51
|
Zhang XH, He KW, Zhao PD, Ye Q, Luan XT, Yu ZY, Wen LB, Ni YX, Li B, Wang XM, Guo RL, Zhou JM, Mao AH. Intranasal immunisation with Stx2B-Tir-Stx1B-Zot protein leads to decreased shedding in goats after challenge with Escherichia coli
O157:H7. Vet Rec 2012; 170:178. [DOI: 10.1136/vr.100325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - A-H. Mao
- Key Laboratory of Engineering Research of Veterinary Bio-products of Agricultural Ministry; Institute of Veterinary Medicine; Jiangsu Academy of Agricultural Sciences; National Center for Engineering Research of Veterinary Bio-products; Zhongling St 50# Nanjing 210014 China
| |
Collapse
|
52
|
Flockhart AF, Tree JJ, Xu X, Karpiyevich M, McAteer SP, Rosenblum R, Shaw DJ, Low CJ, Best A, Gannon V, Laing C, Murphy KC, Leong JM, Schneiders T, La Ragione R, Gally DL. Identification of a novel prophage regulator in Escherichia coli controlling the expression of type III secretion. Mol Microbiol 2011; 83:208-23. [PMID: 22111928 PMCID: PMC3378721 DOI: 10.1111/j.1365-2958.2011.07927.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This study has identified horizontally acquired genomic regions of enterohaemorrhagic Escherichia coli O157:H7 that regulate expression of the type III secretion (T3S) system encoded by the locus of enterocyte effacement (LEE). Deletion of O-island 51, a 14.93 kb cryptic prophage (CP-933C), resulted in a reduction in LEE expression and T3S. The deletion also had a reduced capacity to attach to epithelial cells and significantly reduced E. coli O157 excretion levels from sheep. Further characterization of O-island 51 identified a novel positive regulator of the LEE, encoded by ecs1581 in the E. coli O157:H7 strain Sakai genome and present but not annotated in the E. coli strain EDL933 sequence. Functionally important residues of ECs1581 were identified based on phenotypic variants present in sequenced E. coli strains and the regulator was termed RgdR based on a motif demonstrated to be important for stimulation of gene expression. While RgdR activated expression from the LEE1 promoter in the presence or absence of the LEE-encoded regulator (Ler), RgdR stimulation of T3S required ler and Ler autoregulation. RgdR also controlled the expression of other phenotypes, including motility, indicating that this new family of regulators may have a more global role in E. coli gene expression.
Collapse
Affiliation(s)
- Allen F Flockhart
- Immunity and Infection Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Gareau MG, Ho NK, Brenner D, Sousa AJ, LeBourhis L, Mak TW, Girardin SE, Philpott DJ, Sherman PM. Enterohaemorrhagic, but not enteropathogenic, Escherichia coli infection of epithelial cells disrupts signalling responses to tumour necrosis factor-alpha. Microbiology (Reading) 2011; 157:2963-2973. [DOI: 10.1099/mic.0.051094-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC), serotype O157 : H7 is a non-invasive, pathogenic bacterium that employs a type III secretion system (T3SS) to inject effector proteins into infected cells. In this study, we demonstrate that EHEC blocks tumour necrosis factor-alpha (TNFα)-induced NF-κB signalling in infected epithelial cells. HEK293T and INT407 epithelial cells were challenged with EHEC prior to stimulation with TNFα. Using complementary techniques, stimulation with TNFα caused activation of NF-κB, as determined by luciferase reporter assay (increase in gene expression), Western blotting (phosphorylation of IκBα), immunofluorescence (p65 nuclear translocation) and immunoassay (CXCL-8 secretion), and each was blocked by EHEC O157 : H7 infection. In contrast, subversion of host cell signalling was not observed following exposure to either enteropathogenic E. coli, strain E2348/69 (O127 : H6) or the laboratory E. coli strain HB101. Heat-killed EHEC had no effect on NF-κB activation by TNFα. Inhibition was mediated, at least in part, by Shiga toxins and by the O157 plasmid, but not by the T3SS or flagellin, as demonstrated by using isogenic mutant strains. These findings indicate the potential for developing novel therapeutic targets to interrupt the infectious process.
