51
|
Methylotrophs in natural habitats: current insights through metagenomics. Appl Microbiol Biotechnol 2015; 99:5763-79. [PMID: 26051673 DOI: 10.1007/s00253-015-6713-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 01/10/2023]
Abstract
The focus of this review is on the recent data from the omics approaches, measuring the presence of methylotrophs in natural environments. Both Bacteria and Archaea are considered. The data are discussed in the context of the current knowledge on the biochemistry of methylotrophy and the physiology of cultivated methylotrophs. One major issue discussed is the recent metagenomic data pointing toward the activity of "aerobic" methanotrophs, such as Methylobacter, in microoxic or hypoxic conditions. A related issue of the metabolic distinction between aerobic and "anaerobic" methylotrophy is addressed in the light of the genomic and metagenomic data for respective organisms. The role of communities, as opposed to single-organism activities in environmental cycling of single-carbon compounds, such as methane, is also discussed. In addition, the emerging issue of the role of non-traditional methylotrophs in global metabolism of single-carbon compounds and the role of methylotrophy pathways in non-methylotrophs is briefly mentioned.
Collapse
|
52
|
Andrei AŞ, Robeson MS, Baricz A, Coman C, Muntean V, Ionescu A, Etiope G, Alexe M, Sicora CI, Podar M, Banciu HL. Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes. ISME JOURNAL 2015; 9:2642-56. [PMID: 25932617 DOI: 10.1038/ismej.2015.60] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 02/14/2015] [Accepted: 03/18/2015] [Indexed: 11/09/2022]
Abstract
Hypersaline meromictic lakes are extreme environments in which water stratification is associated with powerful physicochemical gradients and high salt concentrations. Furthermore, their physical stability coupled with vertical water column partitioning makes them important research model systems in microbial niche differentiation and biogeochemical cycling. Here, we compare the prokaryotic assemblages from Ursu and Fara Fund hypersaline meromictic lakes (Transylvanian Basin, Romania) in relation to their limnological factors and infer their role in elemental cycling by matching taxa to known taxon-specific biogeochemical functions. To assess the composition and structure of prokaryotic communities and the environmental factors that structure them, deep-coverage small subunit (SSU) ribosomal RNA (rDNA) amplicon sequencing, community domain-specific quantitative PCR and physicochemical analyses were performed on samples collected along depth profiles. The analyses showed that the lakes harbored multiple and diverse prokaryotic communities whose distribution mirrored the water stratification patterns. Ursu Lake was found to be dominated by Bacteria and to have a greater prokaryotic diversity than Fara Fund Lake that harbored an increased cell density and was populated mostly by Archaea within oxic strata. In spite of their contrasting diversity, the microbial populations indigenous to each lake pointed to similar physiological functions within carbon degradation and sulfate reduction. Furthermore, the taxonomy results coupled with methane detection and its stable C isotope composition indicated the presence of a yet-undescribed methanogenic group in the lakes' hypersaline monimolimnion. In addition, ultrasmall uncultivated archaeal lineages were detected in the chemocline of Fara Fund Lake, where the recently proposed Nanohaloarchaeota phylum was found to thrive.
