, simultaneous exposure to heat and hypo-osmotic stress led to decreased heat tolerance, implying a physiological trade-off in tolerance to the two stressors. When we quantified the transcriptomic response to heat and salinity stress via RNA sequencing, we observed little overlap in the stress responses, suggesting the observed synergistic effects of heat and salinity stress were driven by competing energetic demands, rather than shared stress response pathways.
Collapse
Affiliation(s)
- Morgan W Kelly
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Melissa B DeBiasse
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Vidal A Villela
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Hope L Roberts
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Colleen F Cecola
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| |
Collapse
|
58
|
Bernatowicz PP, Kotwica-Rolinska J, Joachimiak E, Sikora A, Polanska MA, Pijanowska J, Bębas P. Temporal Expression of the Clock Genes in the Water FleaDaphnia pulex(Crustacea: Cladocera). ACTA ACUST UNITED AC 2016; 325:233-54. [DOI: 10.1002/jez.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Piotr P. Bernatowicz
- Department of Paleobiology and Evolution, Institute of Zoology, Faculty of Biology; University of Warsaw; Biological and Chemical Research Centre; Warsaw Poland
| | - Joanna Kotwica-Rolinska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology; University of Warsaw; Warsaw Poland
| | - Ewa Joachimiak
- Department of Cell Biology; Nencki Institute of Experimental Biology PAS; Warsaw Poland
| | - Anna Sikora
- Department of Hydrobiology, Institute of Zoology, Faculty of Biology; University of Warsaw; Biological and Chemical Research Centre; Warsaw Poland
| | - Marta A. Polanska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology; University of Warsaw; Warsaw Poland
| | - Joanna Pijanowska
- Department of Hydrobiology, Institute of Zoology, Faculty of Biology; University of Warsaw; Biological and Chemical Research Centre; Warsaw Poland
| | - Piotr Bębas
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology; University of Warsaw; Warsaw Poland
| |
Collapse
|
59
|
Pereira RJ, Barreto FS, Pierce NT, Carneiro M, Burton RS. Transcriptome-wide patterns of divergence during allopatric evolution. Mol Ecol 2016; 25:1478-93. [DOI: 10.1111/mec.13579] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/03/2015] [Accepted: 01/06/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Ricardo J. Pereira
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
- Centre for GeoGenetics; Natural History Museum of Denmark; University of Copenhagen; Øster Voldgade 5-7 1350 Copenhagen Denmark
| | - Felipe S. Barreto
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
- Department of Integrative Biology; Oregon State University; Corvallis OR 97331 USA
| | - N. Tessa Pierce
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
| | - Miguel Carneiro
- CIBIO; Centro de Investigação em Biodiversidade e Recursos Genéticos; Campus Agrário de Vairão 4485-661 Vairão Portugal
| | - Ronald S. Burton
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
| |
Collapse
|
60
|
Torossian J, Kordas R, Helmuth B. Cross-Scale Approaches to Forecasting Biogeographic Responses to Climate Change. ADV ECOL RES 2016. [DOI: 10.1016/bs.aecr.2016.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
61
|
Alexander HJ, Richardson JML, Edmands S, Anholt BR. Sex without sex chromosomes: genetic architecture of multiple loci independently segregating to determine sex ratios in the copepod Tigriopus californicus. J Evol Biol 2015; 28:2196-207. [DOI: 10.1111/jeb.12743] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 11/27/2022]
Affiliation(s)
- H. J. Alexander
- Bamfield Marine Sciences Centre; Bamfield BC Canada
- Department of Biology; University of Victoria; Victoria BC Canada
| | - J. M. L. Richardson
- Bamfield Marine Sciences Centre; Bamfield BC Canada
- Department of Biology; University of Victoria; Victoria BC Canada
| | - S. Edmands
- Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - B. R. Anholt
- Bamfield Marine Sciences Centre; Bamfield BC Canada
- Department of Biology; University of Victoria; Victoria BC Canada
| |
Collapse
|
62
|
Sun PY, Foley HB, Bao VWW, Leung KMY, Edmands S. Variation in tolerance to common marine pollutants among different populations in two species of the marine copepod Tigriopus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16143-16152. [PMID: 26070741 DOI: 10.1007/s11356-015-4846-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Geographical variation in chemical tolerance within a species can significantly influence results of whole animal bioassays, yet a literature survey showed that the majority of articles using bioassays did not provide detail on the original field collection site of their test specimens confounding the ability for accurate replication and comparison of results. Biological variation as a result of population-specific tolerance, if not addressed, can be misinterpreted as experimental error. Our studies of two marine copepod species, Tigriopus japonicus and Tigriopus californicus, found significant intra- and inter-specific variation in tolerance to copper and tributyltin. Because both species tolerate copper concentrations orders of magnitude higher than those found in coastal waters, difference in copper tolerance may be a by-product of adaptation to other stressors such as high temperature. Controlling for inter-population tolerance variation will greatly strengthen the application of bioassays in chemical toxicity tests.
