51
|
Han CS, Brooks RC, Dingemanse NJ. Condition-Dependent Mutual Mate Preference and Intersexual Genetic Correlations for Mating Activity. Am Nat 2020; 195:997-1008. [PMID: 32469657 DOI: 10.1086/708497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although mating represents a mutual interaction, the study of mate preferences has long focused on choice in one sex and preferred traits in the other. This has certainly been the case in the study of the costs and condition-dependent expression of mating preferences, with the majority of studies concerning female preference. The condition dependence and genetic architecture of mutual mate preferences remain largely unstudied, despite their likely relevance for the evolution of preferences and of mating behavior more generally. Here we measured (a) male and female mate preferences and (b) intersexual genetic correlations for the mating activity in pedigreed populations of southern field crickets (Gryllus bimaculatus) raised on a favorable (free-choice) or a stressful (protein-deprived) diet. In the favorable dietary environment, mutual mate preferences were strong, and the intersexual genetic covariance for mating activity was not different from one. However, in the stressful dietary environment, mutual mate preferences were weak, and the intersexual genetic covariance for mating activity was significantly smaller than one. Altogether, our results show that diet environments affect the expression of genetic variation in mating behaviors: when the environment is stressful, both (a) the strength of mutual mate preference and (b) intersexual genetic covariance for mating activity tend to be weaker. This implies that mating dynamics strongly vary across environments.
Collapse
|
52
|
Relative sexual attractiveness does not influence mate-choice copying in male Trinidadian guppies, Poecilia reticulata. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
53
|
Lane SM, Wilson AJ, Briffa M. Analysis of direct and indirect genetic effects in fighting sea anemones. Behav Ecol 2020; 31:540-547. [PMID: 32210526 PMCID: PMC7083097 DOI: 10.1093/beheco/arz217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/05/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Theoretical models of animal contests such as the Hawk-Dove game predict that variation in fighting behavior will persist due to mixed evolutionarily stable strategies (ESS) under certain conditions. However, the genetic basis for this variation is poorly understood and a mixed ESS for fighting can be interpreted in more than one way. Specifically, we do not know whether variation in aggression within a population arises from among-individual differences in fixed strategy (determined by an individual's genotype-direct genetic effects [DGEs]), or from within-individual variation in strategy across contests. Furthermore, as suggested by developments of the original Hawk-Dove model, within-individual variation in strategy may be dependent on the phenotype and thus genotype of the opponent (indirect genetic effects-IGEs). Here we test for the effect of DGEs and IGEs during fights in the beadlet sea anemone Actinia equina. By exploiting the unusual reproductive system of sea anemones, combined with new molecular data, we investigate the role of both additive (DGE + IGE) and non-additive (DGE × IGE) genetic effects on fighting parameters, the latter of which have been hypothesized but never tested for explicitly. We find evidence for heritable variation in fighting ability and that fight duration increases with relatedness. Fighting success is influenced additively by DGEs and IGEs but we found no evidence for non-additive IGEs. These results indicate that variation in fighting behavior is driven by additive indirect genetic effects (DGE + IGE), and support a core assumption of contest theory that strategies are fixed by DGEs.
Collapse
Affiliation(s)
- Sarah M Lane
- School of Biological and Marine Sciences, Animal Behaviour Research Group, University of Plymouth, Plymouth, Devon, UK
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall, UK
| | - Mark Briffa
- School of Biological and Marine Sciences, Animal Behaviour Research Group, University of Plymouth, Plymouth, Devon, UK
| |
Collapse
|
54
|
Montiglio PO, Gotanda KM, Kratochwil CF, Laskowski KL, Farine DR. Hierarchically embedded interaction networks represent a missing link in the study of behavioral and community ecology. Behav Ecol 2020; 31:279-286. [PMID: 32210523 PMCID: PMC7083094 DOI: 10.1093/beheco/arz168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/05/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Because genes and phenotypes are embedded within individuals, and individuals within populations, interactions within one level of biological organization are inherently linked to interactors at others. Here, we expand the network paradigm to consider that nodes can be embedded within other nodes, and connections (edges) between nodes at one level of organization form "bridges" for connections between nodes embedded within them. Such hierarchically embedded networks highlight two central properties of biological systems: 1) processes occurring across multiple levels of organization shape connections among biological units at any given level of organization and 2) ecological effects occurring at a given level of organization can propagate up or down to additional levels. Explicitly considering the embedded structure of evolutionary and ecological networks can capture otherwise hidden feedbacks and generate new insights into key biological phenomena, ultimately promoting a broader understanding of interactions in evolutionary theory.
Collapse
Affiliation(s)
- P O Montiglio
- Département des Sciences Biologiques, Université du Québec à Montréal, Succursale Centre-ville, Montréal, Québec, Canada
| | - K M Gotanda
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - C F Kratochwil
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Konstanz, Germany
| | - K L Laskowski
- Department of Biology, & Ecology of Fishes, Leibniz-Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| | - D R Farine
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätsstraße 10, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Edward Grey Institute of Ornithology, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
55
|
Akçay E. Deconstructing Evolutionary Game Theory: Coevolution of Social Behaviors with Their Evolutionary Setting. Am Nat 2019; 195:315-330. [PMID: 32017621 DOI: 10.1086/706811] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Evolution of social behaviors is one of the most fascinating and active fields of evolutionary biology. During the past half century, social evolution theory developed into a mature field with powerful tools to understand the dynamics of social traits such as cooperation under a wide range of conditions. In this article, I argue that the next stage in the development of social evolution theory should consider the evolution of the setting in which social behaviors evolve. To that end, I propose a conceptual map of the components that make up the evolutionary setting of social behaviors, review existing work that considers the evolution of each component, and discuss potential future directions. The theoretical work reviewed here illustrates how unexpected dynamics can happen when the setting of social evolution itself is evolving, such as cooperation sometimes being self-limiting. I argue that a theory of how the setting of social evolution itself evolves will lead to a deeper understanding of when cooperation and other social behaviors evolve and diversify.
Collapse
|
56
|
Santostefano F, Garant D, Bergeron P, Montiglio P, Réale D. Social selection acts on behavior and body mass but does not contribute to the total selection differential in eastern chipmunks. Evolution 2019; 74:89-102. [DOI: 10.1111/evo.13875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/23/2019] [Accepted: 10/21/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Francesca Santostefano
- Département des Sciences BiologiquesUniversité du Québec à Montréal Montréal Canada
- Département de Biologie, Faculté des SciencesUniversité de Sherbrooke Sherbrooke Québec Canada
| | - Dany Garant
- Département de Biologie, Faculté des SciencesUniversité de Sherbrooke Sherbrooke Québec Canada
| | - Patrick Bergeron
- Department of Biological SciencesBishop's University Sherbrooke Québec Canada
| | | | - Denis Réale
- Département des Sciences BiologiquesUniversité du Québec à Montréal Montréal Canada
| |
Collapse
|
57
|
Mitchem LD, Debray R, Formica VA, Brodie ED. Contest interactions and outcomes: relative body size and aggression independently predict contest status. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
58
|
Trubenová B, Hager R. Green beards in the light of indirect genetic effects. Ecol Evol 2019; 9:9597-9608. [PMID: 31534678 PMCID: PMC6745669 DOI: 10.1002/ece3.5484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 11/14/2022] Open
Abstract
The green-beard effect is one proposed mechanism predicted to underpin the evolution of altruistic behavior. It relies on the recognition and the selective help of altruists to each other in order to promote and sustain altruistic behavior. However, this mechanism has often been dismissed as unlikely or uncommon, as it is assumed that both the signaling trait and altruistic trait need to be encoded by the same gene or through tightly linked genes. Here, we use models of indirect genetic effects (IGEs) to find the minimum correlation between the signaling and altruistic trait required for the evolution of the latter. We show that this correlation threshold depends on the strength of the interaction (influence of the green beard on the expression of the altruistic trait), as well as the costs and benefits of the altruistic behavior. We further show that this correlation does not necessarily have to be high and support our analytical results by simulations.