Collapse
Affiliation(s)
- Adrian-Ştefan Andrei
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babeş-Bolyai University, Cluj-Napoca, Romania.,Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Michael S Robeson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - Andreea Baricz
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania.,National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, Cluj-Napoca, Romania
| | - Cristian Coman
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania.,National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, Cluj-Napoca, Romania
| | - Vasile Muntean
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Artur Ionescu
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Giuseppe Etiope
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania.,Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
| | - Mircea Alexe
- Faculty of Geography, Babeş-Bolyai University, Cluj-Napoca, Romania
| | | | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Horia Leonard Banciu
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babeş-Bolyai University, Cluj-Napoca, Romania.,Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
53
|
Zhou Z, Chen J, Cao H, Han P, Gu JD. Analysis of methane-producing and metabolizing archaeal and bacterial communities in sediments of the northern South China Sea and coastal Mai Po Nature Reserve revealed by PCR amplification of mcrA and pmoA genes. Front Microbiol 2015; 5:789. [PMID: 25774150 PMCID: PMC4343527 DOI: 10.3389/fmicb.2014.00789] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/22/2014] [Indexed: 11/17/2022] Open
Abstract
Communities of methanogens, anaerobic methanotrophic archaea and aerobic methanotrophic bacteria (MOB) were compared by profiling polymerase chain reaction (PCR)-amplified products of mcrA and pmoA genes encoded by methyl-coenzyme M reductase alpha subunit and particulate methane monooxygenase alpha subunit, respectively, in sediments of northern South China Sea (nSCS) and Mai Po mangrove wetland. Community structures representing by mcrA gene based on 12 clone libraries from nSCS showed separate clusters indicating niche specificity, while, Methanomicrobiales, Methanosarcinales clades 1,2, and Methanomassiliicoccus-like groups of methanogens were the most abundant groups in nSCS sediment samples. Novel clusters specific to the SCS were identified and the phylogeny of mcrA gene-harboring archaea was updated. Quantitative polymerase chain reaction was used to detect mcrA gene abundance in all samples: similar abundance of mcrA gene in the surface layers of mangrove (3.4∼3.9 × 106 copies per gram dry weight) and of intertidal mudflat (5.5∼5.8 × 106 copies per gram dry weight) was observed, but higher abundance (6.9 × 106 to 1.02 × 108 copies per gram dry weight) was found in subsurface samples of both sediment types. Aerobic MOB were more abundant in surface layers (6.7∼11.1 × 105 copies per gram dry weight) than the subsurface layers (1.2∼5.9 × 105 copies per gram dry weight) based on pmoA gene. Mangrove surface layers harbored more abundant pmoA gene than intertidal mudflat, but less pmoA genes in the subsurface layers. Meanwhile, it is also noted that in surface layers of all samples, more pmoA gene copies were detected than the subsurface layers. Reedbed rhizosphere exhibited the highest gene abundance of mcrA gene (8.51 × 108 copies per gram dry weight) and pmoA gene (1.56 × 107 copies per gram dry weight). This study investigated the prokaryotic communities responsible for methane cycling in both marine and coastal wetland ecosystems, showing the distribution characteristics of mcrA gene-harboring communities in nSCS and stratification of mcrA and pmoA gene diversity and abundance in the Mai Po Nature Reserve.
Collapse
Affiliation(s)
- Zhichao Zhou
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong Hong Kong, China
| | - Jing Chen
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong Hong Kong, China
| | - Huiluo Cao
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong China
| | - Ping Han
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong Hong Kong, China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong Hong Kong, China
| |
Collapse
|
54
|
Milucka J, Kirf M, Lu L, Krupke A, Lam P, Littmann S, Kuypers MMM, Schubert CJ. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME JOURNAL 2015; 9:1991-2002. [PMID: 25679533 DOI: 10.1038/ismej.2015.12] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/14/2014] [Accepted: 12/19/2014] [Indexed: 11/09/2022]
Abstract
Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes.