Collapse
Affiliation(s)
- Patrick Y Sun
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, 3616 Trousdale PKWY STE 107, Los Angeles, CA, 90089, USA.
| | - Helen B Foley
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, 3616 Trousdale PKWY STE 107, Los Angeles, CA, 90089, USA
| | - Vivien W W Bao
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Suzanne Edmands
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, 3616 Trousdale PKWY STE 107, Los Angeles, CA, 90089, USA
| |
Collapse
|
63
|
Hong BC, Shurin JB. Latitudinal variation in the response of tidepool copepods to mean and daily range in temperature. Ecology 2015; 96:2348-59. [DOI: 10.1890/14-1695.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
64
|
Connor KM, Robles CD. Within-site variation of growth rates and terminal sizes in Mytilus californianus along wave exposure and tidal gradients. THE BIOLOGICAL BULLETIN 2015; 228:39-51. [PMID: 25745099 DOI: 10.1086/bblv228n1p39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mytilus californianus is a foundation species of rocky shores of western North America. Its dominance depends on rapid growth to large sizes, which confers an advantage in size-dependent species interactions. Initial rates of growth and final (terminal) sizes of the mussels depend on environmental factors. Prior comparisons of growth made over large spatial scales (tens of meters to hundreds of kilometers) indicate that temperature, submergence time, and wave exposure affect growth. However, there are few studies quantifying variation in temperature, wave force, and mussel growth parameters at small scales within local populations-that is, meter-level increments. Such measures are necessary to better understand the consequences of the complex spatial mosaic of physical factors in the intertidal zone. We measured variation in temperature, wave force, size-specific shell growth, and terminal size at 3-4-m intervals along horizontal contours within two mussel beds separated by 15 ds of latitude. Both mussel beds showed the same general trends: growth rates attenuated along gradual clines from low and wave-exposed to high shore and sheltered. For example, young adults from low and wave-exposed microhabitats grew 9- and 6-fold higher than those from high-shore-wave-sheltered points. While higher flow may promote growth by enhancing feeding, it also appears to exert a positive effect by moderating energetically costly temperature stress. Consistent with the growth rate findings, cumulative degree-hours explained 83% and 69% of the variation of terminal sizes in regressions for the two locations.
Collapse
Affiliation(s)
- Kwasi M Connor
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697; and
| | - Carlos D Robles
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Drive, Los Angeles, California 90032
| |
Collapse
|
65
|
Gleason LU, Burton RS. RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snailChlorostoma funebralis. Mol Ecol 2015; 24:610-27. [DOI: 10.1111/mec.13047] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Lani U. Gleason
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
| | - Ronald S. Burton
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
| |
Collapse
|
66
|
Barreto FS, Schoville SD, Burton RS. Reverse genetics in the tide pool: knock-down of target gene expression via RNA interference in the copepodTigriopus californicus. Mol Ecol Resour 2014; 15:868-79. [DOI: 10.1111/1755-0998.12359] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Felipe S. Barreto
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California; San Diego La Jolla CA 92037 USA
| | - Sean D. Schoville
- Department of Entomology; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Ronald S. Burton
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California; San Diego La Jolla CA 92037 USA
| |
Collapse
|
67
|
Wallace GT, Kim TL, Neufeld CJ. Interpopulational variation in the cold tolerance of a broadly distributed marine copepod. CONSERVATION PHYSIOLOGY 2014; 2:cou041. [PMID: 27293662 PMCID: PMC4732475 DOI: 10.1093/conphys/cou041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 06/06/2023]
Abstract
Latitudinal trends in cold tolerance have been observed in many terrestrial ectotherms, but few studies have investigated interpopulational variation in the cold physiology of marine invertebrates. Here, the intertidal copepod Tigriopus californicus was used as a model system to study how local adaptation influences the cold tolerance of a broadly distributed marine crustacean. Among five populations spanning 18° in latitude, the following three metrics were used to compare cold tolerance: the temperature of chill-coma onset, the chill-coma recovery time and post-freezing recovery. In comparison to copepods from warmer southern latitudes, animals from northern populations exhibited lower chill-coma onset temperatures, shorter chill-coma recovery times and faster post-freezing recovery rates. Importantly, all three metrics showed a consistent latitudinal trend, suggesting that any single metric could be used equivalently in future studies investigating latitudinal variation in cold tolerance. Our results agree with previous studies showing that populations within a single species can display strong local adaptation to spatially varying climatic conditions. Thus, accounting for local adaptation in bioclimate models will be useful for understanding how broadly distributed species like T. californicus will respond to anthropogenic climate change.
Collapse
Affiliation(s)
- Gemma T. Wallace
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Biology Department, Whitman College, Walla Walla, WA 99362, USA
| | - Tiffany L. Kim
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Environmental Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Christopher J. Neufeld
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Quest University Canada, Squamish, BC, Canada VB8 0N8
| |
Collapse
|
68
|
Sun PY, Foley HB, Handschumacher L, Suzuki A, Karamanukyan T, Edmands S. Acclimation and adaptation to common marine pollutants in the copepod Tigriopus californicus. CHEMOSPHERE 2014; 112:465-471. [PMID: 25048941 DOI: 10.1016/j.chemosphere.2014.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/07/2014] [Accepted: 05/11/2014] [Indexed: 06/03/2023]
Abstract
Establishing water quality criteria using bioassays is complicated by variation in chemical tolerance between populations. Two major contributors to this variation are acclimation and adaptation, which are both linked to exposure history, but differ in how long their effects are maintained. Our study examines how tolerance changes over multiple generations of exposure to two common marine pollutants, copper (Cu) and tributyltin oxide (TBTO), in a sexually reproducing marine copepod, Tigriopus californicus. Lines of T. californicus were chronically exposed to sub-lethal levels of Cu and TBTO for 12 generations followed by a recovery period of 3 generations in seawater control conditions. At each generation, the average number of offspring produced and survived to 28 d was determined and used as the metric of tolerance. Lines exposed to Cu and TBTO showed an overall increase in tolerance over time. Increased Cu tolerance arose by generation 3 in the chronically exposed lines and was lost after 3 generations in seawater control conditions. Increased TBTO tolerance was detected at generation 7 and was maintained even after 3 generations in seawater control conditions. It was concluded from this study that tolerance to Cu is consistent with acclimation, a quick gain and loss of tolerance. In contrast, TBTO tolerance is consistent with adaptation, in which onset of tolerance was delayed relative to an acclimation response and maintained in the absence of exposure. These findings illustrate that consideration of exposure history is necessary when using bioassays to measure chemical tolerance.