Collapse
Affiliation(s)
| | - Reinmar Hager
- Evolution and Genomic Systems, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Present address:
Computational and Evolutionary Biology, Faculty of Life SciencesMichael Smith BuildingManchesterUK
| |
Collapse
|
59
|
Strickland K, Frère CH. Individual Variation in the Social Plasticity of Water Dragons. Am Nat 2019; 194:194-206. [DOI: 10.1086/704089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
60
|
Bailey NW, Kölliker M. Social runaway: Fisherian elaboration (or reduction) of socially selected traits via indirect genetic effects. Evolution 2019; 73:1549-1563. [PMID: 31273777 DOI: 10.1111/evo.13791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/29/2019] [Indexed: 12/21/2022]
Abstract
Our understanding of the evolutionary stability of socially selected traits is dominated by sexual selection models originating with R. A. Fisher, in which genetic covariance arising through assortative mating can trigger exponential, runaway trait evolution. To examine whether nonreproductive, socially selected traits experience similar dynamics-social runaway-when assortative mating does not automatically generate a covariance, we modeled the evolution of socially selected badge and donation phenotypes incorporating indirect genetic effects (IGEs) arising from the social environment. We establish a social runaway criterion based on the interaction coefficient, ψ, which describes social effects on badge and donation traits. Our models make several predictions. (1) IGEs can drive the original evolution of altruistic interactions that depend on receiver badges. (2) Donation traits are more likely to be susceptible to IGEs than badge traits. (3) Runaway dynamics in nonsexual, social contexts can occur in the absence of a genetic covariance. (4) Traits elaborated by social runaway are more likely to involve reciprocal, but nonsymmetrical, social plasticity. Models incorporating plasticity to the social environment via IGEs illustrate conditions favoring social runaway, describe a mechanism underlying the origins of costly traits, such as altruism, and support a fundamental role for phenotypic plasticity in rapid social evolution.
Collapse
Affiliation(s)
- Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, United Kingdom
| | | |
Collapse
|
61
|
Warner MR, Mikheyev AS, Linksvayer TA. Transcriptomic basis and evolution of the ant nurse-larval social interactome. PLoS Genet 2019; 15:e1008156. [PMID: 31107868 DOI: 10.1101/514356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/31/2019] [Accepted: 04/24/2019] [Indexed: 05/20/2023] Open
Abstract
Development is often strongly regulated by interactions among close relatives, but the underlying molecular mechanisms are largely unknown. In eusocial insects, interactions between caregiving worker nurses and larvae regulate larval development and resultant adult phenotypes. Here, we begin to characterize the social interactome regulating ant larval development by collecting and sequencing the transcriptomes of interacting nurses and larvae across time. We find that the majority of nurse and larval transcriptomes exhibit parallel expression dynamics across larval development. We leverage this widespread nurse-larva gene co-expression to infer putative social gene regulatory networks acting between nurses and larvae. Genes with the strongest inferred social effects tend to be peripheral elements of within-tissue regulatory networks and are often known to encode secreted proteins. This includes interesting candidates such as the nurse-expressed giant-lens, which may influence larval epidermal growth factor signaling, a pathway known to influence various aspects of insect development. Finally, we find that genes with the strongest signatures of social regulation tend to experience relaxed selective constraint and are evolutionarily young. Overall, our study provides a first glimpse into the molecular and evolutionary features of the social mechanisms that regulate all aspects of social life.
Collapse
Affiliation(s)
- Michael R Warner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Onna, Okinawa, Japan
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Timothy A Linksvayer
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
62
|
Warner MR, Mikheyev AS, Linksvayer TA. Transcriptomic basis and evolution of the ant nurse-larval social interactome. PLoS Genet 2019; 15:e1008156. [PMID: 31107868 PMCID: PMC6544314 DOI: 10.1371/journal.pgen.1008156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/31/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Development is often strongly regulated by interactions among close relatives, but the underlying molecular mechanisms are largely unknown. In eusocial insects, interactions between caregiving worker nurses and larvae regulate larval development and resultant adult phenotypes. Here, we begin to characterize the social interactome regulating ant larval development by collecting and sequencing the transcriptomes of interacting nurses and larvae across time. We find that the majority of nurse and larval transcriptomes exhibit parallel expression dynamics across larval development. We leverage this widespread nurse-larva gene co-expression to infer putative social gene regulatory networks acting between nurses and larvae. Genes with the strongest inferred social effects tend to be peripheral elements of within-tissue regulatory networks and are often known to encode secreted proteins. This includes interesting candidates such as the nurse-expressed giant-lens, which may influence larval epidermal growth factor signaling, a pathway known to influence various aspects of insect development. Finally, we find that genes with the strongest signatures of social regulation tend to experience relaxed selective constraint and are evolutionarily young. Overall, our study provides a first glimpse into the molecular and evolutionary features of the social mechanisms that regulate all aspects of social life.
Collapse
Affiliation(s)
- Michael R. Warner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexander S. Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Onna, Okinawa, Japan
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Timothy A. Linksvayer
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
63
|
Fisher DN, Pruitt JN. Opposite responses to selection and where to find them. J Evol Biol 2019; 32:505-518. [PMID: 30807674 DOI: 10.1111/jeb.13432] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 01/22/2023]
Abstract
We generally expect traits to evolve in the same direction as selection. However, many organisms possess traits that appear to be costly for individuals, while plant and animal breeding experiments reveal that selection may lead to no response or even negative responses to selection. We formalize both of these instances as cases of "opposite responses to selection." Using quantitative genetic models for the response to selection, we outline when opposite responses to selection should be expected. These typically occur when social selection opposes direct selection, when individuals interact with others less related to them than a random member of the population, and if the genetic covariance between direct and indirect effects is negative. We discuss the likelihood of each of these occurring in nature and therefore summarize how frequent opposite responses to selection are likely to be. This links several evolutionary phenomena within a single framework.
Collapse
Affiliation(s)
- David N Fisher
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan N Pruitt
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
64
|
Ziadie MA, Ebot-Ojong F, McKinney EC, Moore AJ. Evolution of Personal and Social Immunity in the Context of Parental Care. Am Nat 2019; 193:296-308. [PMID: 30720366 DOI: 10.1086/701122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Social immunity moderates the spread of pathogens in social groups and is especially likely in groups structured by genetic relatedness. The extent to which specific immune pathways are used is unknown. Here, we investigate the expression and social role of three functionally separate immune genes (pgrp-sc2, thaumatin, and defensin) during parental care in the beetle Nicrophorus vespilloides. These genes reside in different immune pathways, allowing us to test whether specific components of the immune system are targeted for social immunity. To test for the evolution of specificity, we manipulated the influence of social context and timing on gene expression and quantified the covariance of maternal immune gene expression and offspring fitness. Larvae reduced expression of all three genes in the presence of parents. Parental pgrp-sc2 and thaumatin increased during direct parenting, while defensin was upregulated before larvae arrived. Parental expression of pgrp-sc2 and thaumatin responded similarly to experimental manipulation of timing and presence of larvae, which differed from the response of defensin. We found a positive covariance between maternal expression and offspring fitness for pgrp-sc2 and thaumatin but not defensin. We suggest that social immunity can involve specific genes and pathways, reflecting evolution as an interacting phenotype during parenting.