Collapse
Affiliation(s)
- Jana Milucka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Mathias Kirf
- Department of Surface Waters-Research and Management, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Kastanienbaum, Switzerland
| | - Lu Lu
- 1] Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany [2] State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, China [3] University of Chinese Academy of Sciences, Beijing, China
| | - Andreas Krupke
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Phyllis Lam
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sten Littmann
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marcel M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Carsten J Schubert
- Department of Surface Waters-Research and Management, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Kastanienbaum, Switzerland
| |
Collapse
|
55
|
Purcell AM, Mikucki JA, Achberger AM, Alekhina IA, Barbante C, Christner BC, Ghosh D, Michaud AB, Mitchell AC, Priscu JC, Scherer R, Skidmore ML, Vick-Majors TJ, the WISSARD Science Team. Microbial sulfur transformations in sediments from Subglacial Lake Whillans. Front Microbiol 2014; 5:594. [PMID: 25477865 PMCID: PMC4237127 DOI: 10.3389/fmicb.2014.00594] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/21/2014] [Indexed: 11/13/2022] Open
Abstract
Diverse microbial assemblages inhabit subglacial aquatic environments. While few of these environments have been sampled, data reveal that subglacial organisms gain energy for growth from reduced minerals containing nitrogen, iron, and sulfur. Here we investigate the role of microbially mediated sulfur transformations in sediments from Subglacial Lake Whillans (SLW), Antarctica, by examining key genes involved in dissimilatory sulfur oxidation and reduction. The presence of sulfur transformation genes throughout the top 34 cm of SLW sediments changes with depth. SLW surficial sediments were dominated by genes related to known sulfur-oxidizing chemoautotrophs. Sequences encoding the adenosine-5'-phosphosulfate (APS) reductase gene, involved in both dissimilatory sulfate reduction and sulfur oxidation, were present in all samples and clustered into 16 distinct operational taxonomic units. The majority of APS reductase sequences (74%) clustered with known sulfur oxidizers including those within the "Sideroxydans" and Thiobacillus genera. Reverse-acting dissimilatory sulfite reductase (rDSR) and 16S rRNA gene sequences further support dominance of "Sideroxydans" and Thiobacillus phylotypes in the top 2 cm of SLW sediments. The SLW microbial community has the genetic potential for sulfate reduction which is supported by experimentally measured low rates (1.4 pmol cm(-3)d(-1)) of biologically mediated sulfate reduction and the presence of APS reductase and DSR gene sequences related to Desulfobacteraceae and Desulfotomaculum. Our results also infer the presence of sulfur oxidation, which can be a significant energetic pathway for chemosynthetic biosynthesis in SLW sediments. The water in SLW ultimately flows into the Ross Sea where intermediates from subglacial sulfur transformations can influence the flux of solutes to the Southern Ocean.
Collapse
Affiliation(s)
- Alicia M. Purcell
- Department of Microbiology, University of TennesseeKnoxville, TN, USA
| | - Jill A. Mikucki
- Department of Microbiology, University of TennesseeKnoxville, TN, USA
| | - Amanda M. Achberger
- Department of Biological Sciences, Louisiana State UniversityBaton Rouge, LA, USA
| | - Irina A. Alekhina
- Climate and Environmental Research Laboratory, Arctic and Antarctic Research Institute, St.Petersburg, Russia
| | - Carlo Barbante
- Institute for the Dynamics of Environmental Processes – Consiglio Nazionale delle Ricerche and Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of VeniceVenice, Italy
| | - Brent C. Christner
- Department of Biological Sciences, Louisiana State UniversityBaton Rouge, LA, USA
| | - Dhritiman Ghosh
- Department of Microbiology, University of TennesseeKnoxville, TN, USA
| | - Alexander B. Michaud