Collapse
Affiliation(s)
- Patrick Y Sun
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States.
| | - Helen B Foley
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States
| | - Lisa Handschumacher
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States
| | - Amanda Suzuki
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States
| | - Tigran Karamanukyan
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States
| | - Suzanne Edmands
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
69
|
Leducq JB, Charron G, Samani P, Dubé AK, Sylvester K, James B, Almeida P, Sampaio JP, Hittinger CT, Bell G, Landry CR. Local climatic adaptation in a widespread microorganism. Proc Biol Sci 2014; 281:20132472. [PMID: 24403328 DOI: 10.1098/rspb.2013.2472] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exploring the ability of organisms to locally adapt is critical for determining the outcome of rapid climate changes, yet few studies have addressed this question in microorganisms. We investigated the role of a heterogeneous climate on adaptation of North American populations of the wild yeast Saccharomyces paradoxus. We found abundant among-strain variation for fitness components across a range of temperatures, but this variation was only partially explained by climatic variation in the distribution area. Most of fitness variation was explained by the divergence of genetically distinct groups, distributed along a north-south cline, suggesting that these groups have adapted to distinct climatic conditions. Within-group fitness components were correlated with climatic conditions, illustrating that even ubiquitous microorganisms locally adapt and harbour standing genetic variation for climate-related traits. Our results suggest that global climatic changes could lead to adaptation to new conditions within groups, or changes in their geographical distributions.
Collapse
Affiliation(s)
- Jean-Baptiste Leducq
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, PROTEO, Pavillon Charles-Eugène-Marchand, , 1030 avenue de la Médecine - Université Laval, Québec, Quebec, Canada , G1V 0A6, Department of Biology, McGill University, , 1205 ave Docteur Penfield, Montreal, Quebec, Canada , H3A 1B1, Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, , 425-G Henry Mall, 2434 Genetics/Biotechnology Center, Madison, WI 53706-1580, USA, Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, , Caparica 2829-516, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Reusch TBH. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evol Appl 2014; 7:104-22. [PMID: 24454551 PMCID: PMC3894901 DOI: 10.1111/eva.12109] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/29/2013] [Indexed: 12/13/2022] Open
Abstract
I summarize marine studies on plastic versus adaptive responses to global change. Due to the lack of time series, this review focuses largely on the potential for adaptive evolution in marine animals and plants. The approaches were mainly synchronic comparisons of phenotypically divergent populations, substituting spatial contrasts in temperature or CO2 environments for temporal changes, or in assessments of adaptive genetic diversity within populations for traits important under global change. The available literature is biased towards gastropods, crustaceans, cnidarians and macroalgae. Focal traits were mostly environmental tolerances, which correspond to phenotypic buffering, a plasticity type that maintains a functional phenotype despite external disturbance. Almost all studies address coastal species that are already today exposed to fluctuations in temperature, pH and oxygen levels. Recommendations for future research include (i) initiation and analyses of observational and experimental temporal studies encompassing diverse phenotypic traits (including diapausing cues, dispersal traits, reproductive timing, morphology) (ii) quantification of nongenetic trans-generational effects along with components of additive genetic variance (iii) adaptive changes in microbe-host associations under the holobiont model in response to global change (iv) evolution of plasticity patterns under increasingly fluctuating environments and extreme conditions and (v) joint consideration of demography and evolutionary adaptation in evolutionary rescue approaches.
Collapse
Affiliation(s)
- Thorsten B H Reusch
- GEOMAR Helmholtz-Centre for Ocean Research Kiel, Marine Ecology - Evolutionary Ecology of Marine Fishes Kiel, Germany
| |
Collapse
|
71
|
Pereira RJ, Barreto FS, Burton RS. ECOLOGICAL NOVELTY BY HYBRIDIZATION: EXPERIMENTAL EVIDENCE FOR INCREASED THERMAL TOLERANCE BY TRANSGRESSIVE SEGREGATION INTIGRIOPUS CALIFORNICUS. Evolution 2013; 68:204-15. [DOI: 10.1111/evo.12254] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 08/16/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Ricardo J. Pereira
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California; San Diego, La Jolla CA 92093
| | - Felipe S. Barreto
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California; San Diego, La Jolla CA 92093
| | - Ronald S. Burton
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California; San Diego, La Jolla CA 92093
| |
Collapse
|
72
|
Manyak-Davis A, Bell TM, Sotka EE. The relative importance of predation risk and water temperature in maintaining Bergmann's rule in a marine ectotherm. Am Nat 2013; 182:347-58. [PMID: 23933725 DOI: 10.1086/671170] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Bergmann's rule-an increase in body size with latitude-correlates with latitudinal declines in ambient temperature and predation risk, but relatively few studies simultaneously explore the relative importance of these factors. Along temperate Atlantic shorelines, the isopod Idotea balthica from high latitudes are 53% longer on average than isopods from low latitudes. When reared at 6°-24°C, juveniles increased growth and development rates with temperature. Because the increase in growth rate with temperature outstripped increases in development rate, female size at maturity increased with temperature. This thermal sensitivity of growth cannot account for the latitudinal pattern in body size. Within temperature treatments, females from low latitudes reached sexual maturity at younger ages and at a smaller size than did females from higher latitudes. This shift in life-history strategy is predicted by latitudinal declines in predation pressure, which we tested using field-tethering experiments. Overall, isopods at low latitudes had a 44% greater mortality risk from daytime predators relative to isopods at higher latitudes. We conclude that a latitudinal gradient in predation risk, not temperature, is principally responsible for Bergmann's rule in I. balthica. Increases in body size during future warming of oceans may be constrained by local patterns of predation risk.