Collapse
|
65
|
Carter MJ, Wilson AJ, Moore AJ, Royle NJ. The role of indirect genetic effects in the evolution of interacting reproductive behaviors in the burying beetle, Nicrophorus vespilloides. Ecol Evol 2019; 9:998-1009. [PMID: 30805136 PMCID: PMC6374716 DOI: 10.1002/ece3.4731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 11/07/2022] Open
Abstract
Social interactions can give rise to indirect genetic effects (IGEs), which occur when genes expressed in one individual affect the phenotype of another individual. The evolutionary dynamics of traits can be altered when there are IGEs. Sex often involves indirect effects arising from first-order (current) or second-order (prior) social interactions, yet IGEs are infrequently quantified for reproductive behaviors. Here, we use experimental populations of burying beetles that have experienced bidirectional selection on mating rate to test for social plasticity and IGEs associated with focal males mating with a female either without (first-order effect) or with (second-order effect) prior exposure to a competitor, and resource defense behavior (first-order effect). Additive IGEs were detected for mating rate arising from (first-order) interactions with females. For resource defense behavior, a standard variance partitioning analysis provided no evidence of additive genetic variance-either direct or indirect. However, behavior was predicted by focal size relative to that of the competitor, and size is also heritable. Assuming that behavior is causally dependent on relative size, this implies that both DGEs and IGEs do occur (and may potentially interact). The relative contribution of IGEs may differ among social behaviors related to mating which has consequences for the evolutionary trajectories of multivariate traits.
Collapse
Affiliation(s)
- Mauricio J. Carter
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Present address:
Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la VidaUniversidad Andrés BelloRepública 440SantiagoChile
| | | | - Allen J. Moore
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Present address:
Department of EntomologyCollege of Agricultural and Environmental SciencesUniversity of GeorgiaAthensGA30602‐7503USA
| | - Nick J. Royle
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| |
Collapse
|
66
|
Fisher DN, McAdam AG. Indirect genetic effects clarify how traits can evolve even when fitness does not. Evol Lett 2019. [DOI: 10.1002/evl3.98] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- David N. Fisher
- Department of Integrative Biology; University of Guelph; 50 Stone Road East, Guelph Ontario N1G 2W1 Canada
- Current Address: Department of Psychology, Neuroscience & Behaviour; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| | - Andrew G. McAdam
- Department of Integrative Biology; University of Guelph; 50 Stone Road East, Guelph Ontario N1G 2W1 Canada
| |
Collapse
|
67
|
Rudin FS, Simmons LW, Tomkins JL. Social cues affect quantitative genetic variation and covariation in animal personality traits. Evolution 2019; 73:540-553. [PMID: 30549262 DOI: 10.1111/evo.13661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 11/18/2018] [Indexed: 12/24/2022]
Abstract
The social environment is expected to have substantial effects on behavior, and as a consequence, its heritability and evolvability. We investigated these effects by exposing Australian field crickets (Teleogryllus oceanicus) to either silence or recordings of male acoustic sexual signals. We used a combined pedigree and full-sib/half-sib breeding design to estimate the repeatability, heritability, and evolvability of behaviors related to boldness, exploration, and activity. All behaviors measured were significantly repeatable in both social environments. Additionally, most behaviors showed significant heritabilities in the two environments. We found no difference in repeatabilities between the silent and the acoustic environment but did find significant differences in the heritabilities and evolvabilities between these environments. There was a high degree of similarity between the phenotypic covariance matrices across the two environments, while the genotypic covariance matrices were highly dissimilar. Reflecting this, we found significant genotype-by-environment interactions for most of the behaviors. Lastly, we found that the repeatable aspect of behavior ("personality") was significantly heritable for most behaviors, but that these heritabilities were higher in the acoustic than in the silent environment. We conclude that the social environment can have a significant impact on the heritability and evolvability of behavior, and argue that evolutionary inferences from phenotypic studies should be made with caution.
Collapse
Affiliation(s)
- Fabian S Rudin
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Australia
| | - Joseph L Tomkins
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Australia
| |
Collapse
|
68
|
Potter HG, Ashbrook DG, Hager R. Offspring genetic effects on maternal care. Front Neuroendocrinol 2019; 52:195-205. [PMID: 30576700 DOI: 10.1016/j.yfrne.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/08/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
Parental care is found widely across animal taxa and is manifest in a range of behaviours from basic provisioning in cockroaches to highly complex behaviours seen in mammals. The evolution of parental care is viewed as the outcome of an evolutionary cost/benefit trade-off between investing in current and future offspring, leading to the selection of traits in offspring that influence parental behaviour. Thus, level and quality of parental care are affected by both parental and offspring genetic differences that directly and indirectly influence parental care behaviour. While significant research effort has gone into understanding how parental genomes affect parental, and mostly maternal, behaviour, few studies have investigated how offspring genomes affect parental care. In this review, we bring together recent findings across different fields focussing on the mechanism and genetics of offspring effects on maternal care in mammals.
Collapse
Affiliation(s)
- Harry G Potter
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, Translational Science Research Building, Room 415, University of Tennessee Health Science Center, 71 S Manassas St, Memphis, TN 38103, United States
| | - Reinmar Hager
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
69
|
Dakin R, Ryder TB. Dynamic network partnerships and social contagion drive cooperation. Proc Biol Sci 2018; 285:20181973. [PMID: 30963888 PMCID: PMC6304062 DOI: 10.1098/rspb.2018.1973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/23/2018] [Indexed: 12/23/2022] Open
Abstract
Both reciprocity and positive assortment (like with like) are predicted to promote the evolution of cooperation, yet how partners influence each other's behaviour within dynamic networks is not well understood. One way to test this question is to partition phenotypic variation into differences among individuals in the expression of cooperative behaviour (the 'direct effect'), and plasticity within individuals in response to the social environment (the 'indirect effect'). A positive correlation between these two sources of variation, such that more cooperative individuals elicit others to cooperate, is predicted to facilitate social contagion and selection on cooperative behaviour. Testing this hypothesis is challenging, however, because it requires repeated measures of behaviour across a dynamic social landscape. Here, we use an automated data-logging system to quantify the behaviour of 179 wire-tailed manakins, birds that form cooperative male-male coalitions, and we use multiple-membership models to test the hypothesis that dynamic network partnerships shape within-individual variation in cooperative behaviour. Our results show strong positive correlations between a bird's own sociality and his estimated effect on his partners, consistent with the hypothesis that cooperation begets cooperation. These findings support the hypothesis that social contagion can facilitate selection for cooperative behaviour within social networks.
Collapse
|
70
|
Abstract
In 2017, The American Naturalist celebrated its 150th anniversary. It was founded as a journal of natural history, yet it developed into an important vehicle of the evolutionary synthesis. During the early years of the journal and through much of the twentieth century, evolutionary theory was developed to explain the history of nature before humankind existed to alter it-when time was expansive and uncommon events, though rare, were frequent enough to effect evolutionary change. Today, with the influence of human activity, dispersal patterns are fundamentally altered, genetic variation is locally limiting in small and fragmented populations, and environments are changing so rapidly that time itself seems limited. How can we use this theory, which was built to explain the past and which depends on an excess of chances and time, to address the challenges of the present and the future when chances are fewer and time seems so short? And does the habit of naturalists to observe, describe, and cultivate a fascination with nature have a place in contemporary science?
