51
|
Solé RV, Montañez R, Duran-Nebreda S, Rodriguez-Amor D, Vidiella B, Sardanyés J. Population dynamics of synthetic terraformation motifs. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180121. [PMID: 30109068 PMCID: PMC6083676 DOI: 10.1098/rsos.180121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/22/2018] [Indexed: 05/23/2023]
Abstract
Ecosystems are complex systems, currently experiencing several threats associated with global warming, intensive exploitation and human-driven habitat degradation. Because of a general presence of multiple stable states, including states involving population extinction, and due to the intrinsic nonlinearities associated with feedback loops, collapse in ecosystems could occur in a catastrophic manner. It has been recently suggested that a potential path to prevent or modify the outcome of these transitions would involve designing synthetic organisms and synthetic ecological interactions that could push these endangered systems out of the critical boundaries. In this paper, we investigate the dynamics of the simplest mathematical models associated with four classes of ecological engineering designs, named Terraformation motifs (TMs). These TMs put in a nutshell different ecological strategies. In this context, some fundamental types of bifurcations pervade the systems' dynamics. Mutualistic interactions can enhance persistence of the systems by means of saddle-node bifurcations. The models without cooperative interactions show that ecosystems achieve restoration through transcritical bifurcations. Thus, our analysis of the models allows us to define the stability conditions and parameter domains where these TMs must work.
Collapse
Affiliation(s)
- Ricard V. Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolitiva, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003 Barcelona, Spain
- Santa Fe Institute 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Raúl Montañez
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolitiva, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003 Barcelona, Spain
| | - Salva Duran-Nebreda
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolitiva, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003 Barcelona, Spain
| | - Daniel Rodriguez-Amor
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolitiva, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003 Barcelona, Spain
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Blai Vidiella
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolitiva, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003 Barcelona, Spain
| | - Josep Sardanyés
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolitiva, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003 Barcelona, Spain
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193, Bellaterra, Barcelona, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Edifici C, Campus de Bellaterra, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
52
|
Abstract
In this very large-scale longitudinal field study of the maize rhizosphere microbiome, we identify heritable taxa. These taxa display variance in their relative abundances that can be partially explained by genetic differences between the maize lines, above and beyond the strong influences of field, plant age, and weather on the diversity of the rhizosphere microbiome. If these heritable taxa are associated with beneficial traits, they may serve as phenotypes in future breeding endeavors. Soil microbes that colonize plant roots and are responsive to differences in plant genotype remain to be ascertained for agronomically important crops. From a very large-scale longitudinal field study of 27 maize inbred lines planted in three fields, with partial replication 5 y later, we identify root-associated microbiota exhibiting reproducible associations with plant genotype. Analysis of 4,866 samples identified 143 operational taxonomic units (OTUs) whose variation in relative abundances across the samples was significantly regulated by plant genotype, and included five of seven core OTUs present in all samples. Plant genetic effects were significant amid the large effects of plant age on the rhizosphere microbiome, regardless of the specific community of each field, and despite microbiome responses to climate events. Seasonal patterns showed that the plant root microbiome is locally seeded, changes with plant growth, and responds to weather events. However, against this background of variation, specific taxa responded to differences in host genotype. If shown to have beneficial functions, microbes may be considered candidate traits for selective breeding.
Collapse
|
53
|
McMillan VE, Canning G, Moughan J, White RP, Gutteridge RJ, Hammond-Kosack KE. Exploring the resilience of wheat crops grown in short rotations through minimising the build-up of an important soil-borne fungal pathogen. Sci Rep 2018; 8:9550. [PMID: 29934522 PMCID: PMC6015077 DOI: 10.1038/s41598-018-25511-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 03/29/2018] [Indexed: 11/27/2022] Open
Abstract
Given the increasing demand for wheat which is forecast, cropping of wheat in short rotations will likely remain a common practice. However, in temperate wheat growing regions the soil-borne fungal pathogen Gaeumannomyces tritici becomes a major constraint on productivity. In cultivar rotation field experiments on the Rothamsted Farm (Hertfordshire, UK) we demonstrated a substantial reduction in take-all disease and grain yield increases of up to 2.4 tonnes/ha when a low take-all inoculum building wheat cultivar was grown in the first year of wheat cropping. Phenotyping of 71 modern elite wheat cultivars for the take-all inoculum build-up trait across six diverse trial sites identified a few cultivars which exhibited a consistent lowering of take-all inoculum build-up. However, there was also evidence of a significant interaction effect between trial site and cultivar when a pooled Residual Maximum Likelihood (REML) procedure was conducted. There was no evidence of an unusual rooting phenotype associated with take-all inoculum build-up in two independent field experiments and a sand column experiment. Together our results highlight the complex interactions between wheat genotype, environmental conditions and take-all inoculum build-up. Further work is required to determine the underlying genetic and mechanistic basis of this important phenomenon.
Collapse
Affiliation(s)
- V E McMillan
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - G Canning
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - J Moughan
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - R P White
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - R J Gutteridge
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - K E Hammond-Kosack
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| |
Collapse
|
54
|
Walitang DI, Kim CG, Jeon S, Kang Y, Sa T. Conservation and transmission of seed bacterial endophytes across generations following crossbreeding and repeated inbreeding of rice at different geographic locations. Microbiologyopen 2018; 8:e00662. [PMID: 29888428 PMCID: PMC6436425 DOI: 10.1002/mbo3.662] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/01/2018] [Accepted: 04/30/2018] [Indexed: 01/08/2023] Open
Abstract
There are comparatively diverse bacterial communities inside seeds, which are vertically transmitted and conserved, becoming sources of endophytes in the next generation of host plants. We studied how rice seed endophyte composition changed over time following crossbreeding, repeated inbreeding, subsequent human selection and planting of different rice seeds in different ecogeographical locations. Using terminal-restriction fragment length polymorphism analysis to study bacterial communities, we observed that diversity between the original parents and their offspring may show significant differences in richness, evenness and diversity indices. Heat maps reveal substantial contributions of both or either parent in the shaping of the bacterial seed endophytes of the offspring. Most of the terminal restriction fragments (T-RFs) of the subsequent progeny could be traced to any or both of its parents while unique T-RFs of the offspring suggest external sources of colonization particularly when the seeds were cultivated in different locations. Many similar groups of endophytic bacteria persist in the seeds even after recultivation in different locations, indicating resilience to environmental changes and conservation of bacteria across generations. This study suggests that parent plants contributed to the shaping of seed bacterial endophytes of their offspring, although it is also possible that these soil grown rice plants recruit similar populations of endophytes from the soil generation after generation. This study also highlights some bacterial groups belonging to Herbaspirillum, Microbacterium, Curtobacterium, Stenotrophomonas, Xanthomonas and Enterobacter that may be part of a transmitted and conserved "core microbiota" that are ubiquitous and dominant members of the endophytic communities of the rice seeds.
Collapse
Affiliation(s)
- Denver I Walitang
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, South Korea
| | - Chan-Gi Kim
- Bio-Evaluation Center, KRIBB, Cheongju, South Korea
| | - Sunyoung Jeon
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, South Korea
| | - Yeongyeong Kang
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, South Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
55
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
56
|
Walitang DI, Kim CG, Kim K, Kang Y, Kim YK, Sa T. The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars. BMC PLANT BIOLOGY 2018; 18:51. [PMID: 29587643 PMCID: PMC5870378 DOI: 10.1186/s12870-018-1261-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/07/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Inherent characteristics and changes in the physiology of rice as it attains salt tolerance affect the colonizing bacterial endophytic communities of the rice seeds. These transmissible endophytes also serve as a source of the plant's microbial community and concurrently respond to the host and environmental conditions. This study explores the influence of the rice host as well as the impact of soil salinity on the community structure and diversity of seed bacterial endophytes of rice with varying tolerance to salt stress. Endophytic bacterial diversity was studied through culture-dependent technique and Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. RESULTS Results revealed considerably diverse communities of bacterial endophytes in the interior of rice seeds. The overall endophytic bacterial communities of the indica rice seeds based on 16S rRNA analysis of clones and isolates are dominated by phylum Proteobacteria followed by Actinobacteria and Firmicutes. Community profiles show common ribotypes found in all cultivars of the indica subspecies representing potential core microbiota belonging to Curtobacterium, Flavobacterium, Enterobacter, Xanthomonas, Herbaspirillum, Microbacterium and Stenotrophomonas. Clustering analysis shows that the host genotype mainly influences the seed endophytic community of the different rice cultivars. Under salt stress conditions, endophytic communities of the salt-sensitive and salt-tolerant rice cultivars shift their dominance to bacterial groups belonging to Flavobacterium, Pantoea, Enterobacter, Microbacterium, Kosakonia and Curtobacterium. CONCLUSION The endophytic communities of rice indica seeds are shaped by the hosts' genotype, their physiological adaptation to salt stress and phylogenetic relatedness. Under salt stress conditions, a few groups of bacterial communities become prominent causing a shift in bacterial diversity and dominance.