Collapse
Affiliation(s)
- Anna Manyak-Davis
- Grice Marine Laboratory and Department of Biology, College of Charleston, Charleston, SC 29412, USA
| | | | | |
Collapse
|
73
|
Foley BR, Rose CG, Rundle DE, Leong W, Edmands S. Postzygotic isolation involves strong mitochondrial and sex-specific effects in Tigriopus californicus, a species lacking heteromorphic sex chromosomes. Heredity (Edinb) 2013; 111:391-401. [PMID: 23860232 DOI: 10.1038/hdy.2013.61] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 11/09/2022] Open
Abstract
Detailed studies of the genetics of speciation have focused on a few model systems, particularly Drosophila. The copepod Tigriopus californicus offers an alternative that differs from standard animal models in that it lacks heteromorphic chromosomes (instead, sex determination is polygenic) and has reduced opportunities for sexual conflict, because females mate only once. Quantitative trait loci (QTL) mapping was conducted on reciprocal F2 hybrids between two strongly differentiated populations, using a saturated linkage map spanning all 12 autosomes and the mitochondrion. By comparing sexes, a possible sex ratio distorter was found but no sex chromosomes. Although studies of standard models often find an excess of hybrid male sterility factors, we found no QTL for sterility and multiple QTL for hybrid viability (indicated by non-Mendelian adult ratios) and other characters. Viability problems were found to be stronger in males, but the usual explanations for weaker hybrid males (sex chromosomes, sensitivity of spermatogenesis, sexual selection) cannot fully account for these male viability problems. Instead, higher metabolic rates may amplify deleterious effects in males. Although many studies of standard speciation models find the strongest genetic incompatibilities to be nuclear-nuclear (specifically X chromosome-autosome), we found the strongest deleterious interaction in this system was mito-nuclear. Consistent with the snowball theory of incompatibility accumulation, we found that trigenic interactions in this highly divergent cross were substantially more frequent (>6×) than digenic interactions. This alternative system thus allows important comparisons to studies of the genetics of reproductive isolation in more standard model systems.
Collapse
Affiliation(s)
- B R Foley
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
74
|
Kelly MW, Grosberg RK, Sanford E. Trade-offs, geography, and limits to thermal adaptation in a tide pool copepod. Am Nat 2013; 181:846-54. [PMID: 23669546 DOI: 10.1086/670336] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Antagonistic correlations among traits may slow the rate of adaptation to a changing environment. The tide pool copepod Tigriopus californicus is locally adapted to temperature, but within populations, the response to selection for increased heat tolerance plateaus rapidly, suggesting either limited variation within populations or costs of increased tolerance. To measure possible costs of thermal tolerance, we selected for increased upper lethal limits for 10 generations in 22 lines of T. californicus from six populations. Then, for each line, we measured six fitness-related traits. Selected lines showed an overall increase in male and female body sizes, fecundity, and starvation resistance, suggesting a small benefit from (rather than costs of) increased tolerance. The effect of selection on correlated traits also varied significantly by population for five traits, indicating that the genetic basis for the selection response differed among populations. Our results suggest that adaptation was limited by the presence of variation within isolated populations rather than by costs of increased tolerance.
Collapse
Affiliation(s)
- Morgan W Kelly
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
75
|
van Heerwaarden B, Sgrò CM. Multivariate analysis of adaptive capacity for upper thermal limits in Drosophila simulans. J Evol Biol 2013; 26:800-9. [PMID: 23517493 DOI: 10.1111/jeb.12090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/22/2012] [Accepted: 11/24/2012] [Indexed: 10/27/2022]
Abstract
Thermal tolerance is an important factor influencing the distribution of ectotherms, but our understanding of the ability of species to evolve different thermal limits is limited. Based on univariate measures of adaptive capacity, it has recently been suggested that species may have limited evolutionary potential to extend their upper thermal limits under ramping temperature conditions that better reflect heat stress in nature. To test these findings more broadly, we used a paternal half-sibling breeding design to estimate the multivariate evolutionary potential for upper thermal limits in Drosophila simulans. We assessed heat tolerance using static (basal and hardened) and ramping assays. Our analyses revealed significant evolutionary potential for all three measures of heat tolerance. Additive genetic variances were significantly different from zero for all three traits. Our G matrix analysis revealed that all three traits would contribute to a response to selection for increased heat tolerance. Significant additive genetic covariances and additive genetic correlations between static basal and hardened heat-knockdown time, marginally nonsignificant between static basal and ramping heat-knockdown time, indicate that direct and correlated responses to selection for increased upper thermal limits are possible. Thus, combinations of all three traits will contribute to the evolution of upper thermal limits in response to selection imposed by a warming climate. Reliance on univariate estimates of evolutionary potential may not provide accurate insight into the ability of organisms to evolve upper thermal limits in nature.