Collapse
|
71
|
Bailey NW, Moore AJ. Evolutionary Consequences of Social Isolation. Trends Ecol Evol 2018; 33:595-607. [DOI: 10.1016/j.tree.2018.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
|
72
|
Campobello D, Sealy SG. Evolutionary significance of antiparasite, antipredator and learning phenotypes of avian nest defence. Sci Rep 2018; 8:10569. [PMID: 30002381 PMCID: PMC6043525 DOI: 10.1038/s41598-018-28275-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/12/2018] [Indexed: 11/18/2022] Open
Abstract
Avian nest defence, which is expected to serve both antiparasite and antipredator functions, may benefit or be detrimental to birds, although selective forces that potentially operate on nest defence have not been quantified as a whole. Together with fitness values, we analysed two traits of nest defence, intensity and plasticity, in two distantly related passerine species, yellow warbler (Setophaga petechia) in North America and reed warbler (Acrocephalus scirpaceus) in Europe, both favourite host species for brood parasites. Breeders that escaped parasitism were the most vocal among reed warblers, whereas there was no specific defence phenotype that predicted prevention of parasitism in yellow warblers. Breeders that escaped nest predation were, in both species, those with the most distractive response at the first exposure to a nest-threatening event, such as the experimental predation or parasitism simulated at the nest. However, increasing defence intensity benefited yellow warblers but was detrimental to reed warblers, because intense defence responses attracted predators. Adaptiveness of nest defence was revealed by nest defence phenotypes when examined in concert with the seasonal fitness (i.e. measures of reproductive success). Results revealed selective forces favoured yellow warblers with strong defence phenotypes. Opposite forces were instead revealed among reed warblers whose favoured phenotypes were strong, yet less flexible, defenders.
Collapse
Affiliation(s)
- Daniela Campobello
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Section of Animal Biology, Department STEBICEF, University of Palermo, Palermo, Italy.
| | - Spencer G Sealy
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
73
|
Edwards DD, Rapin KE, Moore PA. Linking phenotypic correlations from a diverse set of laboratory tests to field behaviors in the crayfish,Orconectes virilis. Ethology 2018. [DOI: 10.1111/eth.12734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- David D. Edwards
- Department of Biological Sciences; Laboratory for Sensory Ecology; Bowling Green State University; Bowling Green OH USA
- University of Michigan Biological Station; Pellston MI USA
| | - Kathryn E. Rapin
- Department of Biological Sciences; Laboratory for Sensory Ecology; Bowling Green State University; Bowling Green OH USA
- University of Michigan Biological Station; Pellston MI USA
| | - Paul A. Moore
- Department of Biological Sciences; Laboratory for Sensory Ecology; Bowling Green State University; Bowling Green OH USA
- University of Michigan Biological Station; Pellston MI USA
| |
Collapse
|
74
|
Maldonado-Chaparro AA, Montiglio PO, Forstmeier W, Kempenaers B, Farine DR. Linking the fine-scale social environment to mating decisions: a future direction for the study of extra-pair paternity. Biol Rev Camb Philos Soc 2018. [DOI: 10.1111/brv.12408] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Adriana A. Maldonado-Chaparro
- Department of Collective Behaviour, Max Planck Institute for Ornithology; Universitätsstrasse 10; 78457 Konstanz Germany
- Chair of Biodiversity and Collective Behaviour, Department of Biology; University of Konstanz; Universitätsstrasse 10, 78457 Konstanz Germany
| | - Pierre-Olivier Montiglio
- Department of Biology & Redpath Museum; McGill University; 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1 Canada
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics; Max Planck Institute for Ornithology; 82319 Seewiesen Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics; Max Planck Institute for Ornithology; 82319 Seewiesen Germany
| | - Damien R. Farine
- Department of Collective Behaviour, Max Planck Institute for Ornithology; Universitätsstrasse 10; 78457 Konstanz Germany
- Chair of Biodiversity and Collective Behaviour, Department of Biology; University of Konstanz; Universitätsstrasse 10, 78457 Konstanz Germany
- Edward Grey Institute of Field Ornithology, Department of Zoology; University of Oxford; South Parks Road, Oxford OX1 3PS U.K
| |
Collapse
|
75
|
Ashbrook DG, Mulligan MK, Williams RW. Post-genomic behavioral genetics: From revolution to routine. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12441. [PMID: 29193773 PMCID: PMC5876106 DOI: 10.1111/gbb.12441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/02/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022]
Abstract
What was once expensive and revolutionary-full-genome sequence-is now affordable and routine. Costs will continue to drop, opening up new frontiers in behavioral genetics. This shift in costs from the genome to the phenome is most notable in large clinical studies of behavior and associated diseases in cohorts that exceed hundreds of thousands of subjects. Examples include the Women's Health Initiative (www.whi.org), the Million Veterans Program (www. RESEARCH va.gov/MVP), the 100 000 Genomes Project (genomicsengland.co.uk) and commercial efforts such as those by deCode (www.decode.com) and 23andme (www.23andme.com). The same transition is happening in experimental neuro- and behavioral genetics, and sample sizes of many hundreds of cases are becoming routine (www.genenetwork.org, www.mousephenotyping.org). There are two major consequences of this new affordability of massive omics datasets: (1) it is now far more practical to explore genetic modulation of behavioral differences and the key role of gene-by-environment interactions. Researchers are already doing the hard part-the quantitative analysis of behavior. Adding the omics component can provide powerful links to molecules, cells, circuits and even better treatment. (2) There is an acute need to highlight and train behavioral scientists in how best to exploit new omics approaches. This review addresses this second issue and highlights several new trends and opportunities that will be of interest to experts in animal and human behaviors.
Collapse
Affiliation(s)
- D G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, College of Medicine, Memphis, Tennessee
| | - M K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, College of Medicine, Memphis, Tennessee
| | - R W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, College of Medicine, Memphis, Tennessee
| |
Collapse
|
76
|
Montiglio P, McGlothlin JW, Farine DR. Social structure modulates the evolutionary consequences of social plasticity: A social network perspective on interacting phenotypes. Ecol Evol 2018; 8:1451-1464. [PMID: 29435224 PMCID: PMC5792542 DOI: 10.1002/ece3.3753] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 01/22/2023] Open
Abstract
Organisms express phenotypic plasticity during social interactions. Interacting phenotype theory has explored the consequences of social plasticity for evolution, but it is unclear how this theory applies to complex social structures. We adapt interacting phenotype models to general social structures to explore how the number of social connections between individuals and preference for phenotypically similar social partners affect phenotypic variation and evolution. We derive an analytical model that ignores phenotypic feedback and use simulations to test the predictions of this model. We find that adapting previous models to more general social structures does not alter their general conclusions but generates insights into the effect of social plasticity and social structure on the maintenance of phenotypic variation and evolution. Contribution of indirect genetic effects to phenotypic variance is highest when interactions occur at intermediate densities and decrease at higher densities, when individuals approach interacting with all group members, homogenizing the social environment across individuals. However, evolutionary response to selection tends to increase at greater network densities as the effects of an individual's genes are amplified through increasing effects on other group members. Preferential associations among similar individuals (homophily) increase both phenotypic variance within groups and evolutionary response to selection. Our results represent a first step in relating social network structure to the expression of social plasticity and evolutionary responses to selection.