Collapse
Affiliation(s)
- Denver I. Walitang
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Chang-Gi Kim
- Bio-Evaluation Center, KRIBB, Cheongju, 281-16 South Korea
| | - Kiyoon Kim
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Yeongyeong Kang
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Young Kee Kim
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| |
Collapse
|
57
|
Nakaew N, Sungthong R. Seed phytochemicals shape the community structures of cultivable actinobacteria-inhabiting plant interiors of Thai pigmented rice. Microbiologyopen 2018; 7:e00591. [PMID: 29575814 PMCID: PMC6079165 DOI: 10.1002/mbo3.591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 12/02/2022] Open
Abstract
We examined abundance, bioactivity, and endophytism of cultivable actinobacteria isolated from plant interiors of two Thai pigmented rice cultivars: Hom Nin (HN) rice and Luem Pua (LP) glutinous rice. Both rice cultivars housed the same amount of endophytic actinobacteria (33 isolates each). Microbispora (76%) and Streptomyces (73%) were the predominant endophytic actinobacteria of LP glutinous rice and HN rice, respectively. Sphaerisporangium (9%) was found only in LP glutinous rice. Twelve percent of endophytic actinobacteria was the possibility of discovering novel species from both rice cultivars. Most endophytic actinobacteria exhibited plant growth‐promoting potentials, including antimicrobial activity against test bacteria and phytopathogenic fungi, solubilization of phosphate, and production of biostimulants (i.e., ammonia, indole‐3‐acetic acid, and siderophore) and biocatalysts (i.e., amylase, cellulase, chitinase, lipase, and protease). Our findings revealed that seed phytochemicals of pigmented rice (e.g., anthocyanin, γ‐oryzanol, phytate, antioxidants, and content of amylose) were effectors, shaping the community structures and biofunctions of endophytic actinobacteria. We conclude that pigmented rice is yet a challenging source for discovery of bioactive and novel actinobacteria. This study also provides new insights into the plant‐endophyte interactions by which seed phytochemicals act as a primary checkpoint in the natural selection for establishing unique plant endophytomes.
Collapse
Affiliation(s)
- Nareeluk Nakaew
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Rungroch Sungthong
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
58
|
Moronta-Barrios F, Gionechetti F, Pallavicini A, Marys E, Venturi V. Bacterial Microbiota of Rice Roots: 16S-Based Taxonomic Profiling of Endophytic and Rhizospheric Diversity, Endophytes Isolation and Simplified Endophytic Community. Microorganisms 2018; 6:microorganisms6010014. [PMID: 29439478 PMCID: PMC5874628 DOI: 10.3390/microorganisms6010014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/23/2018] [Accepted: 02/08/2018] [Indexed: 12/04/2022] Open
Abstract
Rice is currently the most important food crop in the world and we are only just beginning to study the bacterial associated microbiome. It is of importance to perform screenings of the core rice microbiota and also to develop new plant-microbe models and simplified communities for increasing our understanding about the formation and function of its microbiome. In order to begin to address this aspect, we have performed a 16S rDNA taxonomic bacterial profiling of the rhizosphere and endorhizosphere of two high-yield rice cultivars—Pionero 2010 FL and DANAC SD20A—extensively grown in Venezuela in 2014. Fifteen putative bacterial endophytes were then isolated from surface-sterilized roots and further studied in vitro and in planta. We have then performed inoculation of rice seedlings with a simplified community composed by 10 of the isolates and we have tracked them in the course of 30 days in greenhouse cultivation. The results obtained suggest that a set was able to significantly colonize together the rice endorhizospheres, indicating possible cooperation and the ability to form a stable multispecies community. This approach can be useful in the development of microbial solutions for a more sustainable rice production.
Collapse
Affiliation(s)
- Felix Moronta-Barrios
- Bacteriology Group, International Center for Genetic Engineering and Biotechnology ICGEB, 34149 Trieste, Italy.
- Laboratory of Plant Biotechnology and Virology, Center for Microbiology and Cell Biology, Venezuelan Institute of Scientific Research IVIC, Caracas 1020A, Venezuela.
| | | | | | - Edgloris Marys
- Laboratory of Plant Biotechnology and Virology, Center for Microbiology and Cell Biology, Venezuelan Institute of Scientific Research IVIC, Caracas 1020A, Venezuela.
| | - Vittorio Venturi
- Bacteriology Group, International Center for Genetic Engineering and Biotechnology ICGEB, 34149 Trieste, Italy.
| |
Collapse
|
59
|
Yu P, Hochholdinger F. The Role of Host Genetic Signatures on Root-Microbe Interactions in the Rhizosphere and Endosphere. FRONTIERS IN PLANT SCIENCE 2018; 9:1896. [PMID: 30619438 PMCID: PMC6305752 DOI: 10.3389/fpls.2018.01896] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/06/2018] [Indexed: 05/04/2023]
Abstract
Microbiomes inhabiting plants are crucial for plant productivity and well-being. A plethora of interactions between roots, microbiomes, and soil shapes the self-organization of the microbial community associated with the root system. The rhizosphere (i.e., the soil close to the root surface) and endosphere (i.e., all inner root tissues) are critical interfaces for the exchange of resources between roots and the soil environment. In recent years, next-generation sequencing technologies have enabled systemic studies of root-associated microbiomes in the endosphere and interactions between roots and microbes at the root-soil interfaces. Genetic factors such as species and genotype of host plants are the driving force of microbial community differentiation and composition. In this mini-review, we will survey the role of these factors on plant-microbe interactions by highlighting the results of next-generation genomic and transcriptomic studies in the rhizosphere and endosphere of land plants. Moreover, environmental factors such as geography and soil type shape the microbiome. Relationships between the root-associated microbiome, architectural variations and functional switches within the root system determine the health and fitness of the whole plant system. A detailed understanding of plant-microbe interactions is of fundamental agricultural importance and significance for crop improvement by plant breeding.
Collapse
Affiliation(s)
- Peng Yu
- *Correspondence: Peng Yu, Frank Hochholdinger,
| | | |
Collapse
|
60
|
Tian XY, Zhang CS. Illumina-Based Analysis of Endophytic and Rhizosphere Bacterial Diversity of the Coastal Halophyte Messerschmidia sibirica. Front Microbiol 2017; 8:2288. [PMID: 29209296 PMCID: PMC5701997 DOI: 10.3389/fmicb.2017.02288] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 11/06/2017] [Indexed: 11/22/2022] Open
Abstract
Halophytes play important roles in coastal ecosystems. However, few reports have described bacterial communities related to halophytes, and the distribution patterns of these bacteria in different plant tissues have been rarely compared. This paper mainly studied the diversity and community structure of endophytic and rhizosphere (Rh) bacteria related to the halophyte Messerschmidia sibirica, a dominant species in the coastal zone of Shandong Peninsula, China. We collected leaf (Lf), stem (Sm), root (Rt), Rh, and bulk (Bl) control soil samples, and sequenced the V5–V7 region of the bacterial 16S rRNA gene using the Illumina HiSeq platform to identify bacterial communities originating from different plant habitats. We found that the bacterial richness and diversity in Rh were significantly higher than those in the leaves, Sm, and Rt, but lower than those of the Bl control soil. In total, 37 phyla and 438 genera were identified. Microbial-diversity analysis showed that Proteobacteria and Actinobacteria were the dominant phyla and that Pseudomonas, Bacillus, Sphingomonas, Streptomyces, Microbacterium, Rhizobium, and Nocardioides were the dominant genera. However, there were clear differences in community diversity and structure among the samples. Endophytic bacteria community in Lf, Sm, and Rt shared more similarity than those in Rh and Bl control soil. The numbers of operational taxonomic units exclusive to the Lf, stem, Rt, Rh, and Bl control soil samples were 51, 43, 122, 139, and 922, respectively, implying habitat-specific patterns. Principal coordinate analysis demonstrated differences were apparent in the bacterial communities associated with habitats. On the whole, M. sibirica affected bacterial diversity and structured the bacterial community. This study provides insight into the complex microbial compositions of coastal halophytes.
Collapse
Affiliation(s)
- Xue-Ying Tian
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Cheng-Sheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
61
|
Diversity of cultivable bacterial endophytes in Paullinia cupana and their potential for plant growth promotion and phytopathogen control. Microbiol Res 2017; 207:8-18. [PMID: 29458872 DOI: 10.1016/j.micres.2017.10.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/10/2017] [Accepted: 10/27/2017] [Indexed: 02/03/2023]
Abstract
Endophytic bacteria occupy the same niche of phytopathogens and may produce metabolites that induce the host plant systemic resistance and growth. Host and environmental variables often determine the endophytic community's structure and composition. In this study, we addressed whether the plant genotype, organ, and geographic location influence the structure, composition, and functionality of endophytic bacterial communities in Paullinia cupana. To characterize the communities and identify strains with potential application in agriculture, we analyzed two P. cupana genotypes cultivated in two cities of the State of Amazonas, Brazil. Endophytic bacteria were isolated from surface-disinfested root, leaf, and seed tissues through the fragmentation and maceration techniques. The colonization rate, number of bacteria, richness, diversity, and functional traits were determined. The plant growth-promoting ability of selected bacterial strains was assessed in Sorghum bicolor. We identified 95 bacterial species distributed in 29 genera and 3 phyla (Proteobacteria, Actinobacteria, and Firmicutes). The colonization rate, richness, diversity, and species composition varied across the plant organs; the last parameter also varied across the plant genotype and location. Some strains exhibited relevant plant growth-promoting traits and antagonistic traits against the main phytopathogens of P. cupana, but they were not separated by functional traits. The main bacterial strains with plant growth-promoting traits induced S. bicolor growth. Altogether, our findings open opportunities to study the application of isolated endophytic bacterial strains in the bioprospection of processes and products.