Collapse
Affiliation(s)
- B van Heerwaarden
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | | |
Collapse
|
76
|
Miller NA, Paganini AW, Stillman JH. Differential thermal tolerance and energetic trajectories during ontogeny in porcelain crabs, genus Petrolisthes. J Therm Biol 2013. [DOI: 10.1016/j.jtherbio.2012.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
77
|
Abstract
Predicting the response of the biota to global change remains a formidable endeavor. Zooplankton face challenges related to global warming, ocean acidification, the proliferation of toxic algal blooms, and increasing pollution, eutrophication, and hypoxia. They can respond to these changes by phenotypic plasticity or genetic adaptation. Using the concept of the evolution of reaction norms, I address how adaptive responses can be unequivocally discerned from phenotypic plasticity. To date, relatively few zooplankton studies have been designed for such a purpose. As case studies, I review the evidence for zooplankton adaptation to toxic algal blooms, hypoxia, and climate change. Predicting the response of zooplankton to global change requires new information to determine (a) the trade-offs and costs of adaptation, (b) the rates of evolution versus environmental change, (c) the consequences of adaptation to stochastic or cyclic (toxic algal blooms, coastal hypoxia) versus directional (temperature, acidification, open ocean hypoxia) environmental change, and (d) the interaction of selective pressures, and evolutionary and ecological processes, in promoting or hindering adaptation.
Collapse
Affiliation(s)
- Hans G Dam
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340-6048, USA.
| |
Collapse
|
78
|
Pritchard VL, Edmands S. THE GENOMIC TRAJECTORY OF HYBRID SWARMS: OUTCOMES OF REPEATED CROSSES BETWEEN POPULATIONS OFTIGRIOPUS CALIFORNICUS. Evolution 2012; 67:774-91. [DOI: 10.1111/j.1558-5646.2012.01814.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
79
|
Schoville SD, Barreto FS, Moy GW, Wolff A, Burton RS. Investigating the molecular basis of local adaptation to thermal stress: population differences in gene expression across the transcriptome of the copepod Tigriopus californicus. BMC Evol Biol 2012; 12:170. [PMID: 22950661 PMCID: PMC3499277 DOI: 10.1186/1471-2148-12-170] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/30/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Geographic variation in the thermal environment impacts a broad range of biochemical and physiological processes and can be a major selective force leading to local population adaptation. In the intertidal copepod Tigriopus californicus, populations along the coast of California show differences in thermal tolerance that are consistent with adaptation, i.e., southern populations withstand thermal stresses that are lethal to northern populations. To understand the genetic basis of these physiological differences, we use an RNA-seq approach to compare genome-wide patterns of gene expression in two populations known to differ in thermal tolerance. RESULTS Observed differences in gene expression between the southern (San Diego) and the northern (Santa Cruz) populations included both the number of affected loci as well as the identity of these loci. However, the most pronounced differences concerned the amplitude of up-regulation of genes producing heat shock proteins (Hsps) and genes involved in ubiquitination and proteolysis. Among the hsp genes, orthologous pairs show markedly different thermal responses as the amplitude of hsp response was greatly elevated in the San Diego population, most notably in members of the hsp70 gene family. There was no evidence of accelerated evolution at the sequence level for hsp genes. Among other sets of genes, cuticle genes were up-regulated in SD but down-regulated in SC, and mitochondrial genes were down-regulated in both populations. CONCLUSIONS Marked changes in gene expression were observed in response to acute sub-lethal thermal stress in the copepod T. californicus. Although some qualitative differences were observed between populations, the most pronounced differences involved the magnitude of induction of numerous hsp and ubiquitin genes. These differences in gene expression suggest that evolutionary divergence in the regulatory pathway(s) involved in acute temperature stress may offer at least a partial explanation of population differences in thermal tolerance observed in Tigriopus.
Collapse
Affiliation(s)
- Sean D Schoville
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA.
| | | | | | | | | |
Collapse
|
80
|
Foo SA, Dworjanyn SA, Poore AGB, Byrne M. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos. PLoS One 2012; 7:e42497. [PMID: 22880005 PMCID: PMC3411790 DOI: 10.1371/journal.pone.0042497] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/09/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Predicting effects of rapid climate change on populations depends on measuring the effects of climate stressors on performance, and potential for adaptation. Adaptation to stressful climatic conditions requires heritable genetic variance for stress tolerance present in populations. METHODOLOGY/PRINCIPAL FINDINGS We quantified genetic variation in tolerance of early development of the ecologically important sea urchin Centrostephanus rodgersii to near-future (2100) ocean conditions projected for the southeast Australian global change hot spot. Multiple dam-sire crosses were used to quantify the interactive effects of warming (+2-4 °C) and acidification (-0.3-0.5 pH units) across twenty-seven family lines. Acidification, but not temperature, decreased the percentage of cleavage stage embryos. In contrast, temperature, but not acidification decreased the percentage of gastrulation. Cleavage success in response to both stressors was strongly affected by sire identity. Sire and dam identity significantly affected gastrulation and both interacted with temperature to determine developmental success. Positive genetic correlations for gastrulation indicated that genotypes that did well at lower pH also did well in higher temperatures. CONCLUSIONS/SIGNIFICANCE Significant genotype (sire) by environment interactions for both stressors at gastrulation indicated the presence of heritable variation in thermal tolerance and the ability of embryos to respond to changing environments. The significant influence of dam may be due to maternal provisioning (maternal genotype or environment) and/or offspring genotype. It appears that early development in this ecologically important sea urchin is not constrained in adapting to the multiple stressors of ocean warming and acidification. The presence of tolerant genotypes indicates the potential to adapt to concurrent warming and acidification, contributing to the resilience of C. rodgersii in a changing ocean.