Collapse
Affiliation(s)
- Mélanie G. Gareau
- Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Nathan K. Ho
- Department of Laboratory Medicine and Pathobiology University of Toronto, Medical Sciences Building, 1 King’s College Circle, University of Toronto, Toronto, ON M5S 1A8, Canada
- Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Dirk Brenner
- Campbell Family Cancer Research Institute, Princess Margaret Hospital, 620 University Avenue, Toronto, ON M5G 2C1, Canada
| | - Andrew J. Sousa
- Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Lionel LeBourhis
- Department of Immunology, Medical Sciences Building, 1 King’s College Circle, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tak W. Mak
- Campbell Family Cancer Research Institute, Princess Margaret Hospital, 620 University Avenue, Toronto, ON M5G 2C1, Canada
| | - Stephen E. Girardin
- Department of Laboratory Medicine and Pathobiology University of Toronto, Medical Sciences Building, 1 King’s College Circle, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dana J. Philpott
- Department of Immunology, Medical Sciences Building, 1 King’s College Circle, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Philip M. Sherman
- Department of Laboratory Medicine and Pathobiology University of Toronto, Medical Sciences Building, 1 King’s College Circle, University of Toronto, Toronto, ON M5S 1A8, Canada
- Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
54
|
GOVARIS ALEXANDROS, ANGELIDIS APOSTOLOSS, KATSOULIS KONSTANTINOS, POURNARAS SPYROS. OCCURRENCE, VIRULENCE GENES AND ANTIMICROBIAL RESISTANCE OF ESCHERICHIA COLI O157 IN BOVINE, CAPRINE, OVINE AND PORCINE CARCASSES IN GREECE. J Food Saf 2011. [DOI: 10.1111/j.1745-4565.2010.00292.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
55
|
Yekta MA, Cox E, Goddeeris BM, Vanrompay D. Reduction of Escherichia coli O157:H7 excretion in sheep by oral lactoferrin administration. Vet Microbiol 2011; 150:373-8. [PMID: 21511407 DOI: 10.1016/j.vetmic.2011.02.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 12/14/2022]
Abstract
Ruminants are an important reservoir of Escherichia coli O157:H7, therefore reducing E. coli O157:H7 excretion by these animals could play a key role in reducing human infections. The present study investigates the potential of bovine lactoferrin, a natural antimicrobial-immunomodulatory protein of milk, to prevent colonization and excretion of E. coli O157:H7 in sheep. The effect of two different doses of lactoferrin (1.5 g or 0.15 g per 12h) was evaluated on colonization of sheep intestine and faecal excretion of the NCTC12900 strain. Hereto, lactoferrin was orally administered to sheep during 30 consecutive days and sheep were experimentally infected with E. coli O157:H7 on the second day of the lactoferrin administration. Interestingly, both lactoferrin dosages significantly reduced the number of E. coli O157:H7 in faeces as well as the duration of faecal excretion. The high dose group showed a significantly higher antibody response against EspA and EspB, two structural proteins of the bacterial type III secretion system (TTSS), than the colonization control group. The results suggest that oral lactoferrin administration could be used to prevent persistent colonization of sheep with E. coli O157:H7.