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA
| | | | - John C. Priscu
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA
| | - Reed Scherer
- Department of Geological and Environmental Sciences, Northern Illinois UniversityDeKalb, IL, USA
| | - Mark L. Skidmore
- Department of Earth Sciences, Montana State UniversityBozeman, MT, USA
| | - Trista J. Vick-Majors
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA
| | | |
Collapse
|
56
|
Abstract
Despite recent advances in metagenomic and single-cell genomic sequencing to investigate uncultivated microbial diversity and metabolic potential, fundamental questions related to population structure, interactions, and biogeochemical roles of candidate divisions remain. Numerous molecular surveys suggest that stratified ecosystems manifesting anoxic, sulfidic, and/or methane-rich conditions are enriched in these enigmatic microbes. Here we describe diversity, abundance, and cooccurrence patterns of uncultivated microbial communities inhabiting the permanently stratified waters of meromictic Sakinaw Lake, British Columbia, Canada, using 454 sequencing of the small-subunit rRNA gene with three-domain resolution. Operational taxonomic units (OTUs) were affiliated with 64 phyla, including more than 25 candidate divisions. Pronounced trends in community structure were observed for all three domains with eukaryotic sequences vanishing almost completely below the mixolimnion, followed by a rapid and sustained increase in methanogen-affiliated (∼10%) and unassigned (∼60%) archaeal sequences as well as bacterial OTUs affiliated with Chloroflexi (∼22%) and candidate divisions (∼28%). Network analysis revealed highly correlated, depth-dependent cooccurrence patterns between Chloroflexi, candidate divisions WWE1, OP9/JS1, OP8, and OD1, methanogens, and unassigned archaeal OTUs indicating niche partitioning and putative syntrophic growth modes. Indeed, pathway reconstruction using recently published Sakinaw Lake single-cell genomes affiliated with OP9/JS1 and OP8 revealed complete coverage of the Wood-Ljungdahl pathway with potential to drive syntrophic acetate oxidation to hydrogen and carbon dioxide under methanogenic conditions. Taken together, these observations point to previously unrecognized syntrophic networks in meromictic lake ecosystems with the potential to inform design and operation of anaerobic methanogenic bioreactors.
Collapse
|
57
|
Community structure of planktonic methane-oxidizing bacteria in a subtropical reservoir characterized by dominance of phylotype closely related to nitrite reducer. Sci Rep 2014; 4:5728. [PMID: 25098653 PMCID: PMC4124587 DOI: 10.1038/srep05728] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/27/2014] [Indexed: 12/29/2022] Open
Abstract
Methane-oxidizing bacteria (MOB) gain energy from the oxidation of methane and may play important roles in freshwater ecosystems. In this study, the community structure of planktonic MOB was investigated in a subtropical reservoir. Bacterial community structure was investigated through the analysis of the 16S rRNA gene. Three groups of phylogenetically distinct MOB were detected in the clone libraries of polymerase chain reaction products obtained with universal primers. The groups belonged to the class Gammaproteobacteria, the class Alphaproteobacteria, and the candidate phylum NC10. The last group, which consists of close relatives of the nitrite reducer ‘Candidatus Methylomirabilis oxyfera', was frequently detected in the clone libraries of deep-water environments. The presence of 3 groups of MOB in deep water was also shown by a cloning analysis of the pmoA gene encoding particulate methane monooxygenase. The dominance of ‘M. oxyfera'-like organisms in deep water was confirmed by catalyzed reporter deposition–fluorescence in situ hybridization, in which cells stained with a specific probe accounted for 16% of total microbial cells. This is the first study to demonstrate that close relatives of the nitrite reducer can be major component of planktonic MOB community which may affect carbon flow in aquatic ecosystems.