Collapse
|
62
|
Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa T. Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiol 2017; 17:209. [PMID: 29073903 PMCID: PMC5658939 DOI: 10.1186/s12866-017-1117-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022] Open
Abstract
Background Rice (Oryza sativa L. ssp. indica) seeds as plant microbiome present both an opportunity and a challenge to colonizing bacterial community living in close association with plants. Nevertheless, the roles and activities of bacterial endophytes remain largely unexplored and insights into plant-microbe interaction are compounded by its complexity. In this study, putative functions or physiological properties associated with bacterial endophytic nature were assessed. Also, endophytic roles in plant growth and germination that may allow them to be selectively chosen by plants were also studied. Results The cultivable seed endophytes were dominated by Proteobacteria particularly class Gammaproteobacteria. Highly identical type strains were isolated from the seed endosphere regardless of the rice host’s physiological tolerance to salinity. Among the type strains, Flavobacterium sp., Microbacterium sp. and Xanthomonas sp. were isolated from the salt-sensitive and salt-tolerant cultivars. PCA-Biplot ordination also showed that specific type strains isolated from different rice cultivars have distinguishing similar characteristics. Flavobacterium sp. strains are phosphate solubilizers and indole-3-acetic acid producers with high tolerance to salinity and osmotic stress. Pseudomonas strains are characterized as high siderophore producers while Microbacterium sp. and Xanthomonas sp. strains have very high pectinase and cellulase activity. Among the physiological traits of the seed endophytes, bacterial pectinase and cellulase activity are positively correlated as well as salt and osmotic tolerance. Overall characterization shows that majority of the isolates could survive in 4–8% salt concentration as well as in 0.6 M and 1.2 M sucrose solution. The activities of catalase, pectinase and cellulase were also observed in almost all of the isolates indicating the importance of these characteristics for survival and colonization into the seed endosphere. Seed bacterial endophytes also showed promising plant growth promoting activities including hormone modulation, nitrogen fixation, siderophore production and phosphate solubilization. Conclusion Though many of the isolates possess similar PGP and endophytic physiological traits, this study shows some prominent and distinguishing traits among bacterial groups indicating key determinants for their success as endophytes in the rice seed endosphere. Rice seeds are also inhabited by bacterial endophytes that promote growth during early seedling development. Electronic supplementary material The online version of this article (10.1186/s12866-017-1117-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denver I Walitang
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kiyoon Kim
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Munusamy Madhaiyan
- Temasek Life Sciences Laboratory, Biomaterials and Biocatalyst, National University of Singapore, Singapore, Singapore
| | - Young Kee Kim
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Yeongyeong Kang
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
63
|
Thapa S, Prasanna R, Ranjan K, Velmourougane K, Ramakrishnan B. Nutrients and host attributes modulate the abundance and functional traits of phyllosphere microbiome in rice. Microbiol Res 2017; 204:55-64. [PMID: 28870292 DOI: 10.1016/j.micres.2017.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/11/2017] [Accepted: 07/15/2017] [Indexed: 02/04/2023]
Abstract
The abundance of phyllosphere bacterial communities of seven genotypes of rice ADT- 38, ADT-43, CR-1009, PB-1, PS-5, P-44, and PB-1509 was investigated, in relation to nutrient dynamics of rhizosphere and leaves. P-44 genotype recorded highest pigment accumulation, while genotypes CR-1009 and P-44 exhibited most number of different bacterial morphotypes, Colony forming units in two media (Nutrient agar and R2A) varied significantly and ranged from 106-107 per g plant tissues. Among the selected 60 distinct morphotypes, IAA and siderophore producers were the dominant functional types. Biocontrol activity against Drechslera oryzae was shown by 38 isolates, while 17 and 9 isolates were potent against Rhizoctonia solani and Magnaporthe oryzae respectively. Principal Component Analysis (PCA) illustrated the significant effects of selected soil and leaf nutrients of seven rice varieties on the culturable phyllospheric population (log CFU), particularly in the R2A medium. Eigen values revealed that 83% of the variance observed could be assigned to Leaf-Fe, Leaf-Mn, chlorophyll b and soil organic carbon (OC). Quantitative PCR analyses of abundance of bacteria, cyanobacteria and archaebacteria revealed a host-specific response, with CR-1009 showing highest number of 16S rRNA copies of bacterial members, while both P-44 and PS-5 had higher cyanobacterial abundance, but lowest number of those belonging to archaebacteria. Nutritional aspects of leaf and soil influenced the abundance of bacteria and their functional attributes; this is of interest for enhancing the efficacy of foliar inoculants, thereby, improving plant growth and disease tolerance.
Collapse
Affiliation(s)
- Shobit Thapa
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Kunal Ranjan
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | | | |
Collapse
|
64
|
Kumar A, Rai LC. Organic carbon and nitrogen availability determine bacterial community composition in paddy fields of the Indo-Gangetic plain. 3 Biotech 2017; 7:199. [PMID: 28667638 DOI: 10.1007/s13205-017-0810-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/17/2017] [Indexed: 11/29/2022] Open
Abstract
Soil quality is an important factor and maintained by inhabited microorganisms. Soil physicochemical characteristics determine indigenous microbial population and rice provides food security to major population of the world. Therefore, this study aimed to assess the impact of physicochemical variables on bacterial community composition and diversity in conventional paddy fields which could reflect a real picture of the bacterial communities operating in the paddy agro-ecosystem. To fulfill the objective; soil physicochemical characterization, bacterial community composition and diversity analysis was carried out using culture-independent PCR-DGGE method from twenty soils distributed across eight districts. Bacterial communities were grouped into three clusters based on UPGMA cluster analysis of DGGE banding pattern. The linkage of measured physicochemical variables with bacterial community composition was analyzed by canonical correspondence analysis (CCA). CCA ordination biplot results were similar to UPGMA cluster analysis. High levels of species-environment correlations (0.989 and 0.959) were observed and the largest proportion of species data variability was explained by total organic carbon (TOC), available nitrogen, total nitrogen and pH. Thus, results suggest that TOC and nitrogen are key regulators of bacterial community composition in the conventional paddy fields. Further, high diversity indices and evenness values demonstrated heterogeneity and co-abundance of the bacterial communities.
Collapse
Affiliation(s)
- Arvind Kumar
- Molecular Biology Section, Laboratory of Algal Biology, Center of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India.
- Department of Biochemistry, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, India.
| | - Lal Chand Rai
- Molecular Biology Section, Laboratory of Algal Biology, Center of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
65
|
Illumina-based analysis of endophytic bacterial diversity of tree peony (Paeonia Sect. Moutan) roots and leaves. Braz J Microbiol 2017; 48:695-705. [PMID: 28606427 PMCID: PMC5628320 DOI: 10.1016/j.bjm.2017.02.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 11/22/2022] Open
Abstract
Diverse communities of bacteria inhabit plant tissues and those bacteria play a crucial role for plant health and growth. Tree peony (Paeonia Sect. Moutan) is known for its excellent ornamental and medicinal values as Chinese traditional plant, but little is known about its associated bacterial community under natural conditions. To examine how endophytic bacteria in tree peony vary across tissues and cultivars, PCR-based Illumina was applied to reveal the diversity of endophytic bacteria in tree peony. A total of 149,842 sequences and 21,463 operational taxonomic units (OTUs) were obtained. The OTU abundance of roots was higher than leaves across other three cultivars except for ‘Kinkaku’ and ‘Luoyanghong’. The community was composed of five dominant groups (Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria and Actinobacteria) in all samples. Endophytic bacteria community structures had changed in leaves and roots. Sequences of Pseudomonas and Enterobacteriaceae were prevalent in root samples, whereas Succinivibrio and Acinetobacter were the dominant genus in leaf samples. Otherwise, the distribution of each dominant genus among the 5 cultivars was either varied. These findings suggested that both plant genotype and tissues contribute to the shaping of the bacterial communities associated with tree peony.
Collapse
|
66
|
Santhanam R, Oh Y, Kumar R, Weinhold A, Luu VT, Groten K, Baldwin IT. Specificity of root microbiomes in native-grown Nicotiana attenuata and plant responses to UVB increase Deinococcus colonization. Mol Ecol 2017; 26:2543-2562. [PMID: 28173617 DOI: 10.1111/mec.14049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 01/02/2023]
Abstract
Plants recruit microbial communities from the soil in which they germinate. Our understanding of the recruitment process and the factors affecting it is still limited for most microbial taxa. We analysed several factors potentially affecting root microbiome structure - the importance of geographic location of natural populations, the microbiome of native seeds as putative source of colonization and the effect of a plant's response to UVB exposure on root colonization of highly abundant species. The microbiome of Nicotiana attenuata seeds was determined by a culture-dependent and culture-independent approach, and the root microbiome of natural N. attenuata populations from five different locations was analysed using 454-pyrosequencing. To specifically address the influence of UVB light on root colonization by Deinococcus, a genus abundant and consistently present in N. attenuata roots, transgenic lines impaired in UVB perception (irUVR8) and response (irCHAL) were investigated in a microcosm experiment with/without UVB supplementation using a synthetic bacterial community. The seed microbiome analysis indicated that N. attenuata seeds are sterile. Alpha and beta diversities of native root bacterial communities differed significantly between soil and root, while location had only a significant effect on the fungal but not the bacterial root communities. With UVB supplementation, root colonization of Deinococcus increased in wild type, but decreased in irUVR8 and irCHAL plants compared to nontreated plants. Our results suggest that N. attenuata recruits a core root microbiome exclusively from soil, with fungal root colonization being less selective than bacterial colonization. Root colonization by Deinococcus depends on the plant's response to UVB.
Collapse
Affiliation(s)
- Rakesh Santhanam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Youngjoo Oh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Ramesh Kumar
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
- CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Industrial Estate Po, Thiruvananthapuram, Kerala, 695019, India
| | - Arne Weinhold
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Van Thi Luu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Karin Groten
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| |
Collapse
|
67
|
Leff JW, Lynch RC, Kane NC, Fierer N. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus. THE NEW PHYTOLOGIST 2017; 214:412-423. [PMID: 27879004 DOI: 10.1111/nph.14323] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/09/2016] [Indexed: 05/21/2023]
Abstract
Root and rhizosphere microbial communities can affect plant health, but it remains undetermined how plant domestication may influence these bacterial and fungal communities. We grew 33 sunflower (Helianthus annuus) strains (n = 5) that varied in their extent of domestication and assessed rhizosphere and root endosphere bacterial and fungal communities. We also assessed fungal communities in the sunflower seeds to investigate the degree to which root and rhizosphere communities were influenced by vertical transmission of the microbiome through seeds. Neither root nor rhizosphere bacterial communities were affected by the extent of sunflower domestication, but domestication did affect the composition of rhizosphere fungal communities. In particular, more modern sunflower strains had lower relative abundances of putative fungal pathogens. Seed-associated fungal communities strongly differed across strains, but several lines of evidence suggest that there is minimal vertical transmission of fungi from seeds to the adult plants. Our results indicate that plant-associated fungal communities are more strongly influenced by host genetic factors and plant breeding than bacterial communities, a finding that could influence strategies for optimizing microbial communities to improve crop yields.