Collapse
Affiliation(s)
- M Atef Yekta
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
56
|
Jokinen C, Edge TA, Ho S, Koning W, Laing C, Mauro W, Medeiros D, Miller J, Robertson W, Taboada E, Thomas JE, Topp E, Ziebell K, Gannon VPJ. Molecular subtypes of Campylobacter spp., Salmonella enterica, and Escherichia coli O157:H7 isolated from faecal and surface water samples in the Oldman River watershed, Alberta, Canada. WATER RESEARCH 2011; 45:1247-1257. [PMID: 20971491 DOI: 10.1016/j.watres.2010.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 05/30/2023]
Abstract
Campylobacter spp., Salmonella enterica, and Escherichia coli O157:H7 isolated from 898 faecal, 43 sewage, and 342 surface water samples from the Oldman River were characterized using bacterial subtyping methods in order to investigate potential sources of contamination of the watershed. Among these pathogens, Campylobacter spp. were the most frequently isolated from faecal, sewage, and surface water samples (266/895, 11/43, and 91/342, respectively), followed by Salmonella (67/898, 8/43, and 29/342, respectively), and E. coli O157:H7 (16/898, 2/43, and 8/342, respectively). Salmonella Rubislaw was the most common serovar isolated from water. This serovar was also isolated from two wild bird species. Most other serovars isolated from water were either not isolated from animals or were isolated from multiple species. E. coli O157:H7 was predominantly isolated from cattle. The most common phage-types of this pathogen from cattle were also the most common among water isolates, and there were exact pulsed field gel electrophoresis and comparative genomic fingerprint matches between cattle, sewage, and water isolates. Campylobacters were commonly isolated from surface waters and faeces from most animal species. Restriction fragment length polymorphism of the Campylobacter flaA gene identified several location and host species-specific (cattle, goose, pig) fingerprints. Molecular subtyping of these bacterial pathogens shows considerable promise as a tool for determining the sources of faecal pollution of water.
Collapse
Affiliation(s)
- C Jokinen
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Box 640, Township Road 9-1, Lethbridge, Alberta, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Ferens WA, Hovde CJ. Escherichia coli O157:H7: animal reservoir and sources of human infection. Foodborne Pathog Dis 2010; 8:465-87. [PMID: 21117940 DOI: 10.1089/fpd.2010.0673] [Citation(s) in RCA: 366] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
This review surveys the literature on carriage and transmission of enterohemorrhagic Escherichia coli (EHEC) O157:H7 in the context of virulence factors and sampling/culture technique. EHEC of the O157:H7 serotype are worldwide zoonotic pathogens responsible for the majority of severe cases of human EHEC disease. EHEC O157:H7 strains are carried primarily by healthy cattle and other ruminants, but most of the bovine strains are not transmitted to people, and do not exhibit virulence factors associated with human disease. Prevalence of EHEC O157:H7 is probably underestimated. Carriage of EHEC O157:H7 by individual animals is typically short-lived, but pen and farm prevalence of specific isolates may extend for months or years and some carriers, designated as supershedders, may harbor high intestinal numbers of the pathogen for extended periods. The prevalence of EHEC O157:H7 in cattle peaks in the summer and is higher in postweaned calves and heifers than in younger and older animals. Virulent strains of EHEC O157:H7 are rarely harbored by pigs or chickens, but are found in turkeys. The bacteria rarely occur in wildlife with the exception of deer and are only sporadically carried by domestic animals and synanthropic rodents and birds. EHEC O157:H7 occur in amphibian, fish, and invertebrate carriers, and can colonize plant surfaces and tissues via attachment mechanisms different from those mediating intestinal attachment. Strains of EHEC O157:H7 exhibit high genetic variability but typically a small number of genetic types predominate in groups of cattle and a farm environment. Transmission to people occurs primarily via ingestion of inadequately processed contaminated food or water and less frequently through contact with manure, animals, or infected people.
Collapse
Affiliation(s)
- Witold A Ferens
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA.