Collapse
|
58
|
Dominance of Methanosarcinales Phylotypes and Depth-Wise Distribution of Methanogenic Community in Fresh Water Sediments of Sitka Stream from Czech Republic. Curr Microbiol 2014; 69:809-16. [DOI: 10.1007/s00284-014-0659-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/26/2014] [Indexed: 11/25/2022]
|
59
|
Crowe SA, Maresca JA, Jones C, Sturm A, Henny C, Fowle DA, Cox RP, Delong EF, Canfield DE. Deep-water anoxygenic photosythesis in a ferruginous chemocline. GEOBIOLOGY 2014; 12:322-339. [PMID: 24923179 DOI: 10.1111/gbi.12089] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Ferruginous Lake Matano, Indonesia hosts one of the deepest anoxygenic photosynthetic communities on Earth. This community is dominated by low-light adapted, BChl e-synthesizing green sulfur bacteria (GSB), which comprise ~25% of the microbial community immediately below the oxic-anoxic boundary (OAB; 115-120 m in 2010). The size of this community is dependent on the mixing regime within the lake and the depth of the OAB-at ~117 m, the GSB live near their low-light limit. Slow growth and C-fixation rates suggest that the Lake Matano GSB can be supported by sulfide even though it only accumulates to scarcely detectable (low μm to nm) concentrations. A model laboratory strain (Chlorobaculum tepidum) is indeed able to access HS- for oxidation at nm concentrations. Furthermore, the GSB in Lake Matano possess a full complement of S-oxidizing genes. Together, this physiological and genetic information suggests that deep-water GSB can be supported by a S-cycle, even under ferruginous conditions. The constraints we place on the metabolic capacity and physiology of GSB have important geobiological implications. Biomarkers diagnostic of GSB would be a good proxy for anoxic conditions but could not discriminate between euxinic and ferruginous states, and though GSB biomarkers could indicate a substantial GSB community, such a community may exist with very little metabolic activity. The light requirements of GSB indicate that at light levels comparable to those in the OAB of Lake Matano or the Black Sea, GSB would have contributed little to global ocean primary production, nutrient cycling, and banded iron formation (BIF) deposition in the Precambrian. Before the proliferation of oxygenic photosynthesis, shallower OABs and lower light absorption in the ocean's surface waters would have permitted greater light availability to GSB, potentially leading to a greater role for GSB in global biogeochemical cycles.
Collapse
Affiliation(s)
- S A Crowe
- Nordic Center for Earth Evolution and Institute of Biology, University of Southern Denmark, Odense, Denmark; Departments of Microbiology & Immunology and Earth, Ocean, & Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Borrel G, O'Toole PW, Harris HMB, Peyret P, Brugère JF, Gribaldo S. Phylogenomic data support a seventh order of Methylotrophic methanogens and provide insights into the evolution of Methanogenesis. Genome Biol Evol 2014; 5:1769-80. [PMID: 23985970 PMCID: PMC3814188 DOI: 10.1093/gbe/evt128] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence from sequence data from various environments, including the human gut, suggests the existence of a previously unknown putative seventh order of methanogens. The first genomic data from members of this lineage, Methanomassiliicoccus luminyensis and “Candidatus Methanomethylophilus alvus,” provide insights into its evolutionary history and metabolic features. Phylogenetic analysis of ribosomal proteins robustly indicates a monophyletic group independent of any previously known methanogenic order, which shares ancestry with the Marine Benthic Group D, the Marine Group II, the DHVE2 group, and the Thermoplasmatales. This phylogenetic position, along with the analysis of enzymes involved in core methanogenesis, strengthens a single ancient origin of methanogenesis in the Euryarchaeota and indicates further multiple independent losses of this metabolism in nonmethanogenic lineages than previously suggested. Genomic analysis revealed an unprecedented loss of the genes coding for the first six steps of methanogenesis from H2/CO2 and the oxidative part of methylotrophic methanogenesis, consistent with the fact that M. luminyensis and “Ca. M. alvus” are obligate H2-dependent methylotrophic methanogens. Genomic data also suggest that these methanogens may use a large panel of methylated compounds. Phylogenetic analysis including homologs retrieved from environmental samples indicates that methylotrophic methanogenesis (regardless of dependency on H2) is not restricted to gut representatives but may be an ancestral characteristic of the whole order, and possibly also of ancient origin in the Euryarchaeota. 16S rRNA and McrA trees show that this new order of methanogens is very diverse and occupies environments highly relevant for methane production, therefore representing a key lineage to fully understand the diversity and evolution of methanogenesis.