Collapse
Affiliation(s)
| | | | - Damien R. Farine
- Department of Collective BehaviourMax Planck Institute for OrnithologyKonstanzGermany
- Department of BiologyChair of Biodiversity and Collective BehaviourUniversity of KonstanzKonstanzGermany
- Department of ZoologyEdward Grey InstituteUniversity of OxfordOxfordUK
| |
Collapse
|
77
|
Nishimura K. An interaction-driven cannibalistic reaction norm. Ecol Evol 2018; 8:2305-2319. [PMID: 29468045 PMCID: PMC5817123 DOI: 10.1002/ece3.3801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 11/15/2017] [Accepted: 12/06/2017] [Indexed: 11/20/2022] Open
Abstract
Cannibalism is induced in larval-stage populations of the Hokkaido salamander, Hynobius retardatus, under the control of a cannibalism reaction norm. Here, I examined phenotypic expression under the cannibalism reaction norm, and how the induction of a cannibalistic morph under the norm leads to populational morphological diversification. I conducted a set of experiments in which density was manipulated to be either low or high. In the high-density treatment, the populations become dimorphic with some individuals developing into the cannibal morph type. I performed an exploratory analysis based on geometric morphometrics and showed that shape characteristics differed between not only cannibal and noncannibal morph types in the high-density treatment but also between those morph types and the solitary morph type in the low-density treatment. Size and shape of cannibal and noncannibal individuals were found to be located at either end of a continuum of expression following a unique size-shape integration rule that was different from the rule governing the size and shape variations of the solitary morph type. This result implies that the high-density-driven inducible morphology of an individual is governed by a common integration rule during the development of dimorphism under the control of the cannibalism reaction norm. Phenotypic expression under the cannibalism reaction norm is driven not only by population density but also by social interactions among the members of a population: variation in the populational expression of dimorphism is associated with contingent social interaction events among population members. The induced cannibalistic morph thus reflects not only by contest-type exploitative competition but also interference competition.
Collapse
Affiliation(s)
- Kinya Nishimura
- Graduate School of Fisheries SciencesHokkaido UniversityJapan
| |
Collapse
|
78
|
Pennell TM, Holman L, Morrow EH, Field J. Building a new research framework for social evolution: intralocus caste antagonism. Biol Rev Camb Philos Soc 2018; 93:1251-1268. [PMID: 29341390 PMCID: PMC5896731 DOI: 10.1111/brv.12394] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 01/02/2023]
Abstract
The breeding and non‐breeding ‘castes’ of eusocial insects provide a striking example of role‐specific selection, where each caste maximises fitness through different morphological, behavioural and physiological trait values. Typically, queens are long‐lived egg‐layers, while workers are short‐lived, largely sterile foragers. Remarkably, the two castes are nevertheless produced by the same genome. The existence of inter‐caste genetic correlations is a neglected consequence of this shared genome, potentially hindering the evolution of caste dimorphism: alleles that increase the productivity of queens may decrease the productivity of workers and vice versa, such that each caste is prevented from reaching optimal trait values. A likely consequence of this ‘intralocus caste antagonism’ should be the maintenance of genetic variation for fitness and maladaptation within castes (termed ‘caste load’), analogous to the result of intralocus sexual antagonism. The aim of this review is to create a research framework for understanding caste antagonism, drawing in part upon conceptual similarities with sexual antagonism. By reviewing both the social insect and sexual antagonism literature, we highlight the current empirical evidence for caste antagonism, discuss social systems of interest, how antagonism might be resolved, and challenges for future research. We also introduce the idea that sexual and caste antagonism could interact, creating a three‐way antagonism over gene expression. This includes unpacking the implications of haplodiploidy for the outcome of this complex interaction.
Collapse
Affiliation(s)
- Tanya M Pennell
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Luke Holman
- School of Biosciences, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Edward H Morrow
- Evolution Behaviour and Environment Group, School of Life Sciences, University of Sussex, Falmer, East Sussex, BN1 9QG, UK
| | - Jeremy Field
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
79
|
Kraft B, Lemakos VA, Travis J, Hughes KA. Pervasive indirect genetic effects on behavioral development in polymorphic eastern mosquitofish. Behav Ecol 2017. [DOI: 10.1093/beheco/arx180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Brittany Kraft
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Valerie A Lemakos
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Joseph Travis
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Kimberly A Hughes
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
80
|
Hong JK, Jeong YD, Cho ES, Choi TJ, Kim YM, Cho KH, Lee JB, Lim HT, Lee DH. A genome-wide association study of social genetic effects in Landrace pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:784-790. [PMID: 29268591 PMCID: PMC5933974 DOI: 10.5713/ajas.17.0440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/07/2017] [Accepted: 11/05/2017] [Indexed: 01/23/2023]
Abstract
Objective The genetic effects of an individual on the phenotypes of its social partners, such as its pen mates, are known as social genetic effects. This study aims to identify the candidate genes for social (pen-mates’) average daily gain (ADG) in pigs by using the genome-wide association approach. Methods Social ADG (sADG) was the average ADG of unrelated pen-mates (strangers). We used the phenotype data (16,802 records) after correcting for batch (week), sex, pen, number of strangers (1 to 7 pigs) in the pen, full-sib rate (0% to 80%) within pen, and age at the end of the test. A total of 1,041 pigs from Landrace breeds were genotyped using the Illumina PorcineSNP60 v2 BeadChip panel, which comprised 61,565 single nucleotide polymorphism (SNP) markers. After quality control, 909 individuals and 39,837 markers remained for sADG in genome-wide association study. Results We detected five new SNPs, all on chromosome 6, which have not been associated with social ADG or other growth traits to date. One SNP was inside the prostaglandin F2α receptor (PTGFR) gene, another SNP was located 22 kb upstream of gene interferon-induced protein 44 (IFI44), and the last three SNPs were between 161 kb and 191 kb upstream of the EGF latrophilin and seven transmembrane domain-containing protein 1 (ELTD1) gene. PTGFR, IFI44, and ELTD1 were never associated with social interaction and social genetic effects in any of the previous studies. Conclusion The identification of several genomic regions, and candidate genes associated with social genetic effects reported here, could contribute to a better understanding of the genetic basis of interaction traits for ADG. In conclusion, we suggest that the PTGFR, IFI44, and ELTD1 may be used as a molecular marker for sADG, although their functional effect was not defined yet. Thus, it will be of interest to execute association studies in those genes.
Collapse
Affiliation(s)
- Joon Ki Hong
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Yong Dae Jeong
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Eun Seok Cho
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Tae Jeong Choi
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Yong Min Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Kyu Ho Cho
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Jae Bong Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hyun Tae Lim
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Deuk Hwan Lee
- Department of Animal Life and Environment Science, Hankyong National University, Anseong 17579, Korea
| |
Collapse
|
81
|
Bailey NW, Marie-Orleach L, Moore AJ. Indirect genetic effects in behavioral ecology: does behavior play a special role in evolution? Behav Ecol 2017. [DOI: 10.1093/beheco/arx127] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Nathan W Bailey
- School of Biology, University of St Andrews, St Andrews, Fife, UK
| | | | - Allen J Moore
- Department of Genetics, University of Georgia, Athens, GA USA
- Department of Entomology, University of Georgia, Athens, GA USA
| |
Collapse
|
82
|
Strickland K, Frère CH. Predictable males and unpredictable females: repeatability of sociability in eastern water dragons. Behav Ecol 2017. [DOI: 10.1093/beheco/arx148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
83
|
Xu S, Van Dyken JD. Microbial expansion-collision dynamics promote cooperation and coexistence on surfaces. Evolution 2017; 72:153-169. [PMID: 29134631 DOI: 10.1111/evo.13393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Microbes colonizing a surface often experience colony growth dynamics characterized by an initial phase of spatial clonal expansion followed by collision between neighboring colonies to form potentially genetically heterogeneous boundaries. For species with life cycles consisting of repeated surface colonization and dispersal, these spatially explicit "expansion-collision dynamics" generate periodic transitions between two distinct selective regimes, "expansion competition" and "boundary competition," each one favoring a different growth strategy. We hypothesized that this dynamic could promote stable coexistence of expansion- and boundary-competition specialists by generating time-varying, negative frequency-dependent selection that insulates both types from extinction. We tested this experimentally in budding yeast by competing an exoenzyme secreting "cooperator" strain (expansion-competition specialists) against nonsecreting "defectors" (boundary-competition specialists). As predicted, we observed cooperator-defector coexistence or cooperator dominance with expansion-collision dynamics, but only defector dominance otherwise. Also as predicted, the steady-state frequency of cooperators was determined by colonization density (the average initial cell-cell distance) and cost of cooperation. Lattice-based spatial simulations give good qualitative agreement with experiments, supporting our hypothesis that expansion-collision dynamics with costly public goods production is sufficient to generate stable cooperator-defector coexistence. This mechanism may be important for maintaining public-goods cooperation and conflict in microbial pioneer species living on surfaces.