| | | |
Collapse
|
58
|
Global transcriptome analysis of the Escherichia coli O157 response to Houttuynia Cordata Thunb. BIOCHIP JOURNAL 2010. [DOI: 10.1007/s13206-010-4312-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
59
|
The application of food safety interventions in primary production of beef and lamb: A review. Int J Food Microbiol 2010; 141 Suppl 1:S43-52. [DOI: 10.1016/j.ijfoodmicro.2009.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/07/2009] [Accepted: 12/17/2009] [Indexed: 11/23/2022]
|
60
|
Wu Y, Hinenoya A, Taguchi T, Nagita A, Shima K, Tsukamoto T, Sugimoto N, Asakura M, Yamasaki S. Distribution of virulence genes related to adhesins and toxins in shiga toxin-producing Escherichia coli strains isolated from healthy cattle and diarrheal patients in Japan. J Vet Med Sci 2010; 72:589-97. [PMID: 20103992 DOI: 10.1292/jvms.09-0557] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) isolated from Japan were investigated for the distribution of virulence genes. A total of 232 STEC strains including 171 from cattle and 61 from human were examined for the occurrence of genes responsible for bacterial adhesions to intestine, e.g., eae (intimin, E. coli attaching and effacing), saa (STEC autoagglutinating adhesin), iha (irgA homologue adhesin), efa1 (E. coli factor for adherence), lpfA(O113) (long polar fimbriae), and ehaA (EHEC autotransporter) by colony hybridization assay. Similarly, the presence of toxigenic cdt (cytolethal distending toxin), and subAB (subtilase cytotoxin) genes were also checked. Among cattle isolates, 170, 163, 161, 155, 112 and 84 were positive for lpfA(O113) (99%), ehaA (95%), iha (94%), saa (91%), subAB (65%), and cdt-V (49%), respectively, while 2 were positive for eae (1.2%) and efa1 (1.2%) each. In case of human isolates, 60, 59, 58 and 58 were positive for ehaA (98%), iha (97%), efa1 (95%), and eae (95%), respectively, while 11, 2, 2, and 1 were positive for lpfA(O113) (18%), saa (3.3%), cdt-V (3.3%), and subAB (1.6%), respectively. Therefore, in human STEC isolates efa1 and eae whereas in cattle isolates saa, lpfA(O113), cdt-V and subAB were prevalent. These data indicate differential occurrence of some pathogenic genes in human and cattle originated STEC strains in Japan.
Collapse
Affiliation(s)
- Yuluo Wu
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 598-8531, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Berry ED, Wells JE. Escherichia coli O157:H7: recent advances in research on occurrence, transmission, and control in cattle and the production environment. ADVANCES IN FOOD AND NUTRITION RESEARCH 2010; 60:67-117. [PMID: 20691954 DOI: 10.1016/s1043-4526(10)60004-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Escherichia coli O157:H7 is a zoonotic pathogen that is an important cause of human foodborne and waterborne disease, with a spectrum of illnesses ranging from asymptomatic carriage and diarrhea to the sometimes fatal hemolytic uremic syndrome. Outbreaks of E. coli O157:H7 disease are often associated with undercooked beef, but there are other sources of transmission, including water, produce, and animal contact, which can often be linked directly or indirectly to cattle. Thus, preharvest control of this pathogen in cattle production should have a large impact on reducing the risk of human foodborne illness. In this review, we will summarize preharvest research on E. coli O157:H7 in cattle and the production environment, focusing on factors that may influence the transmission, prevalence, and levels of this pathogen, such as season, diet, high-level shedders, and animal stress. In addition, we will discuss recent research on the reduction of this pathogen in cattle production, including vaccination, probiotics, bacteriophage, and manure treatments.
Collapse
Affiliation(s)
- Elaine D Berry
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA.
| | | |
Collapse
|
62
|
Abstract
PURPOSE OF REVIEW The aim of this review is to highlight recent advances in knowledge of bacterial enteric infections. We focus on understanding of enterohemorrhagic Escherichia coli O157:H7 and Campylobacter jejuni infections, and to link these acute events with long-term consequences in a susceptible host, including irritable bowel syndrome and chronic inflammatory bowel diseases. RECENT FINDINGS Enterohemorrhagic E. coli and C. jejuni are zoonotic infections that are acquired from exposure to tainted food (undercooked hamburger and chicken, respectively) and contaminated drinking water. Noninvasive E. coli O157:H7 elaborates Shiga-like toxins and protein effectors that are injected, via a molecular syringe that is encoded by a bacterial type 3 secretion system, into infected eukaryotic cells. Less is known about the precise virulence properties of enteroinvasive Campylobacter strains, but both enteric pathogens are able to disrupt polarized epithelial monolayers resulting in increased uptake of macromolecules and antigens. SUMMARY An improved understanding of the epidemiology, pathobiology and mechanisms underlying infectious enterocolitides will provide the basis for developing new intervention strategies including, for example, the use of probiotics, to interrupt the infectious process.
Collapse
Affiliation(s)
- Philip M Sherman
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|