Collapse
Affiliation(s)
- Guillaume Borrel
- EA-4678 CIDAM, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
61
|
Youngblut ND, Dell'aringa M, Whitaker RJ. Differentiation between sediment and hypolimnion methanogen communities in humic lakes. Environ Microbiol 2013; 16:1411-23. [PMID: 24237594 DOI: 10.1111/1462-2920.12330] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/01/2013] [Indexed: 11/28/2022]
Abstract
The traditional view of carbon cycling within the pelagic zone of freshwater lakes has consisted of methane production within the anoxic sediment, followed by diffusive flux and ebullition through the water column. Methanogenic archaea have been shown to be present within the water columns of freshwater lakes; however, little is known about whether these methanogenic communities are distinct from those in the sediment or how these communities change over space and time. We used the methanogen-specific phylogenetic marker mcrA to perform a 3-year study focusing on the community structure of methanogens within the sediment and anoxic hypolimnion water layer of five humic lakes in WI, USA. The hypolimnion and sediment communities were distinct in composition, richness and phylogenetic diversity. Hypolimnion communities displayed a temporally stable biogeographical pattern among lakes, which was driven by both lake-specific environmental variables and barriers to dispersal. We conclude that the hypolimnion comprised communities of methanogens that are distinct from those in the sediment, differentiated among lakes, and likely have unique ecological roles and evolutionary trajectories in these anaerobic environments.
Collapse
Affiliation(s)
- Nicholas D Youngblut
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL, 61801, USA
| | | | | |
Collapse
|
62
|
Identification of methanogenic archaea in the hyporheic sediment of Sitka stream. PLoS One 2013; 8:e80804. [PMID: 24278322 PMCID: PMC3835567 DOI: 10.1371/journal.pone.0080804] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
Methanogenic archaea produce methane as a metabolic product under anoxic conditions and they play a crucial role in the global methane cycle. In this study molecular diversity of methanogenic archaea in the hyporheic sediment of the lowland stream Sitka (Olomouc, Czech Republic) was analyzed by PCR amplification, cloning and sequencing analysis of the methyl coenzyme M reductase alpha subunit (mcrA) gene. Sequencing analysis of 60 clones revealed 24 different mcrA phylotypes from hyporheic sedimentary layers to a depth of 50 cm. Phylotypes were affiliated with Methanomicrobiales, Methanosarcinales and Methanobacteriales orders. Only one phylotype remains unclassified. The majority of the phylotypes showed higher affiliation with uncultured methanogens than with known methanogenic species. The presence of relatively rich assemblage of methanogenic archaea confirmed that methanogens may be an important component of hyporheic microbial communities and may affect CH4 cycling in rivers.
Collapse
|
63
|
Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments. Appl Microbiol Biotechnol 2013; 97:7553-62. [PMID: 23877581 DOI: 10.1007/s00253-013-5102-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/05/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Abstract
Methanogenic archaeal communities existing in freshwater sediments are responsible for approximately 50 % of the total global emission of methane. This process contributes significantly to global warming and, hence, necessitates interventional control measures to limit its emission. Unfortunately, the diversity and functional interactions of methanogenic populations occurring in these habitats are yet to be fully characterized. Considering several disadvantages of conventional culture-based methodologies, in recent years, impetus is given to molecular biology approaches to determine the community structure of freshwater sedimentary methanogenic archaea. 16S rRNA and methyl coenzyme M reductase (mcrA) gene-based cloning techniques are the first choice for this purpose. In addition, electrophoresis-based (denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and terminal restriction fragment length polymorphism) and quantitative real-time polymerase chain reaction techniques have also found extensive applications. These techniques are highly sensitive, rapid, and reliable as compared to traditional culture-dependent approaches. Molecular diversity studies revealed the dominance of the orders Methanomicrobiales and Methanosarcinales of methanogens in freshwater sediments. The present review discusses in detail the status of the diversity of methanogens and the molecular approaches applied in this area of research.