Collapse
Affiliation(s)
- Shuang Xu
- Department of Biology, University of Miami, Coral Gables, Florida 33143
| | - J David Van Dyken
- Department of Biology, University of Miami, Coral Gables, Florida 33143.,Institute of Theoretical and Mathematical Ecology, University of Miami, Coral Gables, Florida 33143
| |
Collapse
|
84
|
Fisher DN, McAdam AG. Social traits, social networks and evolutionary biology. J Evol Biol 2017; 30:2088-2103. [DOI: 10.1111/jeb.13195] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 01/20/2023]
Affiliation(s)
- D. N. Fisher
- Department for Integrative Biology; University of Guelph; Guelph Ontario Canada
| | - A. G. McAdam
- Department for Integrative Biology; University of Guelph; Guelph Ontario Canada
| |
Collapse
|
85
|
|
86
|
Cramer ERA, Kaiser SA, Webster MS, Sillett TS, Ryder TB. Characterizing selection in black-throated blue warblers using a sexual network approach. J Evol Biol 2017; 30:2177-2188. [PMID: 28986958 DOI: 10.1111/jeb.13183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 08/19/2017] [Accepted: 09/27/2017] [Indexed: 11/28/2022]
Abstract
Our understanding of trait evolution is built upon studies that examine the correlation between traits and fitness, most of which implicitly assume all individuals experience similar selective environments. However, accounting for differences in selective pressures, such as variation in the social environment, can advance our understanding of how selection shapes individual traits and subsequent fitness. In this study, we test whether variation in the social environment affects selection on individual phenotype. We apply a new sexual network framework to quantify each male's social environment as the mean body size of his primary competitors. We test for direct and social selection on male body size using a 10-year data set on black-throated blue warblers (Setophaga caerulescens), a territorial species for which body size is hypothesized to mediate competition for mates. We found that direct selection on body size was weak and nonsignificant, as was social selection via the body size of the males' competitors. Analysing both types of selection simultaneously allows us to firmly reject a role for body size in competitive interactions between males and subsequent male fitness in this population. We evaluate the application of the sexual network approach to empirical data and suggest that other phenotypic traits such as song characteristics and plumage may be more relevant than body size for male-male competition in this small passerine bird.
Collapse
Affiliation(s)
- E R A Cramer
- Migratory Bird Center, Smithsonian Conservation Biology Institute, Washington, DC, USA.,Cornell Lab of Ornithology, Ithaca, NY, USA
| | - S A Kaiser
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | | | - T S Sillett
- Migratory Bird Center, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - T B Ryder
- Migratory Bird Center, Smithsonian Conservation Biology Institute, Washington, DC, USA
| |
Collapse
|
87
|
McDonald GC, Farine DR, Foster KR, Biernaskie JM. Assortment and the analysis of natural selection on social traits. Evolution 2017; 71:2693-2702. [PMID: 28884795 DOI: 10.1111/evo.13365] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 08/08/2017] [Accepted: 08/29/2017] [Indexed: 11/28/2022]
Abstract
A central problem in evolutionary biology is to determine whether and how social interactions contribute to natural selection. A key method for phenotypic data is social selection analysis, in which fitness effects from social partners contribute to selection only when there is a correlation between the traits of individuals and their social partners (nonrandom phenotypic assortment). However, there are inconsistencies in the use of social selection that center around the measurement of phenotypic assortment. Here, we use data analysis and simulations to resolve these inconsistencies, showing that: (i) not all measures of assortment are suitable for social selection analysis; and (ii) the interpretation of assortment, and how to detect nonrandom assortment, will depend on the scale at which it is measured. We discuss links to kin selection theory and provide a practical guide for the social selection approach.
Collapse
Affiliation(s)
- Grant C McDonald
- Department of Zoology, University of Oxford, Oxford OX13PS, United Kingdom
| | - Damien R Farine
- Department of Zoology, University of Oxford, Oxford OX13PS, United Kingdom.,Department of Collective Behaviour, Max Planck Institute for Ornithology, Universitätsstraße 10, 78457 Konstanz, Germany.,Chair of Biodiversity and Collective Behaviour, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford OX13PS, United Kingdom
| | - Jay M Biernaskie
- Department of Plant Sciences, University of Oxford, Oxford OX13RB, United Kingdom
| |
Collapse
|
88
|
Indirect genetic effects: a key component of the genetic architecture of behaviour. Sci Rep 2017; 7:10235. [PMID: 28860450 PMCID: PMC5578976 DOI: 10.1038/s41598-017-08258-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/10/2017] [Indexed: 11/22/2022] Open
Abstract
Behavioural ecology research increasingly focuses on why genetic behavioural variation can persist despite selection. Evolutionary theory predicts that directional selection leads to evolutionary change while depleting standing genetic variation. Nevertheless, evolutionary stasis may occur for traits involved in social interactions. This requires tight negative genetic correlations between direct genetic effects (DGEs) of an individual’s genes on its own phenotype and the indirect genetic effects (IGEs) it has on conspecifics, as this could diminish the amount of genetic variation available to selection to act upon. We tested this prediction using a pedigreed laboratory population of Mediterranean field crickets (Gryllus bimaculatus), in which both exploratory tendency and aggression are heritable. We found that genotypes predisposed to be aggressive (due to DGEs) strongly decreased aggressiveness in opponents (due to IGEs). As a consequence, the variance in total breeding values was reduced to almost zero, implying that IGEs indeed greatly contribute to the occurrence of evolutionary stasis. IGEs were further associated with genetic variation in a non-social behaviour: explorative genotypes elicited most aggression in opponents. These key findings imply that IGEs indeed represent an important overlooked mechanism that can impact evolutionary dynamics of traits under selection.