Collapse
Affiliation(s)
- Jonathan W Leff
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309-0216, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Ryan C Lynch
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
- Medicinal Genomics, 12 Gill St, Woburn, MA, 01801, USA
| | - Nolan C Kane
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309-0216, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
68
|
Metagenomic analyses of bacterial endophytes associated with the phyllosphere of a Bt maize cultivar and its isogenic parental line from South Africa. World J Microbiol Biotechnol 2017; 33:80. [PMID: 28341909 DOI: 10.1007/s11274-017-2249-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
Abstract
Genetic modification of maize with Bacillus thuringiensis (Bt) cry proteins may predispose shifts in the bacterial endophytes' community associated with maize shoots. In this study, the diversity of bacterial endophytes associated with a Bt maize genotype (Mon810) and its isogenic non-transgenic parental line were investigated at pre-flowering (50 days) and post-flowering (90 days) developmental stages. PCR-DGGE and high throughput sequencing on the Illumina MiSeq sequencer were used to characterize bacterial 16S rRNA gene diversity in leaves, stems, seeds and tassels. PCR-DGGE profile revealed similarity as well as differences between bacterial communities of shoots in both cultivars and at both developmental stages. A total of 1771 operational taxonomic units (OTUs) were obtained from the MiSeq and assigned into 14 phyla, 27 classes, 58 orders, 116 families and 247 genera. Differences in alpha and beta diversity measures of OTUs between the phyllospheres of both genotypes were not significant (P > .05) at all developmental stages. In all cultivars, OTU diversity reduced with plant development. OTUs belonging to the phyla Proteobacteria were dominant in all maize phyllospheres. The class Gammaproteobacteria was dominant in Bt maize while, Alphaproteobacteria and Actinobacteria were dominant in non-Bt maize phyllospheres. Differences in the abundance of some genera, including Acidovorax, Burkerholderia, Brachybacterium, Enterobacter and Rhodococcus, whose species are known beneficial endophytes were observed between cultivars. Hierarchical cluster analysis further suggests that the bacterial endophyte communities of both maize genotypes associate differently (are dissimilar). Overall, the results suggest that bacterial endophytes community differed more across developmental stages than between maize genotypes.
Collapse
|
69
|
Abstract
Plant-associated microbes are important for the growth and health of their hosts. As a result of numerous prior studies, we know that host genotypes and abiotic factors influence the composition of plant microbiomes. However, the high complexity of these communities challenges detailed studies to define experimentally the mechanisms underlying the dynamics of community assembly and the beneficial effects of such microbiomes on plant hosts. In this work, from the distinctive microbiota assembled by maize roots, through host-mediated selection, we obtained a greatly simplified synthetic bacterial community consisting of seven strains (Enterobacter cloacae, Stenotrophomonas maltophilia, Ochrobactrum pituitosum, Herbaspirillum frisingense, Pseudomonas putida, Curtobacterium pusillum, and Chryseobacterium indologenes) representing three of the four most dominant phyla found in maize roots. By using a selective culture-dependent method to track the abundance of each strain, we investigated the role that each plays in community assembly on roots of axenic maize seedlings. Only the removal of E. cloacae led to the complete loss of the community, and C. pusillum took over. This result suggests that E. cloacae plays the role of keystone species in this model ecosystem. In planta and in vitro, this model community inhibited the phytopathogenic fungus Fusarium verticillioides, indicating a clear benefit to the host. Thus, combined with the selective culture-dependent quantification method, our synthetic seven-species community representing the root microbiome has the potential to serve as a useful system to explore how bacterial interspecies interactions affect root microbiome assembly and to dissect the beneficial effects of the root microbiota on hosts under laboratory conditions in the future.
Collapse
|
70
|
Battu L, Reddy MM, Goud BS, Ulaganathan K, Kandasamy U. Genome inside genome: NGS based identification and assembly of endophytic Sphingopyxis granuli and Pseudomonas aeruginosa genomes from rice genomic reads. Genomics 2017; 109:141-146. [PMID: 28192179 DOI: 10.1016/j.ygeno.2017.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 11/24/2022]
Abstract
The interactions between crop plants and the endophytic bacteria colonizing them are poorly understood and experimental methods were found to be inadequate to meet the complexities associated with the interaction. Moreover, research on endophytic bacteria was focused at host plant species level and not at cultivar level which is essential for understanding the role played by them on the productivity of specific crop genotype. High throughput genomics offers valuable tools for identification, characterization of endophytic bacteria and understand their interaction with host plants. In this paper we report the use of high throughput plant genomic data for identification of endophytic bacteria colonizing rice plants. Using this novel next generation sequencing based computational method Sphingopyxis granuli and Pseudomonas aeruginosa were identified as endophytes colonizing the elite indica rice cultivar RP Bio-226 and their draft genome sequences were assembled.
Collapse
Affiliation(s)
- Latha Battu
- Centre for Plant Molecular Biology, Osmania University, Hyderabad 500007, Telangana, India
| | - Mettu Madhavi Reddy
- Centre for Plant Molecular Biology, Osmania University, Hyderabad 500007, Telangana, India
| | | | - Kayalvili Ulaganathan
- Centre for Plant Molecular Biology, Osmania University, Hyderabad 500007, Telangana, India
| | - Ulaganathan Kandasamy
- Centre for Plant Molecular Biology, Osmania University, Hyderabad 500007, Telangana, India.
| |
Collapse
|
71
|
Foster ZSL, Sharpton TJ, Grünwald NJ. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput Biol 2017; 100:1738-50. [PMID: 28222096 DOI: 10.3732/ajb.1200572] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/07/2017] [Accepted: 02/10/2017] [Indexed: 05/20/2023] Open
Abstract
Community-level data, the type generated by an increasing number of metabarcoding studies, is often graphed as stacked bar charts or pie graphs that use color to represent taxa. These graph types do not convey the hierarchical structure of taxonomic classifications and are limited by the use of color for categories. As an alternative, we developed metacoder, an R package for easily parsing, manipulating, and graphing publication-ready plots of hierarchical data. Metacoder includes a dynamic and flexible function that can parse most text-based formats that contain taxonomic classifications, taxon names, taxon identifiers, or sequence identifiers. Metacoder can then subset, sample, and order this parsed data using a set of intuitive functions that take into account the hierarchical nature of the data. Finally, an extremely flexible plotting function enables quantitative representation of up to 4 arbitrary statistics simultaneously in a tree format by mapping statistics to the color and size of tree nodes and edges. Metacoder also allows exploration of barcode primer bias by integrating functions to run digital PCR. Although it has been designed for data from metabarcoding research, metacoder can easily be applied to any data that has a hierarchical component such as gene ontology or geographic location data. Our package complements currently available tools for community analysis and is provided open source with an extensive online user manual.
Collapse
Affiliation(s)
- Zachary S L Foster
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
- Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Niklaus J Grünwald
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, Oregon, United States of America
| |
Collapse
|
72
|
Niu J, Rang Z, Zhang C, Chen W, Tian F, Yin H, Dai L. The succession pattern of soil microbial communities and its relationship with tobacco bacterial wilt. BMC Microbiol 2016; 16:233. [PMID: 27716043 PMCID: PMC5054579 DOI: 10.1186/s12866-016-0845-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The interaction mechanism between crop and soil microbial communities is a key issue in both agriculture and soil ecology. However, how soil microbial communities respond to crop planting and ultimately affect crop health still remain unclear. In this research, we explored how soil microbial communities shifted during tobacco cultivation under different rotation systems (control, maize rotation, lily rotation and turnip rotation). RESULTS Our analyses showed that soil microbial communities had a general response pattern to tobacco planting, as the abundances of Proteobacteria and Planctomycetes increased while Acidobacteria and Verrucomicrobia decreased during tobacco cultivation, no matter which rotation system was adopted. Notably, tobacco decreased the diversity and co-occurrence of soil microorganisms, but maize rotation might suppress tobacco bacterial wilt by alleviating the decrease in biodiversity and co-occurrence. Molecular ecological network analysis indicated that there was stronger competition between potential disease suppressive (e.g., Acidobacteria) and inducible bacteria (e.g., Chloroflexi) in maize rotation systems. Both soil properties (e.g., pH, Ca content) and microbial communities of tobacco mature period depended on their counterparts of fallow period, and all these factors shaped tobacco disease comprehensively. CONCLUSIONS Both soil microbial communities of fallow stage and tobacco selection shaped the communities of tobacco mature stage. And effective rotation crop (maize) could decrease the incidence of tobacco bacterial wilt by alleviating the decrease in diversity and co-occurrences of microbial populations. This study would deepen our understanding about succession mechanism of soil microbial communities during crop cultivation and their relationship with crop health.