Collapse
Affiliation(s)
- Shawna A. Foo
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| | - Symon A. Dworjanyn
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Alistair G. B. Poore
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Maria Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
81
|
Culumber ZW, Shepard DB, Coleman SW, Rosenthal GG, Tobler M. Physiological adaptation along environmental gradients and replicated hybrid zone structure in swordtails (Teleostei: Xiphophorus). J Evol Biol 2012; 25:1800-14. [PMID: 22827312 DOI: 10.1111/j.1420-9101.2012.02562.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Local adaptation is often invoked to explain hybrid zone structure, but empirical evidence of this is generally rare. Hybrid zones between two poeciliid fishes, Xiphophorus birchmanni and X. malinche, occur in multiple tributaries with independent replication of upstream-to-downstream gradients in morphology and allele frequencies. Ecological niche modelling revealed that temperature is a central predictive factor in the spatial distribution of pure parental species and their hybrids and explains spatial and temporal variation in the frequency of neutral genetic markers in hybrid populations. Among populations of parentals and hybrids, both thermal tolerance and heat-shock protein expression vary strongly, indicating that spatial and temporal structure is likely driven by adaptation to local thermal environments. Therefore, hybrid zone structure is strongly influenced by interspecific differences in physiological mechanisms for coping with the thermal environment.
Collapse
Affiliation(s)
- Z W Culumber
- Department of Biology, Texas A&M University, TAMU, College Station, TX 77840, USA.
| | | | | | | | | |
Collapse
|
82
|
WILLIAMS BR, VAN HEERWAARDEN B, DOWLING DK, SGRÒ CM. A multivariate test of evolutionary constraints for thermal tolerance in Drosophila melanogaster. J Evol Biol 2012; 25:1415-26. [DOI: 10.1111/j.1420-9101.2012.02536.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
83
|
Gunderson AR, Leal M. Geographic variation in vulnerability to climate warming in a tropical Caribbean lizard. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.01987.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
84
|
Denny MW, Dowd WW. Biophysics, environmental stochasticity, and the evolution of thermal safety margins in intertidal limpets. J Exp Biol 2012; 215:934-47. [DOI: 10.1242/jeb.058958] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Summary
As the air temperature of the Earth rises, ecological relationships within a community might shift, in part due to differences in the thermal physiology of species. Prediction of these shifts – an urgent task for ecologists – will be complicated if thermal tolerance itself can rapidly evolve. Here, we employ a mechanistic approach to predict the potential for rapid evolution of thermal tolerance in the intertidal limpet Lottia gigantea. Using biophysical principles to predict body temperature as a function of the state of the environment, and an environmental bootstrap procedure to predict how the environment fluctuates through time, we create hypothetical time-series of limpet body temperatures, which are in turn used as a test platform for a mechanistic evolutionary model of thermal tolerance. Our simulations suggest that environmentally driven stochastic variation of L. gigantea body temperature results in rapid evolution of a substantial ‘safety margin’: the average lethal limit is 5–7°C above the average annual maximum temperature. This predicted safety margin approximately matches that found in nature, and once established is sufficient, in our simulations, to allow some limpet populations to survive a drastic, century-long increase in air temperature. By contrast, in the absence of environmental stochasticity, the safety margin is dramatically reduced. We suggest that the risk of exceeding the safety margin, rather than the absolute value of the safety margin, plays an underappreciated role in the evolution of thermal tolerance. Our predictions are based on a simple, hypothetical, allelic model that connects genetics to thermal physiology. To move beyond this simple model – and thereby potentially to predict differential evolution among populations and among species – will require significant advances in our ability to translate the details of thermal histories into physiological and population-genetic consequences.
Collapse
Affiliation(s)
- M. W. Denny
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| | - W. W. Dowd
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
85
|
Ribeiro PL, Camacho A, Navas CA. Considerations for assessing maximum critical temperatures in small ectothermic animals: insights from leaf-cutting ants. PLoS One 2012; 7:e32083. [PMID: 22384147 PMCID: PMC3286443 DOI: 10.1371/journal.pone.0032083] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/19/2012] [Indexed: 11/19/2022] Open
Abstract
The thermal limits of individual animals were originally proposed as a link between animal physiology and thermal ecology. Although this link is valid in theory, the evaluation of physiological tolerances involves some problems that are the focus of this study. One rationale was that heating rates shall influence upper critical limits, so that ecological thermal limits need to consider experimental heating rates. In addition, if thermal limits are not surpassed in experiments, subsequent tests of the same individual should yield similar results or produce evidence of hardening. Finally, several non-controlled variables such as time under experimental conditions and procedures may affect results. To analyze these issues we conducted an integrative study of upper critical temperatures in a single species, the ant Atta sexdens rubropiosa, an animal model providing large numbers of individuals of diverse sizes but similar genetic makeup. Our specific aims were to test the 1) influence of heating rates in the experimental evaluation of upper critical temperature, 2) assumptions of absence of physical damage and reproducibility, and 3) sources of variance often overlooked in the thermal-limits literature; and 4) to introduce some experimental approaches that may help researchers to separate physiological and methodological issues. The upper thermal limits were influenced by both heating rates and body mass. In the latter case, the effect was physiological rather than methodological. The critical temperature decreased during subsequent tests performed on the same individual ants, even one week after the initial test. Accordingly, upper thermal limits may have been overestimated by our (and typical) protocols. Heating rates, body mass, procedures independent of temperature and other variables may affect the estimation of upper critical temperatures. Therefore, based on our data, we offer suggestions to enhance the quality of measurements, and offer recommendations to authors aiming to compile and analyze databases from the literature.