Collapse
|
64
|
Denonfoux J, Parisot N, Dugat-Bony E, Biderre-Petit C, Boucher D, Morgavi DP, Le Paslier D, Peyretaillade E, Peyret P. Gene capture coupled to high-throughput sequencing as a strategy for targeted metagenome exploration. DNA Res 2013; 20:185-96. [PMID: 23364577 PMCID: PMC3628448 DOI: 10.1093/dnares/dst001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Next-generation sequencing (NGS) allows faster acquisition of metagenomic data, but complete exploration of complex ecosystems is hindered by the extraordinary diversity of microorganisms. To reduce the environmental complexity, we created an innovative solution hybrid selection (SHS) method that is combined with NGS to characterize large DNA fragments harbouring biomarkers of interest. The quality of enrichment was evaluated after fragments containing the methyl coenzyme M reductase subunit A gene (mcrA), the biomarker of methanogenesis, were captured from a Methanosarcina strain and a metagenomic sample from a meromictic lake. The methanogen diversity was compared with direct metagenome and mcrA-based amplicon pyrosequencing strategies. The SHS approach resulted in the capture of DNA fragments up to 2.5 kb with an enrichment efficiency between 41 and 100%, depending on the sample complexity. Compared with direct metagenome and amplicons sequencing, SHS detected broader mcrA diversity, and it allowed efficient sampling of the rare biosphere and unknown sequences. In contrast to amplicon-based strategies, SHS is less biased and GC independent, and it recovered complete biomarker sequences in addition to conserved regions. Because this method can also isolate the regions flanking the target sequences, it could facilitate operon reconstructions.
Collapse
Affiliation(s)
- Jérémie Denonfoux
- Centre de Recherche en Nutrition Humaine Auvergne, Clermont Université, Université d'Auvergne, EA 4678, Conception, Ingénierie et Développement de l'Aliment et du Médicament, BP 10448, Clermont-Ferrand 63000, France
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Unexpected and novel putative viruses in the sediments of a deep-dark permanently anoxic freshwater habitat. ISME JOURNAL 2012; 6:2119-27. [PMID: 22648129 DOI: 10.1038/ismej.2012.49] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Morphological diversity, abundance and community structure of viruses were examined in the deep and anoxic sediments of the volcanic Lake Pavin (France). The sediment core, encompassing 130 years of sedimentation, was subsampled every centimeter. High viral abundances were recorded and correlated to prokaryotic densities. Abundances of viruses and prokaryotes decreased with the depth, contrasting the pattern of virus-to-prokaryote ratio. According to fingerprint analyses, the community structure of viruses, bacteria and archaea gradually changed, and communities of the surface (0-10 cm) could be discriminated from those of the intermediate (11-27 cm) and deep (28-40 cm) sediment layers. Viral morphotypes similar to virions of ubiquitous dsDNA viruses of bacteria were observed. Exceptional morphotypes, previously never reported in freshwater systems, were also detected. Some of these resembled dsDNA viruses of hyperthermophilic and hyperhalophilic archaea. Moreover, unusual types of spherical and cubic virus-like particles (VLPs) were observed. Infected prokaryotic cells were detected in the whole sediment core, and their vertical distribution correlated with both viral and prokaryotic abundances. Pleomorphic ellipsoid VLPs were visible in filamentous cells tentatively identified as representatives of the archaeal genus Methanosaeta, a major group of methane producers on earth.