Collapse
|
89
|
Van Cleve J. Stags, Hawks, and Doves: Social Evolution Theory and Individual Variation in Cooperation. Integr Comp Biol 2017; 57:566-579. [DOI: 10.1093/icb/icx071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
90
|
Affiliation(s)
- Jarrod D. Hadfield
- Institute of Evolutionary Biology University of Edinburgh Edinburgh EH8 9YL UK
| | - Caroline E. Thomson
- Department of Zoology Edward Grey Institute University of Oxford Oxford OX1 3PS UK
| |
Collapse
|
91
|
Fisher DN, Boutin S, Dantzer B, Humphries MM, Lane JE, McAdam AG. Multilevel and sex-specific selection on competitive traits in North American red squirrels. Evolution 2017; 71:1841-1854. [PMID: 28543051 DOI: 10.1111/evo.13270] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 12/22/2022]
Abstract
Individuals often interact more closely with some members of the population (e.g., offspring, siblings, or group members) than they do with other individuals. This structuring of interactions can lead to multilevel natural selection, where traits expressed at the group-level influence fitness alongside individual-level traits. Such multilevel selection can alter evolutionary trajectories, yet is rarely quantified in the wild, especially for species that do not interact in clearly demarcated groups. We quantified multilevel natural selection on two traits, postnatal growth rate and birth date, in a population of North American red squirrels (Tamiasciurus hudsonicus). The strongest level of selection was typically within-acoustic social neighborhoods (within 130 m of the nest), where growing faster and being born earlier than nearby litters was key, while selection on growth rate was also apparent both within-litters and within-study areas. Higher population densities increased the strength of selection for earlier breeding, but did not influence selection on growth rates. Females experienced especially strong selection on growth rate at the within-litter level, possibly linked to the biased bequeathal of the maternal territory to daughters. Our results demonstrate the importance of considering multilevel and sex-specific selection in wild species, including those that are territorial and sexually monomorphic.
Collapse
Affiliation(s)
- David N Fisher
- Department for Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbour, Michigan, 48109.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbour, Michigan, 48109
| | - Murray M Humphries
- Natural Resource Sciences, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Québec, H9 × 3V9, Canada
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - Andrew G McAdam
- Department for Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
92
|
Canario L, Lundeheim N, Bijma P. The early-life environment of a pig shapes the phenotypes of its social partners in adulthood. Heredity (Edinb) 2017; 118:534-541. [PMID: 28327581 PMCID: PMC5436026 DOI: 10.1038/hdy.2017.3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 11/08/2022] Open
Abstract
Social interactions among individuals are abundant, both in natural and domestic populations, and may affect phenotypes of individuals. Recent research has demonstrated that the social effect of an individual on the phenotype of its social partners may have a genetic component, known as an indirect genetic effect (IGE). Little is known, however, of nongenetic factors underlying such social effects. Early-life environments often have large effects on phenotypes of the individuals themselves later in life. Offspring development in many mammalian species, for example, depends on interactions with the mother and siblings. In domestic pigs, individuals sharing the same juvenile environment develop similar body weight later in life. We, therefore, hypothesized that offspring originating from the same early-life environment also develop common social skills that generate early-life social effects (ELSEs) that affect the phenotypes of their social partners later in life. We, therefore, quantified IGEs and ELSEs on growth in domestic pigs. Results show that individuals from the same early-life environment express similar social effects on the growth of their social partners, and that such ELSEs shape the growth rate of social partners more than IGEs. Thus, the social skills that individuals develop in early life have a long-lasting impact on the phenotypes of social partners. Early-life and genetic social effects were independent of the corresponding direct effects of offspring on their own growth, indicating that individuals may enhance the growth of their social partners without a personal cost. Our findings also illustrate how research devoted to quantifying IGEs may miss nongenetic and potentially confounded social mechanisms which may bias the estimates of IGEs.
Collapse
Affiliation(s)
- L Canario
- Department of Animal Genetics, INRA French National Institute for Agricultural Research, Castanet-Tolosan, France
| | - N Lundeheim
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - P Bijma
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
93
|
Genetic-based interactions among tree neighbors: identification of the most influential neighbors, and estimation of correlations among direct and indirect genetic effects for leaf disease and growth in Eucalyptus globulus. Heredity (Edinb) 2017; 119:125-135. [PMID: 28561806 DOI: 10.1038/hdy.2017.25] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/10/2017] [Accepted: 04/09/2017] [Indexed: 11/08/2022] Open
Abstract
An individual's genes may influence the phenotype of neighboring conspecifics. Such indirect genetic effects (IGEs) are important as they can affect the apparent total heritable variance in a population, and thus the response to selection. We studied these effects in a large, pedigreed population of Eucalyptus globulus using variance component analyses of Mycosphearella leaf disease, diameter growth at age 2 years, and post-infection diameter growth at ages 4 and 8 years. In a novel approach, we initially modeled IGEs using a factor analytic (FA) structure to identify the most influential neighbor positions, with the FA loadings being position-specific regressions on the IGEs. This involved sequentially comparing FA models for the variance-covariance matrices of the direct and indirect effects of each neighbor. We then modeled IGEs as a distance-based, combined effect of the most influential neighbors. This often increased the magnitude and significance of indirect genetic variance estimates relative to using all neighbors. The extension of a univariate IGEs model to bivariate analyses also provided insights into the genetic architecture of this population, revealing that: (1) IGEs arising from increased probability of neighbor infection were not associated with reduced growth of neighbors, despite adverse fitness effects being evident at the direct genetic level; and (2) the strong, genetic-based competitive interactions for growth, established early in stand development, were highly positively correlated over time. Our results highlight the complexities of genetic-based interactions at the multi-trait level due to (co)variances associated with IGEs, and the marked discrepancy occurring between direct and total heritable variances.
Collapse
|
94
|
Abstract
Classical models of evolution seldom predict the rate at which populations evolve in the wild. One explanation is that the social environment affects how traits change in response to natural selection. Here, we determine how social interactions between parents and offspring, and among larvae, influence the response to experimental selection on adult size. Our experiments focus on burying beetles (Nicrophorus vespilloides), whose larvae develop within a carrion nest. Some broods exclusively self-feed on the carrion while others are also fed by their parents. We found populations responded to selection for larger adults but only when parents cared for their offspring. We also found populations responded to selection for smaller adults too, but only by removing parents and causing larval interactions to exert more influence on eventual adult size. Comparative analyses revealed a similar pattern: evolutionary increases in species size within the genus Nicrophorus are associated with the obligate provision of care. Synthesising our results with previous studies, we suggest that cooperative social environments enhance the response to selection whereas excessive conflict can prevent further directional selection.
Collapse
|
95
|
Edenbrow M, Bleakley BH, Darden SK, Tyler CR, Ramnarine IW, Croft DP. The Evolution of Cooperation: Interacting Phenotypes among Social Partners. Am Nat 2017; 189:630-643. [PMID: 28514638 DOI: 10.1086/691386] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Models of cooperation among nonkin suggest that social assortment is important for the evolution of cooperation. Theory predicts that interacting phenotypes, whereby an individual's behavior depends on the behavior of its social partners, can drive such social assortment. We measured repeated indirect genetic effects (IGEs) during cooperative predator inspection in eight populations of Trinidadian guppies (Poecilia reticulata) that vary in their evolutionary history of predation. Four broad patterns emerged that were dependent on river, predation history, and sex: (i) current partner behavior had the largest effect on focal behavior, with fish from low-predation habitats responding more to their social partners than fish from high-predation habitats; (ii) different focal/partner behavior combinations can generate cooperation; (iii) some high-predation fish exhibited carryover effects across social partners; and (iv) high-predation fish were more risk averse. These results provide the first large-scale comparison of interacting phenotypes during cooperation across wild animal populations, highlighting the potential importance of IGEs in maintaining cooperation. Intriguingly, while focal fish responded strongly to current social partners, carryover effects between social partners suggest generalized reciprocity (in which one helps anyone if helped by someone) may contribute to the evolution of cooperation in some, but not all, populations of guppies.