Collapse
Affiliation(s)
- Jiaojiao Niu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 China
- Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083 China
| | - Zhongwen Rang
- College of agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Chao Zhang
- College of agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Wu Chen
- College of agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Feng Tian
- Tobacco monopoly bureau of Xiangxi Autonomous Prefecture, Hunan Jishou, 416000 China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 China
- Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083 China
| | - Linjian Dai
- College of agronomy, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
73
|
Communities of endophytic microorganisms in different developmental stages from a local variety as well as transgenic and conventional isogenic hybrids of maize. World J Microbiol Biotechnol 2016; 32:189. [PMID: 27696288 DOI: 10.1007/s11274-016-2149-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 09/24/2016] [Indexed: 01/06/2023]
Abstract
The diversity of endophytic microorganisms may change due to the genotype of the host plant and its phenological stage. In this study we evaluated the effect of phenological stage, transgenes and genetic composition of maize on endophytic bacterial and fungal communities. The maize populations were composed of a local variety named Rosado (RS) and three isogenic hybrids. One isogenic hybrid was not genetically modified (NGM). Another hybrid (Hx) contained the transgenes cry1F and pat (T1507 event), which provide resistance to insects of the order Lepidoptera and tolerance to the glufosinate-ammonium herbicide, respectively. The third hybrid (Hxrr) contained the transgene cp4 epsps (NK603 event) combined with the transgenes cry1F and pat (T1507 event), which allow tolerance to the Roundup Ready herbicide, besides the characteristics of Hx. Evaluation of the foliar tissue was done through PCR-DGGE analysis, with specific primers for bacteria and fungi within four phenological stages of maize. The endophytic bacteria were only clustered by phenological stages; the structure of the fungal community was clustered by maize genotypes in each phenological stage. The fungal community from the local variety RS was different from the three hybrids (NGM, Hx and Hxrr) within the four evaluated stages. In the reproductive stage, the fungal community from the two transgenic hybrids (Hx and Hxrr) were separated, and the Hxrr was different from NGM, in the two field experiments. This research study showed that the genetic composition of the maize populations, especially the presence of transgenes, is the determining factor for the changes detected in the endophytic fungal community of maize leaves.
Collapse
|
74
|
Richter-Heitmann T, Eickhorst T, Knauth S, Friedrich MW, Schmidt H. Evaluation of Strategies to Separate Root-Associated Microbial Communities: A Crucial Choice in Rhizobiome Research. Front Microbiol 2016; 7:773. [PMID: 27252690 PMCID: PMC4877504 DOI: 10.3389/fmicb.2016.00773] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Plants shape distinct, species-specific microbiomes in their rhizospheres. A main premise for evaluating microbial communities associated with root-soil compartments is their successful separation into the rhizosphere (soil-root interface), the rhizoplane (root surface), and the endosphere (inside roots). We evaluated different approaches (washing, sonication, and bleaching) regarding their efficiency to separate microbial cells associated with different root compartments of soil-grown rice using fluorescence microscopy and community fingerprinting of 16S rRNA genes. Vigorous washing detached 45% of the rhizoplane population compared to untreated roots. Additional sonication reduced rhizoplane-attached microorganisms by up to 78% but caused various degrees of root tissue destruction at all sonication intensities tested. Treatment with sodium hypochlorite almost completely (98%) removed rhizoplane-associated microbial cells. Community fingerprinting revealed that microbial communities obtained from untreated, washed, and sonicated roots were not statistically distinguishable. Hypochlorite-treated roots harbored communities significantly different from all other samples, likely representing true endospheric populations. Applying these procedures to other root samples (bean and clover) revealed that treatment efficiencies were strongly affected by root morphological parameters such as root hair density and rigidity of epidermis. Our findings suggest that a careful evaluation of separation strategies prior to molecular community analysis is indispensable, especially when endophytes are the subject of interest.
Collapse
Affiliation(s)
- Tim Richter-Heitmann
- Microbial Ecophysiology, Faculty of Biology/Chemistry, University of BremenBremen, Germany; International Max Planck Research School for Marine Microbiology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Thilo Eickhorst
- Soil Microbial Ecology, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany
| | - Stefan Knauth
- Soil Microbial Ecology, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany
| | - Michael W Friedrich
- Microbial Ecophysiology, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany
| | - Hannes Schmidt
- Soil Microbial Ecology, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany
| |
Collapse
|
75
|
Pirttilä AM. Commentary: Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America. Front Microbiol 2016; 7:656. [PMID: 27199975 PMCID: PMC4858751 DOI: 10.3389/fmicb.2016.00656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022] Open
|
76
|
Miyambo T, Makhalanyane TP, Cowan DA, Valverde A. Plants of the fynbos biome harbour host species-specific bacterial communities. FEMS Microbiol Lett 2016; 363:fnw122. [DOI: 10.1093/femsle/fnw122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2016] [Indexed: 12/28/2022] Open
|
77
|
Comby M, Lacoste S, Baillieul F, Profizi C, Dupont J. Spatial and Temporal Variation of Cultivable Communities of Co-occurring Endophytes and Pathogens in Wheat. Front Microbiol 2016; 7:403. [PMID: 27065969 PMCID: PMC4814462 DOI: 10.3389/fmicb.2016.00403] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/14/2016] [Indexed: 01/01/2023] Open
Abstract
The aim of this work was to investigate the diversity of endogenous microbes from wheat (Triticum aestivum) and to study the structure of its microbial communities, with the ultimate goal to provide candidate strains for future evaluation as potential biological control agents against wheat diseases. We sampled plants from two wheat cultivars, Apache and Caphorn, showing different levels of susceptibility to Fusarium head blight, a major disease of wheat, and tested for variation in microbial diversity and assemblages depending on the host cultivar, host organ (aerial organs vs. roots) or host maturity. Fungi and bacteria were isolated using a culture dependent method. Isolates were identified using ribosomal DNA sequencing and we used diversity analysis to study the community composition of microorganisms over space and time. Results indicate great species diversity in wheat, with endophytes and pathogens co-occurring inside plant tissues. Significant differences in microbial communities were observed according to host maturity and host organs but we did not find clear differences between host cultivars. Some species isolated have not yet been reported as wheat endophytes and among all species recovered some might be good candidates as biological control agents, given their known effects toward plant pathogens.
Collapse
Affiliation(s)
- Morgane Comby
- Institut de Systématique, Evolution et Biodiversité-UMR 7205-Centre National de la Recherche Scientifique, MNHN, UPMC, EPHE, Muséum National D'histoire Naturelle, Sorbonne UniversitésParis, France; UFR Sciences Exactes et Naturelles-Laboratoire de Stress Défenses et Reproduction des Plantes, Moulin de la HousseReims, France
| | - Sandrine Lacoste
- Institut de Systématique, Evolution et Biodiversité-UMR 7205-Centre National de la Recherche Scientifique, MNHN, UPMC, EPHE, Muséum National D'histoire Naturelle, Sorbonne Universités Paris, France
| | - Fabienne Baillieul
- UFR Sciences Exactes et Naturelles-Laboratoire de Stress Défenses et Reproduction des Plantes, Moulin de la Housse Reims, France
| | | | - Joëlle Dupont
- Institut de Systématique, Evolution et Biodiversité-UMR 7205-Centre National de la Recherche Scientifique, MNHN, UPMC, EPHE, Muséum National D'histoire Naturelle, Sorbonne Universités Paris, France
| |
Collapse
|
78
|
Influence of plant genotype on the cultivable fungi associated to tomato rhizosphere and roots in different soils. Fungal Biol 2016; 120:862-72. [PMID: 27268246 DOI: 10.1016/j.funbio.2016.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/10/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
Abstract
Rhizosphere and root-associated microbiota are crucial in determining plant health and in increasing productivity of agricultural crops. To date, research has mainly focused on the bacterial dimension of the microbiota. However, interest in the mycobiota is increasing, since fungi play a key role in soil ecosystems. We examined the effect of plant genotype, soil, and of Fusarium oxysporum f. sp. lycopersici (Fol) on the cultivable component of rhizosphere and root-associated mycobiota of tomato. Resistant and susceptible varieties were cultivated on two different soils (A and B), under glasshouse conditions. Isolated fungi were identified by morphological and molecular approaches. Differences were found between the rhizosphere and the roots, which in general displayed a lower number of species. The structure of the mycobiota was significantly affected by the soil type in the rhizosphere as well as by the plant genotype within the roots (NPERMANOVA, p < 0.05). The addition of Fol changed the community structure, particularly in soil A, where Penicillium spp. and Fusarium spp. were the dominant responding fungi. Overall, the results indicated that i) soil type and plant genotype affect the fungal communities; ii) plant roots select few species from the rhizosphere; and iii) the fungal community structure is influenced by Fol.
Collapse
|
79
|
Fonseca-García C, Coleman-Derr D, Garrido E, Visel A, Tringe SG, Partida-Martínez LP. The Cacti Microbiome: Interplay between Habitat-Filtering and Host-Specificity. Front Microbiol 2016; 7:150. [PMID: 26904020 PMCID: PMC4751269 DOI: 10.3389/fmicb.2016.00150] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/27/2016] [Indexed: 01/19/2023] Open
Abstract
Cactaceae represents one of the most species-rich families of succulent plants native to arid and semi-arid ecosystems, yet the associations Cacti establish with microorganisms and the rules governing microbial community assembly remain poorly understood. We analyzed the composition, diversity, and factors influencing above- and below-ground bacterial, archaeal, and fungal communities associated with two native and sympatric Cacti species: Myrtillocactus geometrizans and Opuntia robusta. Phylogenetic profiling showed that the composition and assembly of microbial communities associated with Cacti were primarily influenced by the plant compartment; plant species, site, and season played only a minor role. Remarkably, bacterial, and archaeal diversity was higher in the phyllosphere than in the rhizosphere of Cacti, while the opposite was true for fungi. Semi-arid soils exhibited the highest levels of microbial diversity whereas the stem endosphere the lowest. Despite their taxonomic distance, M. geometrizans and O. robusta shared most microbial taxa in all analyzed compartments. Influence of the plant host did only play a larger role in the fungal communities of the stem endosphere. These results suggest that fungi establish specific interactions with their host plant inside the stem, whereas microbial communities in the other plant compartments may play similar functional roles in these two species. Biochemical and molecular characterization of seed-borne bacteria of Cacti supports the idea that these microbial symbionts may be vertically inherited and could promote plant growth and drought tolerance for the fitness of the Cacti holobiont. We envision this knowledge will help improve and sustain agriculture in arid and semi-arid regions of the world.