Collapse
|
66
|
Barbier BA, Dziduch I, Liebner S, Ganzert L, Lantuit H, Pollard W, Wagner D. Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling ofmcrAandpmoAgenes. FEMS Microbiol Ecol 2012; 82:287-302. [DOI: 10.1111/j.1574-6941.2012.01332.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 01/10/2023] Open
Affiliation(s)
- Béatrice A. Barbier
- Alfred Wegener Institute for Polar and Marine Research; Research Unit Potsdam; Potsdam; Germany
| | - Isabel Dziduch
- Alfred Wegener Institute for Polar and Marine Research; Research Unit Potsdam; Potsdam; Germany
| | - Susanne Liebner
- Department of Arctic and Marine Biology; University of Tromsø; Tromsø; Norway
| | - Lars Ganzert
- Department of Arctic and Marine Biology; University of Tromsø; Tromsø; Norway
| | - Hugues Lantuit
- Alfred Wegener Institute for Polar and Marine Research; Research Unit Potsdam; Potsdam; Germany
| | - Wayne Pollard
- Department of Geography; McGill University; Montréal; QC; Canada
| | - Dirk Wagner
- Alfred Wegener Institute for Polar and Marine Research; Research Unit Potsdam; Potsdam; Germany
| |
Collapse
|
67
|
Detection methanogens in newly settled sediments from Xuanwu Lake in Nanjing, China. Curr Microbiol 2012; 64:539-44. [PMID: 22392597 DOI: 10.1007/s00284-012-0103-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
Sediments from Xuanwu Lake have been dredged in the past 3 years to improve the water quality, but methanogenesis should still exist in the newly settled sediment. Methane production, methanogens, and physiochemical parameters were detected in the surface sediments (0-5 cm) and/or vertical sediments (0-21 cm, segmented at interval of 3 cm). Methane flux at water-air interface varied among five detected sites. Principal component analysis showed that CH(4) flux, content of water and the concentration of total nitrogen (TN), CH(4) and organic matters (OM) weighed most heavily on the component I in surface sediments while different patterns were observed for vertical sediments. The copy number of the 16S rRNA gene for bacteria was lower in the surface sediment (0-6 cm) than that in deeper sediments (12-21 cm), while 16S rRNA genes of Archaea were almost evenly distributed in the vertical sediments. Representatives belonging to the orders Methanobacteriales, Methanomicrobiales, and Methanosarcinales were detected in all samples of the vertical sediments, except that no members of the Methanococcales were detected in the samples at 0-6 cm. The level of Methanobacteriales reached a highest density at 18.1 × 10(4) copies g(-1) dry weight (dw) at 6-9 cm; for Methanosarcinales (76.89 × 10(6) copies g(-1) dw) and Methanococcales (82.70 × 10(3) copies g(-1) dw) at 12-15 cm, whereas for Methanomicrobiales (43.37 × 10(6) copies g(-1) dw) at 9-12 cm. Methanosarcinaceae and Methanosaetaceae reached to their highest densities at 6-9 and 9-12 cm, respectively. These data provided useful information for better understanding the methanogenesis in the newly settled sediments of a recently dredged lake.
Collapse
|
68
|
Tsutsumi M, Kojima H, Fukui M. Vertical profiles of abundance and potential activity of methane-oxidizing bacteria in sediment of Lake Biwa, Japan. Microbes Environ 2011; 27:67-71. [PMID: 22200642 PMCID: PMC4036029 DOI: 10.1264/jsme2.me11285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vertical profiles of the abundance, community composition, and potential activity of methane-oxidizing bacteria (MOB) were investigated in the sediment of Lake Biwa. Sediment samples were obtained from two sites at different water depths. The abundance of MOB was assessed as the copy number of the pmoA gene (encoding the alpha subunit of particulate methane monooxygenase), measured with quantitative real-time PCR. Abundance of the pmoA gene peaked in the 5–8 cm layer of the sediment from both sites. MOB community composition was investigated by denaturing gradient gel electrophoresis (DGGE) analysis of pmoA and 16S rRNA genes. The band patterns observed in DGGE did not significantly differ with sediment depths or sampling sites. Sequence analysis of the DGGE bands indicated the dominance of the genus Methylobacter. Potential activity, which was measured in the presence of sufficient amounts of methane and oxygen, decreased linearly from the sediment surface to deeper layers. These results suggest that the pmoA gene copy number cannot be regarded as an indicator of aerobic MOB that retain potential activity in sediments.
Collapse
Affiliation(s)
- Masazumi Tsutsumi
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | |
Collapse
|