Collapse
|
96
|
Montiglio PO, Wey TW, Chang AT, Fogarty S, Sih A. Correlational selection on personality and social plasticity: morphology and social context determine behavioural effects on mating success. J Anim Ecol 2017; 86:213-226. [PMID: 27859289 DOI: 10.1111/1365-2656.12610] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 11/03/2016] [Indexed: 11/28/2022]
Abstract
Despite a central line of research aimed at quantifying relationships between mating success and sexually dimorphic traits (e.g., ornaments), individual variation in sexually selected traits often explains only a modest portion of the variation in mating success. Another line of research suggests that a significant portion of the variation in mating success observed in animal populations could be explained by correlational selection, where the fitness advantage of a given trait depends on other components of an individual's phenotype and/or its environment. We tested the hypothesis that interactions between multiple traits within an individual (phenotype dependence) or between an individual's phenotype and its social environment (context dependence) can select for individual differences in behaviour (i.e., personality) and social plasticity. To quantify the importance of phenotype- and context-dependent selection on mating success, we repeatedly measured the behaviour, social environment and mating success of about 300 male stream water striders, Aquarius remigis. Rather than explaining individual differences in long-term mating success, we instead quantified how the combination of a male's phenotype interacted with the immediate social context to explain variation in hour-by-hour mating decisions. We suggest that this analysis captures more of the mechanisms leading to differences in mating success. Males differed consistently in activity, aggressiveness and social plasticity. The mating advantage of these behavioural traits depended on male morphology and varied with the number of rival males in the pool, suggesting mechanisms selecting for consistent differences in behaviour and social plasticity. Accounting for phenotype and context dependence improved the amount of variation in male mating success we explained statistically by 30-274%. Our analysis of the determinants of male mating success provides important insights into the evolutionary forces that shape phenotypic variation. In particular, our results suggest that sexual selection is likely to favour individual differences in behaviour, social plasticity (i.e., individuals adjusting their behaviour), niche preference (i.e., individuals dispersing to particular social conditions) or social niche construction (i.e., individuals modifying the social environment). The true effect of sexual traits can only be understood in interaction with the individual's phenotype and environment.
Collapse
Affiliation(s)
- Pierre-Olivier Montiglio
- Department of Environmental Sciences & Policy, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA.,Department of Biology & Redpath Museum, McGill University, 1205 Dr-Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| | - Tina W Wey
- Department of Environmental Sciences & Policy, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA.,Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montreal, QC, H2X 1Y4, Canada
| | - Ann T Chang
- Department of Environmental Sciences & Policy, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Sean Fogarty
- Department of Environmental Sciences & Policy, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Andrew Sih
- Department of Environmental Sciences & Policy, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
97
|
Han CS, Dingemanse NJ. You are what you eat: diet shapes body composition, personality and behavioural stability. BMC Evol Biol 2017; 17:8. [PMID: 28073352 PMCID: PMC5223362 DOI: 10.1186/s12862-016-0852-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/15/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Behavioural phenotypes vary within and among individuals. While early-life experiences have repeatedly been proposed to underpin interactions between these two hierarchical levels, the environmental factors causing such effects remain under-studied. We tested whether an individual's diet affected both its body composition, average behaviour (thereby causing among-individual variation or 'personality') and within-individual variability in behaviour and body weight (thereby causing among-individual differences in residual within-individual variance or 'stability'), using the Southern field cricket Gryllus bimaculatus as a model. We further asked whether effects of diet on the expression of these variance components were sex-specific. METHODS Manipulating both juvenile and adult diet in a full factorial design, individuals were put, in each life-stage, on a diet that was either relatively high in carbohydrates or relatively high in protein. We subsequently measured the expression of multiple behavioural (exploration, aggression and mating activity) and morphological traits (body weight and lipid mass) during adulthood. RESULTS Dietary history affected both average phenotype and level of within-individual variability: males raised as juveniles on high-protein diets were heavier, more aggressive, more active during mating, and behaviourally less stable, than conspecifics raised on high-carbohydrate diets. Females preferred more protein in their diet compared to males, and dietary history affected average phenotype and within-individual variability in a sex-specific manner: individuals raised on high-protein diets were behaviourally less stable in their aggressiveness but this effect was only present in males. Diet also influenced individual differences in male body weight, but within-individual variance in female body weight. DISCUSSION This study thereby provides experimental evidence that dietary history explains both heterogeneous residual within-individual variance (i.e., individual variation in 'behavioural stability') and individual differences in average behaviour (i.e., 'personality'), though dietary effects were notably trait-specific. These findings call for future studies integrating proximate and ultimate perspectives on the role of diet in the evolution of repeatedly expressed traits, such as behaviour and body weight.
Collapse
Affiliation(s)
- Chang S Han
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany. .,Current address: School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia.
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
98
|
Ashbrook DG, Hager R. Social Interactions and Indirect Genetic Effects on Complex Juvenile and Adult Traits. Methods Mol Biol 2017; 1488:499-517. [PMID: 27933541 DOI: 10.1007/978-1-4939-6427-7_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Most animal species are social in one form or another, yet many studies in rodent model systems use either individually housed animals or ignore potential confounds caused by group housing. While such social interaction effects on developmental and behavioral traits are well established, the genetic basis of social interactions has not been researched in as much detail. Specifically, the effects of genetic variation in social partners on the phenotype of a focal individual have mostly been studied at the phenotypic level. Such indirect genetic effects (IGEs), where the genotype of one individual influences the phenotype of a second individual, can have important evolutionary and medically relevant consequences. In this chapter, we give a brief outline of social interaction effects, and how systems genetics approaches using recombinant inbred populations can be used to investigate indirect genetic effects specifically, including maternal genetic effects. We discuss experimental designs for the study of IGEs and show how indirect genetic loci can be identified that underlie social interaction effects, their mechanisms, and consequences for trait variation in focal individuals.
Collapse
Affiliation(s)
- David G Ashbrook
- Dept. of Biological Sciences University of Toronto Scarborough Science Wing, SW3261265 Military Trail, Toronto, ON, M1C, UK
| | - Reinmar Hager
- Department of Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, C1.261 Michael Smith Bldg., Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
99
|
Auld HL, Ramnarine IW, Godin JGJ. Male mate choice in the Trinidadian guppy is influenced by the phenotype of audience sexual rivals. Behav Ecol 2016. [DOI: 10.1093/beheco/arw170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
100
|
Saltz JB. Genetic variation in social environment construction influences the development of aggressive behavior in Drosophila melanogaster. Heredity (Edinb) 2016; 118:340-347. [PMID: 27848947 DOI: 10.1038/hdy.2016.101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023] Open
Abstract
Individuals are not merely subject to their social environments; they choose and create them, through a process called social environment (or social niche) construction. When genotypes differ in social environment-constructing behaviors, different genotypes are expected to experience different social environments. As social experience often affects behavioral development, quantitative genetics and psychology theories predict that genetic variation in social environment construction should have an important role in determining phenotypic variation; however, this hypothesis has not been tested directly. I identify multiple mechanisms of social environment construction that differ among natural genotypes of Drosophila melanogaster and investigate their consequences for the development of aggressive behavior. Male genotypes differed in the group sizes that they preferred and in their aggressive behavior; both of these behaviors influenced social experience, demonstrating that these behaviors function as social environment-constructing traits. Further, the effects of social experience-as determined in part by social environment construction-carried over to affect focal male aggression at a later time and with a new opponent. These results provide manipulative experimental support for longstanding hypotheses in psychology, that genetic variation in social environment construction has a causal role in behavioral development. More broadly, these results imply that studies of the genetic basis of complex traits should be expanded to include mechanisms by which genetic variation shapes the environments that individuals experience.
Collapse
Affiliation(s)
- J B Saltz
- Biosciences at Rice University, Houston, TX, USA
| |
Collapse
|