Collapse
Affiliation(s)
- Citlali Fonseca-García
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados Irapuato, Mexico
| | - Devin Coleman-Derr
- Department of Energy Joint Genome InstituteWalnut Creek, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA; Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research ServiceAlbany, CA, USA
| | - Etzel Garrido
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados Irapuato, Mexico
| | - Axel Visel
- Department of Energy Joint Genome InstituteWalnut Creek, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA; Molecular Cell Biology, School of Natural Sciences, University of California, MercedMerced, CA, USA
| | - Susannah G Tringe
- Department of Energy Joint Genome InstituteWalnut Creek, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA; Molecular Cell Biology, School of Natural Sciences, University of California, MercedMerced, CA, USA
| | - Laila P Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados Irapuato, Mexico
| |
Collapse
|
80
|
Deepika VB, Murali TS, Satyamoorthy K. Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: A review. Microbiol Res 2015; 182:125-40. [PMID: 26686621 DOI: 10.1016/j.micres.2015.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 11/26/2022]
Abstract
Novel drugs with unique and targeted mode of action are very much need of the hour to treat and manage severe multidrug infections and other life-threatening complications. Though natural molecules have proved to be effective and environmentally safe, the relative paucity of discovery of new drugs has forced us to lean towards synthetic chemistry for developing novel drug molecules. Plants and microbes are the major resources that we rely upon in our pursuit towards discovery of novel compounds of pharmacological importance with less toxicity. Endophytes, an eclectic group of microbes having the potential to chemically bridge the gap between plants and microbes, have attracted the most attention due to their relatively high metabolic versatility. Since continuous large scale supply of major metabolites from microfungi and especially endophytes is severely impeded by the phenomenon of attenuation in axenic cultures, the major challenge is to understand the regulatory mechanisms in operation that drive the expression of metabolic gene clusters of pharmaceutical importance. This review is focused on the major regulatory elements that operate in filamentous fungi and various combinatorial multi-disciplinary approaches involving bioinformatics, molecular biology, and metabolomics that could aid in large scale synthesis of important lead molecules.
Collapse
Affiliation(s)
- V B Deepika
- Division of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India
| | - T S Murali
- Division of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India.
| | - K Satyamoorthy
- Division of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India
| |
Collapse
|
81
|
Pittol M, Durso L, Valiati VH, Fiuza LM. Agronomic and environmental aspects of diazotrophic bacteria in rice fields. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1154-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
82
|
Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol Mol Biol Rev 2015; 79:293-320. [PMID: 26136581 PMCID: PMC4488371 DOI: 10.1128/mmbr.00050-14] [Citation(s) in RCA: 1148] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.
Collapse
Affiliation(s)
- Pablo R. Hardoim
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | | | - Gabriele Berg
- Institute for Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Stéphane Compant
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology GmbH, Tulln, Austria
| | - Andrea Campisano
- Sustainable Agro-Ecosystems and Bioresources Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | | | - Angela Sessitsch
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
83
|
Ren G, Zhang H, Lin X, Zhu J, Jia Z. Response of leaf endophytic bacterial community to elevated CO2 at different growth stages of rice plant. Front Microbiol 2015; 6:855. [PMID: 26379635 PMCID: PMC4553393 DOI: 10.3389/fmicb.2015.00855] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
Plant endophytic bacteria play an important role in plant growth and health. In the context of climate change, the response of plant endophytic bacterial communities to elevated CO2 at different rice growing stages is poorly understood. Using 454 pyrosequencing, we investigated the response of leaf endophytic bacterial communities to elevated CO2 (eCO2) at the tillering, filling, and maturity stages of the rice plant under different nitrogen fertilization conditions [low nitrogen fertilization (LN) and high nitrogen fertilization (HN)]. The results revealed that the leaf endophytic bacterial community was dominated by Gammaproteobacteria-affiliated families, such as Enterobacteriaceae and Xanthomonadaceae, which represent 28.7-86.8% and 2.14-42.6% of the total sequence reads, respectively, at all tested growth stages. The difference in the bacterial community structure between the different growth stages was greater than the difference resulting from the CO2 and nitrogen fertilization treatments. The eCO2 effect on the bacterial communities differed greatly under different nitrogen application conditions and at different growth stages. Specifically, eCO2 revealed a significant effect on the community structure under both LN and HN levels at the tillering stage; however, the significant effect of eCO2 was only observed under HN, rather than under the LN condition at the filling stage; no significant effect of eCO2 on the community structure at both the LN and HN fertilization levels was found at the maturity stage. These results provide useful insights into the response of leaf endophytic bacterial communities to elevated CO2 across rice growth stages.
Collapse
Affiliation(s)
- Gaidi Ren
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
| | - Huayong Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
| |
Collapse
|
84
|
The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol Mol Biol Rev 2015. [PMID: 26136581 DOI: 10.1128/mmbr.00050-14.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.
Collapse
|
85
|
Kõiv V, Roosaare M, Vedler E, Kivistik PA, Toppi K, Schryer DW, Remm M, Tenson T, Mäe A. Microbial population dynamics in response to Pectobacterium atrosepticum infection in potato tubers. Sci Rep 2015; 5:11606. [PMID: 26118792 PMCID: PMC4484245 DOI: 10.1038/srep11606] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/28/2015] [Indexed: 12/23/2022] Open
Abstract
Endophytes are microbes and fungi that live inside plant tissues without damaging the host. Herein we examine the dynamic changes in the endophytic bacterial community in potato (Solanum tuberosum) tuber in response to pathogenic infection by Pectobacterium atrosepticum, which causes soft rot in numerous economically important crops. We quantified community changes using both cultivation and next-generation sequencing of the 16S rRNA gene and found that, despite observing significant variability in both the mass of macerated tissue and structure of the endophytic community between individual potato tubers, P. atrosepticum is always taken over by the endophytes during maceration. 16S rDNA sequencing revealed bacteria from the phyla Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Fusobacteria, Verrucomicrobia, Acidobacteria, TM7, and Deinococcus-Thermus. Prior to infection, Propionibacterium acnes is frequently among the dominant taxa, yet is out competed by relatively few dominant taxa as the infection proceeds. Two days post-infection, the most abundant sequences in macerated potato tissue are Gammaproteobacteria. The most dominant genera are Enterobacter and Pseudomonas. Eight days post-infection, the number of anaerobic pectolytic Clostridia increases, probably due to oxygen depletion. These results demonstrate that the pathogenesis is strictly initiated by the pathogen (sensu stricto) and proceeds with a major contribution from the endophytic community.
Collapse
Affiliation(s)
- Viia Kõiv
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Märt Roosaare
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Eve Vedler
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Paula Ann Kivistik
- Estonian Genome Center, University of Tartu, Riia 23 B, 51010 Tartu, Estonia
| | - Kristel Toppi
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - David W Schryer
- Institute of Technology, University of Tartu, 1 Nooruse Street, Tartu 50411, Estonia
| | - Maido Remm
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 1 Nooruse Street, Tartu 50411, Estonia
| | - Andres Mäe
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| |
Collapse
|
86
|
Zgadzaj R, James EK, Kelly S, Kawaharada Y, de Jonge N, Jensen DB, Madsen LH, Radutoiu S. A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet 2015; 11:e1005280. [PMID: 26042417 PMCID: PMC4456278 DOI: 10.1371/journal.pgen.1005280] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 05/14/2015] [Indexed: 11/18/2022] Open
Abstract
Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule. Plants have evolved elaborated mechanisms to monitor microbial presence and to control their infection, therefore only particular microbes, so called “endophytes,” are able to colonise the internal tissues with minimal or no host damage. The legume root nodule is a unique environmental niche induced by symbiotic bacteria, but where multiple species, symbiotic and endophytic co-exist. Genetic studies of the binary interaction legume-symbiont led to the discovery of key components evolved in the two partners allowing mutual recognition and nodule infection. In contrast, there is limited knowledge about the endophytic nodule infection, the role of the legume host, or the symbiont in the process of nodule colonisation by endophytes. Here we focus on the early stages of nodule infection in order to identify which molecular signatures and genetic components favour/allow endophyte accommodation, and multiple species co-existence inside nodules. We found that colonisation of Lotus japonicus nodules by endophytic bacteria is a selective process, that endophyte nodule occupancy is host-controlled, and that exopolysaccharides are key bacterial features for chronic infection of nodules. Our strategy based on model legume genetics and co-inoculation can thus be used for identifying mechanisms operating behind host-microbes compatibility in environments where multiple species co-exist.
Collapse
Affiliation(s)
- Rafal Zgadzaj
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- Carbohydrate Recognition and Signalling (CARB) Centre, Aarhus, Denmark
| | - Euan K. James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- Carbohydrate Recognition and Signalling (CARB) Centre, Aarhus, Denmark
| | - Yasuyuki Kawaharada
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- Carbohydrate Recognition and Signalling (CARB) Centre, Aarhus, Denmark
| | - Nadieh de Jonge
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- Carbohydrate Recognition and Signalling (CARB) Centre, Aarhus, Denmark
| | - Dorthe B. Jensen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- Carbohydrate Recognition and Signalling (CARB) Centre, Aarhus, Denmark
| | - Lene H. Madsen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- Carbohydrate Recognition and Signalling (CARB) Centre, Aarhus, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- Carbohydrate Recognition and Signalling (CARB) Centre, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
87
|
Dean SL, Farrer EC, Porras-Alfaro A, Suding KN, Sinsabaugh RL. Assembly of root-associated bacteria communities: interactions between abiotic and biotic factors. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:102-110. [PMID: 25870878 DOI: 10.1111/1758-2229.12194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nitrogen (N) deposition in many areas of the world is over an order of magnitude greater than it would be in absence of human activity. We ask how abiotic (N)and biotic (plant host and neighborhood) effects interact to influence root-associated bacterial (RAB)community assembly. Using 454 pyrosequencing, we examined RAB communities from two dominantal pine tundra plants, Geum rossii and Deschampsia cespitosa, under control, N addition and D. cespitosa removal treatments, implemented in a factorial design. We hypothesized that host would have the strongest effect on RAB assembly, followed by N,then neighbor effects.The most dominant phyla were Proteobacteria (mostly Gammaproteobacteria), Actinobacteria,Bacteroidetes and Acidobacteria. We found RAB communities were host specific, with only 17% overlap in operational taxonomic units. Host effects on composition were over twice as strong as Neffects. D. cespitosa RAB diversity declined with N, while G. rossii RAB did not. D. cespitosa removal did not influence G. rossii RAB community composition, but G. rossii RAB diversity declined with N only when D. cespitosa was absent. We conclude that RAB of both hosts are sensitive to N enrichment, and RAB response to N is influenced by host identity and plant neighborhood.