Collapse
Affiliation(s)
- Pedro Leite Ribeiro
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|
86
|
Long-term experimental hybrid swarms between nearly incompatible Tigriopus californicus populations: persistent fitness problems and assimilation by the superior population. CONSERV GENET 2012. [DOI: 10.1007/s10592-011-0308-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
87
|
Affiliation(s)
- I Keller
- Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland.
| | | |
Collapse
|
88
|
Foley BR, Rose CG, Rundle DE, Leong W, Moy GW, Burton RS, Edmands S. A gene-based SNP resource and linkage map for the copepod Tigriopus californicus. BMC Genomics 2011; 12:568. [PMID: 22103327 PMCID: PMC3298550 DOI: 10.1186/1471-2164-12-568] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 11/21/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As yet, few genomic resources have been developed in crustaceans. This lack is particularly evident in Copepoda, given the extraordinary numerical abundance, and taxonomic and ecological diversity of this group. Tigriopus californicus is ideally suited to serve as a genetic model copepod and has been the subject of extensive work in environmental stress and reproductive isolation. Accordingly, we set out to develop a broadly-useful panel of genetic markers and to construct a linkage map dense enough for quantitative trait locus detection in an interval mapping framework for T. californicus--a first for copepods. RESULTS One hundred and ninety Single Nucleotide Polymorphisms (SNPs) were used to genotype our mapping population of 250 F2 larvae. We were able to construct a linkage map with an average intermarker distance of 1.8 cM, and a maximum intermarker distance of 10.3 cM. All markers were assembled into linkage groups, and the 12 linkage groups corresponded to the 12 known chromosomes of T. californicus. We estimate a total genome size of 401.0 cM, and a total coverage of 73.7%. Seventy five percent of the mapped markers were detected in 9 additional populations of T. californicus. Of available model arthropod genomes, we were able to show more colocalized pairs of homologues between T. californicus and the honeybee Apis mellifera, than expected by chance, suggesting preserved macrosynteny between Hymenoptera and Copepoda. CONCLUSIONS Our study provides an abundance of linked markers spanning all chromosomes. Many of these markers are also found in multiple populations of T. californicus, and in two other species in the genus. The genomic resource we have developed will enable mapping throughout the geographical range of this species and in closely related species. This linkage map will facilitate genome sequencing, mapping and assembly in an ecologically and taxonomically interesting group for which genomic resources are currently under development.
Collapse
Affiliation(s)
- Brad R Foley
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
| | - Colin G Rose
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
- Windward School, Los Angeles, CA 90066-2104, USA
| | - Daniel E Rundle
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 01730, USA
| | - Wai Leong
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
| | - Gary W Moy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
| |
Collapse
|
89
|
Willett CS. Hybrid breakdown weakens under thermal stress in population crosses of the copepod Tigriopus californicus. ACTA ACUST UNITED AC 2011; 103:103-14. [PMID: 22016434 DOI: 10.1093/jhered/esr109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The outcome of hybridization can be impacted by environmental conditions, which themselves can contribute to reproductive isolation between taxa. In crosses of genetically divergent populations, hybridization can have both negative and positive impacts on fitness, the balance between which might be tipped by changes in the environment. Genetically divergent populations of the intertidal copepod Tigriopus californicus have been shown to differ in thermal tolerance at high temperatures along a latitudinal gradient. In this study, a series of crosses were made between pairs of genetically divergent populations of T. californicus, and the thermal tolerance of these hybrids was tested. In most cases, the first-generation hybrids had relatively high thermal tolerance and the second-generation hybrids were not generally reduced below the less-tolerant parental population for high temperature tolerance. This pattern contrasts with previous studies from crosses of genetically divergent populations of this copepod, which often shows hybrid breakdown in these second-generation hybrids for other measures of fitness. These results suggest that high temperature stress could either increase the positive impacts of hybridization or decrease the negative impacts of hybridization resulting in lowered hybrid breakdown in these population crosses.
Collapse
Affiliation(s)
- Christopher S Willett
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
90
|
Angert AL, Sheth SN, Paul JR. Incorporating population-level variation in thermal performance into predictions of geographic range shifts. Integr Comp Biol 2011; 51:733-50. [PMID: 21705795 DOI: 10.1093/icb/icr048] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Determining how species' geographic ranges are governed by current climates and how they will respond to rapid climatic change poses a major biological challenge. Geographic ranges are often spatially fragmented and composed of genetically differentiated populations that are locally adapted to different thermal regimes. Tradeoffs between different aspects of thermal performance, such as between tolerance to high temperature and tolerance to low temperature or between maximal performance and breadth of performance, suggest that the performance of a given population will be a subset of that of the species. Therefore, species-level projections of distribution might overestimate the species' ability to persist at any given location. However, current approaches to modeling distributions often do not consider variation among populations. Here, we estimated genetically-based differences in thermal performance curves for growth among 12 populations of the scarlet monkeyflower, Mimulus cardinalis, a perennial herb of western North America. We inferred the maximum relative growth rate (RGR(max)), temperature optimum (T(opt)), and temperature breadth (T(breadth)) for each population. We used these data to test for tradeoffs in thermal performance, generate mechanistic population-level projections of distribution under current and future climates, and examine how variation in aspects of thermal performance influences forecasts of range shifts. Populations differed significantly in RGR(max) and had variable, but overlapping, estimates of T(opt) and T(breadth). T(opt) declined with latitude and increased with temperature of origin, consistent with tradeoffs between performances at low temperatures versus those at high temperatures. Further, T(breadth) was negatively related to RGR(max), as expected for a specialist-generalist tradeoff. Parameters of the thermal performance curve influenced properties of projected distributions. For both current and future climates, T(opt) was negatively related to latitudinal position, while T(breadth) was positively related to projected range size. The magnitude and direction of range shifts also varied with T(opt) and T(breadth), but sometimes in unexpected ways. For example, the fraction of habitat remaining suitable increased with T(opt) but decreased with T(breadth). Northern limits of all populations were projected to shift north, but the magnitude of shift decreased with T(opt) and increased with T(breadth). Median latitude was projected to shift north for populations with high T(breadth) and low T(opt), but south for populations with low T(breadth) and high T(opt). Distributions inferred by integrating population-level projections did not differ from a species-level projection that ignored variation among populations. However, the species-level approach masked the potential array of divergent responses by populations that might lead to genotypic sorting within the species' range. Thermal performance tradeoffs among populations within the species' range had important, but sometimes counterintuitive, effects on projected responses to climatic change.