Collapse
Affiliation(s)
- Sarah L Dean
- Department of Biology, University of New Mexico Albuquerque, NM, USA.
| | | | | | | | | |
Collapse
|
88
|
Pump J, Pratscher J, Conrad R. Colonization of rice roots with methanogenic archaea controls photosynthesis-derived methane emission. Environ Microbiol 2015; 17:2254-60. [PMID: 25367104 DOI: 10.1111/1462-2920.12675] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 11/28/2022]
Abstract
The methane emitted from rice fields originates to a large part (up to 60%) from plant photosynthesis and is formed on the rice roots by methanogenic archaea. To investigate to which extent root colonization controls methane (CH4 ) emission, we pulse-labeled rice microcosms with (13) CO2 to determine the rates of (13) CH4 emission exclusively derived from photosynthates. We also measured emission of total CH4 ((12+13) CH4 ), which was largely produced in the soil. The total abundances of archaea and methanogens on the roots and in the soil were analysed by quantitative polymerase chain reaction of the archaeal 16S rRNA gene and the mcrA gene coding for a subunit of the methyl coenzyme M reductase respectively. The composition of archaeal and methanogenic communities was determined with terminal restriction fragment length polymorphism (T-RFLP). During the vegetative growth stages, emission rates of (13) CH4 linearly increased with the abundance of methanogenic archaea on the roots and then decreased during the last plant growth stage. Rates of (13) CH4 emission and the abundance of methanogenic archaea were lower when the rice was grown in quartz-vermiculite with only 10% rice soil. Rates of total CH4 emission were not systematically related to the abundance of methanogenic archaea in soil plus roots. The composition of the archaeal communities was similar under all conditions; however, the analysis of mcrA genes indicated that the methanogens differed between the soil and root. Our results support the hypothesis that rates of photosynthesis-driven CH4 emission are limited by the abundance of methanogens on the roots.
Collapse
Affiliation(s)
- Judith Pump
- Department of Biogeochemistry, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Jennifer Pratscher
- Department of Biogeochemistry, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Ralf Conrad
- Department of Biogeochemistry, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| |
Collapse
|
89
|
García-Martínez J, Brunk M, Avalos J, Terpitz U. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination. Sci Rep 2015; 5:7798. [PMID: 25589426 PMCID: PMC4295100 DOI: 10.1038/srep07798] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/18/2014] [Indexed: 12/29/2022] Open
Abstract
Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO(-) mutant and carO(+) control strains showed a faster development of light-exposed carO(-) germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | - Michael Brunk
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, D-97074 Würzburg, Germany
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, D-97074 Würzburg, Germany
| |
Collapse
|
90
|
Priya H, Prasanna R, Ramakrishnan B, Bidyarani N, Babu S, Thapa S, Renuka N. Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiol Res 2015; 171:78-89. [PMID: 25644956 DOI: 10.1016/j.micres.2014.12.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/17/2014] [Accepted: 12/26/2014] [Indexed: 12/31/2022]
Abstract
Rice plants are selective with their associations with bacteria that are beneficial for growth, nutrient uptake, exhibit induced resistance or antagonism towards pathogens. Cyanobacteria as bioinoculants are known to promote the growth and health of rice plants. The present investigation was aimed at understanding whether and how cyanobacterial (Calothrix elenkinii) inoculation influenced the rice plant growth and the culturable bacterial populations and identifying the dominant culturable "microbiome" members. The plant tissue extracts were used to enumerate populations of the culturable microbiome members using selected enrichment media with different nutrient levels. About 10-fold increases in population densities of culturable microbiome members in different media were recorded, with some isolates having metabolic potential for nitrogen fixation and phosphorus solubilization. Fatty acid methyl ester (FAME) analysis and 16S rRNA sequencing of selected microbial morphotypes suggested the predominance of the members of Bacillaceae. Significant increases in plant growth attributes, nitrogenase activity and indole acetic acid production, and activities of hydrolytic and defense enzymes were recorded in the Calothrix inoculated plants. The PCR-based analysis and scanning electron microscopic (SEM) observations confirmed the presence of inoculated cyanobacterium inside the plant tissues. This investigation illustrated that cyanobacterial inoculation can play significant roles in improving growth and metabolism of rice directly and interact with the beneficial members from the endophytic microbiome of rice seedlings synergistically.
Collapse
Affiliation(s)
- Himani Priya
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India.
| | | | - Ngangom Bidyarani
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Santosh Babu
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Shobit Thapa
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Nirmal Renuka
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| |
Collapse
|
91
|
Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T. Roots shaping their microbiome: global hotspots for microbial activity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:403-24. [PMID: 26243728 DOI: 10.1146/annurev-phyto-082712-102342] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Land plants interact with microbes primarily at roots. Despite the importance of root microbial communities for health and nutrient uptake, the current understanding of the complex plant-microbe interactions in the rhizosphere is still in its infancy. Roots provide different microhabitats at the soil-root interface: rhizosphere soil, rhizoplane, and endorhizosphere. We discuss technical aspects of their differentiation that are relevant for the functional analysis of their different microbiomes, and we assess PCR (polymerase chain reaction)-based methods to analyze plant-associated bacterial communities. Development of novel primers will allow a less biased and more quantitative view of these global hotspots of microbial activity. Based on comparison of microbiome data for the different root-soil compartments and on knowledge of bacterial functions, a three-step enrichment model for shifts in community structure from bulk soil toward roots is presented. To unravel how plants shape their microbiome, a major research field is likely to be the coupling of reductionist and molecular ecological approaches, particularly for specific plant genotypes and mutants, to clarify causal relationships in complex root communities.
Collapse
Affiliation(s)
- Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, D-28334 Bremen, Germany; , , , ,
| | | | | | | | | |
Collapse
|
92
|
da Silva DAF, Cotta SR, Vollú RE, Jurelevicius DDA, Marques JM, Marriel IE, Seldin L. Endophytic microbial community in two transgenic maize genotypes and in their near-isogenic non-transgenic maize genotype. BMC Microbiol 2014; 14:332. [PMID: 25540019 PMCID: PMC4327796 DOI: 10.1186/s12866-014-0332-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 12/17/2014] [Indexed: 11/23/2022] Open
Abstract
Background Despite all the benefits assigned to the genetically modified plants, there are still no sufficient data available in literature concerning the possible effects on the microbial communities associated with these plants. Therefore, this study was aimed at examining the effects of the genetic modifications of two transgenic maize genotypes (MON810 – expressing the insecticidal Bt-toxin and TC1507 – expressing the insecticidal Bt-toxin and the herbicide resistance PAT [phosphinothricin-N-acetyltransferase]) on their endophytic microbial communities, in comparison to the microbial community found in the near-isogenic non-transgenic maize (control). Results The structure of the endophytic communities (Bacteria, Archaea and fungi) and their composition (Bacteria) were evaluated by denaturing gradient gel electrophoresis (DGGE) and the construction of clone libraries, respectively. DGGE analysis and the clone libraries of the bacterial community showed that genotype TC1507 slightly differed from the other two genotypes. Genotype TC1507 showed a higher diversity within its endophytic bacterial community when compared to the other genotypes. Although some bacterial genera were found in all genotypes, such as the genera Burkholderia, Achromobacer and Stenotrophomonas, some were unique to genotype TC1507. Moreover, OTUs associated with Enterobacter predominated only in TC1507 clone libraries. Conclusion The endophytic bacterial community of the maize genotype TC1507 differed from the communities of the maize genotype MON810 and of their near-isogenic parental genotypes (non-Bt or control). The differences observed among the maize genotypes studied may be associated with insertion of the gene coding for the protein PAT present only in the transgenic genotype TC1507.
Collapse
Affiliation(s)
| | - Simone Raposo Cotta
- Departamento de Ciências do Solo, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil.
| | - Renata Estebanez Vollú
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, RJ, Brazil.
| | | | - Joana Montezano Marques
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, RJ, Brazil.
| | - Ivanildo Evódio Marriel
- EMBRAPA/CNPMS- Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisas de Milho e Sorgo, Sete Lagoas, MG, Brazil.
| | - Lucy Seldin
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, RJ, Brazil. .,Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-590, Brazil.
| |
Collapse
|
93
|
Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina. Antonie van Leeuwenhoek 2014; 107:575-88. [PMID: 25527391 DOI: 10.1007/s10482-014-0353-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/08/2014] [Indexed: 10/24/2022]
Abstract
Plants interact with a myriad of microbial cells in the rhizosphere, an environment that is considered to be important for plant development. However, the differential structuring of rhizosphere microbial communities due to plant cultivation under differential agricultural practices remains to be described for most plant species. Here we describe the rhizosphere microbiome of grapevine cultivated under conventional and organic practices, using a combination of cultivation-independent approaches. The quantification of bacterial 16S rRNA and nifH genes, by quantitative PCR (qPCR), revealed similar amounts of these genes in the rhizosphere in both vineyards. PCR-DGGE was used to detect differences in the structure of bacterial communities, including both the complete whole communities and specific fractions, such as Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and those harboring the nitrogen-fixing related gene nifH. When analyzed by a multivariate approach (redundancy analysis), the shifts observed in the bacterial communities were poorly explained by variations in the physical and chemical characteristics of the rhizosphere. These approaches were complemented by high-throughput sequencing (67,830 sequences) based on the V6 region of the 16S rRNA gene, identifying the major bacterial groups present in the rhizosphere of grapevines: Proteobacteria, Actinobacteria, Firmicutes, Bacteriodetes, Acidobacteria, Cloroflexi, Verrucomicrobia and Planctomycetes, which occur in distinct proportions in the rhizosphere from each vineyard. The differences might be related to the selection of plant metabolism upon distinct reservoirs of microbial cells found in each vineyard. The results fill a gap in the knowledge of the rhizosphere of grapevines and also show distinctions in these bacterial communities due to agricultural practices.
Collapse
|
94
|
Campisano A, Antonielli L, Pancher M, Yousaf S, Pindo M, Pertot I. Bacterial endophytic communities in the grapevine depend on pest management. PLoS One 2014; 9:e112763. [PMID: 25387008 PMCID: PMC4227848 DOI: 10.1371/journal.pone.0112763] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 10/16/2014] [Indexed: 01/26/2023] Open
Abstract
Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars.
Collapse
Affiliation(s)
- Andrea Campisano
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
- * E-mail:
| | - Livio Antonielli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
- Austrian Institute of Technology GmbH, Department of Health & Environment, Bioresources Unit, Tulln, Austria
| | - Michael Pancher
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
| | - Sohail Yousaf
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
| |
Collapse
|
95
|
Zachow C, Müller H, Tilcher R, Berg G. Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima-ancestor of all beet crops-and modern sugar beets. Front Microbiol 2014; 5:415. [PMID: 25206350 PMCID: PMC4144093 DOI: 10.3389/fmicb.2014.00415] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 07/22/2014] [Indexed: 02/01/2023] Open
Abstract
The structure and function of the plant microbiome is driven by plant species and prevailing environmental conditions. Effectuated by breeding efforts, modern crops diverge genetically and phenotypically from their wild relatives but little is known about consequences for the associated microbiota. Therefore, we studied bacterial rhizosphere communities associated with the wild beet B. vulgaris ssp. maritima grown in their natural habitat soil from coastal drift lines (CS) and modern sugar beets (Beta vulgaris ssp. vulgaris) cultivated in CS and potting soil (PS) under greenhouse conditions. Analysis of 16S rRNA gene fingerprints and pyrosequencing-based amplicon libraries revealed plant genotype- and soil-specific microbiomes. Wild beet plants harbor distinct operational taxonomic units (OTUs) and a more diverse bacterial community than the domesticated sugar beet plants. Although the rhizospheres of both plant genotypes were dominated by Proteobacteria and Planctomycetes, 37.5% of dominant OTUs were additionally detected in the wild beet rhizosphere. Analysis of the cultivable fraction confirmed these plant genotype-specific differences at functional level. The proportion of isolates displayed in vitro activity against phytopathogens was lower for wild beet (≤45.8%) than for sugar beet (≤57.5%). Conversely, active isolates from the wild beet exhibited stronger ability to cope with abiotic stresses. From all samples, active isolates of Stenotrophomonas rhizophila were frequently identified. In addition, soil type-specific impacts on the composition of bacterial communities were found: Acidobacteria, Chloroflexi, and Planctomycetes were only detected in plants cultivated in CS; whereas Bacteroidetes and Proteobacteria dominated in PS. Overall, in comparison to modern sugar beets, wild beets were associated with taxonomically and functionally distinct microbiomes.
Collapse
Affiliation(s)
- Christin Zachow
- Austrian Center of Industrial Biotechnology (ACIB GmbH) Graz, Austria ; Institute of Environmental Biotechnology, Graz University of Technology Graz, Austria
| | - Henry Müller
- Institute of Environmental Biotechnology, Graz University of Technology Graz, Austria
| | | | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology Graz, Austria
| |
Collapse
|
96
|
Promoting plant growth in a commercial rice cultivar by endophytic diazotrophic bacteria isolated from rice landraces. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0857-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
97
|
Bouffaud ML, Poirier MA, Muller D, Moënne-Loccoz Y. Root microbiome relates to plant host evolution in maize and other Poaceae. Environ Microbiol 2014; 16:2804-14. [PMID: 24588973 DOI: 10.1111/1462-2920.12442] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/16/2014] [Indexed: 11/30/2022]
Abstract
Prokaryote-eukaryote interactions are primordial, but host selection of its bacterial community remains poorly understood. Because eukaryote evolution affects numerous traits shaping the ecology of their microbiome, we can expect that many evolutionary changes in the former will have the potential to impact on the composition of the latter. Consequently, the more phylogenetically distant the eukaryotic hosts, the more distinct their associated bacterial communities should be. We tested this with plants, by comparing the bacterial communities associated with maize genotypes or other Poaceae. 16S rRNA taxonomic microarray analysis showed that the genetic distance between rhizobacterial communities correlated significantly with the phylogenetic distance (derived from chloroplastic sequences) between Poaceae genotypes. This correlation was also significant when considering specific bacterial populations from all main bacterial divisions, instead of the whole rhizobacterial community. These results indicate that eukaryotic host's evolutionary history can be a significant factor shaping directly the assembly and composition of its associated bacterial compartment.
Collapse
Affiliation(s)
- Marie-Lara Bouffaud
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
| | | | | | | |
Collapse
|
98
|
Ikeda S, Sasaki K, Okubo T, Yamashita A, Terasawa K, Bao Z, Liu D, Watanabe T, Murase J, Asakawa S, Eda S, Mitsui H, Sato T, Minamisawa K. Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Microbes Environ 2014; 29:50-9. [PMID: 24463575 PMCID: PMC4041235 DOI: 10.1264/jsme2.me13110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reduced fertilizer usage is one of the objectives of field management in the pursuit of sustainable agriculture. Here, we report on shifts of bacterial communities in paddy rice ecosystems with low (LN), standard (SN), and high (HN) levels of N fertilizer application (0, 30, and 300 kg N ha−1, respectively). The LN field had received no N fertilizer for 5 years prior to the experiment. The LN and HN plants showed a 50% decrease and a 60% increase in biomass compared with the SN plant biomass, respectively. Analyses of 16S rRNA genes suggested shifts of bacterial communities between the LN and SN root microbiomes, which were statistically confirmed by metagenome analyses. The relative abundances of Burkholderia, Bradyrhizobium and Methylosinus were significantly increased in root microbiome of the LN field relative to the SN field. Conversely, the abundance of methanogenic archaea was reduced in the LN field relative to the SN field. The functional genes for methane oxidation (pmo and mmo) and plant association (acdS and iaaMH) were significantly abundant in the LN root microbiome. Quantitative PCR of pmoA/mcrA genes and a 13C methane experiment provided evidence of more active methane oxidation in the rice roots of the LN field. In addition, functional genes for the metabolism of N, S, Fe, and aromatic compounds were more abundant in the LN root microbiome. These results suggest that low-N-fertilizer management is an important factor in shaping the microbial community structure containing key microbes for plant associations and biogeochemical processes in paddy rice ecosystems.
Collapse
Affiliation(s)
- Seishi Ikeda
- Graduate School of Life Sciences, Tohoku University
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Kost T, Stopnisek N, Agnoli K, Eberl L, Weisskopf L. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans. Front Microbiol 2014; 4:421. [PMID: 24409174 PMCID: PMC3886118 DOI: 10.3389/fmicb.2013.00421] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/23/2013] [Indexed: 01/24/2023] Open
Abstract
Plant roots and shoots harbor complex bacterial communities. Early seed and plantlet colonization plays a key role in determining which bacterial populations will successfully invade plant tissues, yet the mechanisms enabling plants to select for beneficial rather than harmful populations are largely unknown. In this study, we demonstrate a role of oxalate as a determinant in this selection process, using members of the genus Burkholderia as model organisms. Oxalotrophy, i.e., the ability to use oxalate as a carbon source, was found to be a property strictly associated with plant-beneficial species of the Burkholderia genus, while plant pathogenic (B. glumae, B. plantarii) or human opportunistic pathogens (Burkholderia cepacia complex strains) were unable to degrade oxalate. We further show that oxalotrophy is required for successful plant colonization by the broad host endophyte Burkholderia phytofirmans PsJN: an engineered Δoxc mutant, which lost the ability to grow on oxalate, was significantly impaired in early colonization of both lupin and maize compared with the wild-type. This work suggests that in addition to the role of oxalate in heavy metal tolerance of plants and in virulence of phytopathogenic fungi, it is also involved in specifically recruiting plant-beneficial members from complex bacterial communities.
Collapse
Affiliation(s)
- Thomas Kost
- Laboratory of Microbiology, Institute of Plant Biology, University of Zurich Zurich, Switzerland
| | - Nejc Stopnisek
- Laboratory of Microbiology, Institute of Plant Biology, University of Zurich Zurich, Switzerland ; Ecology of Noxious and Beneficial Organisms, Institute of Sustainability Sciences Agroscope, Zurich, Switzerland
| | - Kirsty Agnoli
- Laboratory of Microbiology, Institute of Plant Biology, University of Zurich Zurich, Switzerland
| | - Leo Eberl
- Laboratory of Microbiology, Institute of Plant Biology, University of Zurich Zurich, Switzerland
| | - Laure Weisskopf
- Laboratory of Microbiology, Institute of Plant Biology, University of Zurich Zurich, Switzerland ; Ecology of Noxious and Beneficial Organisms, Institute of Sustainability Sciences Agroscope, Zurich, Switzerland
| |
Collapse
|
100
|
Ahn JH, Choi MY, Lee HW, Kim BY, Song J, Kim MS, Weon HY. Analysis of Community Structure of Metabolically Active Bacteria in a Rice Field Subjected to Long-Term Fertilization Practices. ACTA ACUST UNITED AC 2013. [DOI: 10.7745/kjssf.2013.46.6.585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|