Collapse
Affiliation(s)
- Amy L Angert
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
91
|
Complex deleterious interactions associated with malic enzyme may contribute to reproductive isolation in the copepod Tigriopus californicus. PLoS One 2011; 6:e21177. [PMID: 21731664 PMCID: PMC3120845 DOI: 10.1371/journal.pone.0021177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/22/2011] [Indexed: 11/24/2022] Open
Abstract
Dobzhansky-Muller incompatibilities can result from the interactions of more than a single pair of interacting genes and there are several different models of how such complex interactions can be structured. Previous empirical work has identified complex conspecific epistasis as a form of complex interaction that has contributed to postzygotic reproductive isolation between taxa, but other forms of complexity are also possible. Here, I probe the genetic basis of reproductive isolation in crosses of the intertidal copepod Tigriopus californicus by looking at the impact of markers in genes encoding metabolic enzymes in F2 hybrids. The region of the genome associated with the locus ME2 is shown to have strong, repeatable impacts on the fitness of hybrids in crosses and epistatic interactions with another chromosomal region marked by the GOT2 locus in one set of crosses. In a cross between one of these populations and a third population, these two regions do not appear to interact despite the continuation of a large effect of the ME2 region itself in both crosses. The combined results suggest that the ME2 chromosomal region is involved in incompatibilities with several unique partners. If these deleterious interactions all stem from the same factor in this region, that would suggest a different form of complexity from complex conspecific epistasis, namely, multiple independent deleterious interactions stemming from the same factor. Confirmation of this idea will require more fine-scale mapping of the interactions of the ME2 region of the genome.
Collapse
|
92
|
Hwang AS, Northrup SL, Alexander JK, Vo KT, Edmands S. Long-term experimental hybrid swarms between moderately incompatible Tigriopus californicus populations: hybrid inferiority in early generations yields to hybrid superiority in later generations. CONSERV GENET 2011. [DOI: 10.1007/s10592-011-0193-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
93
|
Barreto FS, Moy GW, Burton RS. Interpopulation patterns of divergence and selection across the transcriptome of the copepod Tigriopus californicus. Mol Ecol 2010; 20:560-72. [PMID: 21199025 DOI: 10.1111/j.1365-294x.2010.04963.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The accumulation of genetic incompatibilities between isolated populations is thought to lead to the evolution of intrinsic postzygotic isolation. The molecular basis for these mechanisms, however, remains poorly understood. The intertidal copepod Tigriopus californicus provides unique opportunities for addressing mechanistic questions regarding the early stages of speciation; hybrids between highly divergent populations are fertile and viable, but exhibit reduced fitness at the F(2) or later generations. Given the current scarcity of genomic information in taxa at incipient stages of reproductive isolation, we utilize high-throughout 454 pyrosequencing to characterize a substantial fraction of protein-coding regions (the transcriptome) of T. californicus. Our sequencing effort was divided equally between two divergent populations in order to estimate levels of divergence and to reveal patterns of selection across the transcriptome. Assembly of sequences generated over 40,000 putatively unique transcripts (unigenes) for each population, 19,622 of which were orthologous between populations. BLAST searches of public databases determined protein identity and functional features for 15,402 and 12,670 unigenes, respectively. Based on rates of nonsynonymous and synonymous substitutions in 5897 interpopulation orthologs (those >150 bp and with at least 2X coverage), we identified 229 potential targets of positive selection. Many of these genes are predicted to be involved in several metabolic processes, and to function in hydrolase, peptidase and binding activities. The library of T. californicus coding regions, annotated with their predicted functions and level of divergence, will serve as an invaluable resource for elucidating molecular mechanisms underlying the early stages of speciation.
Collapse
Affiliation(s)
- Felipe S Barreto
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
94
|
Willett CS. The nature of interactions that contribute to postzygotic reproductive isolation in hybrid copepods. Genetica 2010; 139:575-88. [PMID: 21104425 DOI: 10.1007/s10709-010-9525-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 11/09/2010] [Indexed: 11/24/2022]
Abstract
Deleterious interactions within the genome of hybrids can lower fitness and result in postzygotic reproductive isolation. Understanding the genetic basis of these deleterious interactions, known as Dobzhansky-Muller incompatibilities, is the subject of intense current study that seeks to elucidate the nature of these deleterious interactions. Hybrids from crosses of individuals from genetically divergent populations of the intertidal copepod Tigriopus californicus provide a useful model in which to study Dobzhansky-Muller incompatibilities. Studies of the basis of postzygotic reproductive isolation in this species have revealed a number of patterns. First, there is evidence for a breakdown in genomic coadaptation between mtDNA-encoded and nuclear-encoded proteins that can result in a reduction in hybrid fitness in some crosses. It appears from studies of the individual genes involved in these interactions that although this coadaptation could lead to asymmetries between crosses, patterns of genotypic viabilities are not often consistent with simple models of genomic coadaptation. Second, there is a large impact of environmental factors on these deleterious interactions suggesting that they are not strictly intrinsic in nature. Temperature in particular appears to play an important role in determining the nature of these interactions. Finally, deleterious interactions in these hybrid copepods appear to be complex in terms of the number of genetic factors that interact to lead to reductions in hybrid fitness. This complexity may stem from three or more factors that all interact to cause a single incompatibility or the same factor interacting with multiple other factors independently leading to multiple incompatibilities.
Collapse
Affiliation(s)
- Christopher S Willett
- Department of Biology, University of North Carolina, CB#3280 Coker Hall, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|