51
|
Gairin E, Dussenne M, Mercader M, Berthe C, Reynaud M, Metian M, Mills SC, Lenfant P, Besseau L, Bertucci F, Lecchini D. Harbours as unique environmental sites of multiple anthropogenic stressors on fish hormonal systems. Mol Cell Endocrinol 2022; 555:111727. [PMID: 35863654 DOI: 10.1016/j.mce.2022.111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Fish development and acclimation to environmental conditions are strongly mediated by the hormonal endocrine system. In environments contaminated by anthropogenic stressors, hormonal pathway alterations can be detrimental for growth, survival, fitness, and at a larger scale for population maintenance. In the context of increasingly contaminated marine environments worldwide, numerous laboratory studies have confirmed the effect of one or a combination of pollutants on fish hormonal systems. However, this has not been confirmed in situ. In this review, we explore the body of knowledge related to the influence of anthropogenic stressors disrupting fish endocrine systems, recent advances (focusing on thyroid hormones and stress hormones such as cortisol), and potential research perspectives. Through this review, we highlight how harbours can be used as "in situ laboratories" given the variety of anthropogenic stressors (such as plastic, chemical, sound, light pollution, and invasive species) that can be simultaneously investigated in harbours over long periods of time.
Collapse
Affiliation(s)
- Emma Gairin
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami District, 904-0495, Okinawa, Japan.
| | - Mélanie Dussenne
- Sorbonne Université, CNRS UMR Biologie Intégrative des Organismes Marins (BIOM), F-66650, Banyuls-sur-Mer, France
| | - Manon Mercader
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami District, 904-0495, Okinawa, Japan
| | - Cécile Berthe
- Laboratoire d'Excellence "CORAIL", France; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729, Moorea, French Polynesia
| | - Mathieu Reynaud
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami District, 904-0495, Okinawa, Japan; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729, Moorea, French Polynesia
| | - Marc Metian
- International Atomic Energy Agency - Environment Laboratories, 4a Quai Antoine 1er, MC, 98000, Principality of Monaco, Monaco
| | - Suzanne C Mills
- Laboratoire d'Excellence "CORAIL", France; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729, Moorea, French Polynesia
| | - Philippe Lenfant
- Université de Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 58 Avenue Paul Alduy, F-66860, Perpignan, France
| | - Laurence Besseau
- Sorbonne Université, CNRS UMR Biologie Intégrative des Organismes Marins (BIOM), F-66650, Banyuls-sur-Mer, France
| | - Frédéric Bertucci
- Functional and Evolutionary Morphology Lab, University of Liège, 4000, Liege, Belgium
| | - David Lecchini
- Laboratoire d'Excellence "CORAIL", France; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729, Moorea, French Polynesia
| |
Collapse
|
52
|
Crisafi F, Smedile F, Yakimov MM, Aulenta F, Fazi S, La Cono V, Martinelli A, Di Lisio V, Denaro R. Bacterial biofilms on medical masks disposed in the marine environment: a hotspot of biological and functional diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155731. [PMID: 35533867 DOI: 10.1016/j.scitotenv.2022.155731] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 05/06/2023]
Abstract
The present paper was aimed at investigating the role of disposable medical masks as a substrate for microbial biofilm growth and for the selection of specific microbial traits in highly impacted marine environments. In this view, we have immerged masks in a coastal area affected by a continuous input of artisanal fishery wastes and hydrocarbons pollution caused by intense maritime traffic. Masks maintained one month in the field were colonized by a bacterial community significantly different from that detected in the natural matrices from the same areas (seawater and sediments). The masks served as a viable substrate for the growth and enrichment of phototrophic microorganisms (Oxyphotobacteria), as well as Ruminococcaceae, Gracilibacteria, and Holophageae. In a follow-up investigation, masks previously colonized in the field were transferred in lab-scale microcosms which were supplemented with hydrocarbons and which contained also a piece of a virgin mask. After one month, a shift in the community composition, likely triggered by hydrocarbons addition, was observed in the previously colonized mask, with signatures characteristic of hydrocarbon-degrading microbial groups. Such hydrocarbon-degrading bacteria were also found to colonize the virgin mask. Remarkably, SEM micrographs provided indications of the occurrence of morphological modifications of the surface components of the virgin masks colonized by hydrocarbonoclastic bacteria. Overall, for the first time, we have demonstrated the potential risk for human and animal health determined by the uncorrected disposal of masks which are suitable substrates for pathogens colonization, permanence and spreading. Moreover, we have herein strengthened the knowledge on the role of hydrocarbon-degrading bacteria in the colonization and modification of fossil-based plastics in marine environment.
Collapse
Affiliation(s)
- F Crisafi
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - F Smedile
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - M M Yakimov
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - F Aulenta
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - S Fazi
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - V La Cono
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - A Martinelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - V Di Lisio
- Donostia International Physics Center, Paseo Manuel de Lardizabal, 4, 20018 Donostia-San Sebastian, Spain
| | - R Denaro
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy.
| |
Collapse
|
53
|
Wei SS, Yen CM, Marshall IPG, Hamid HA, Kamal SS, Nielsen DS, Ahmad HF. Gut microbiome and metabolome of sea cucumber (Stichopus ocellatus) as putative markers for monitoring the marine sediment pollution in Pahang, Malaysia. MARINE POLLUTION BULLETIN 2022; 182:114022. [PMID: 35963228 DOI: 10.1016/j.marpolbul.2022.114022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic contamination in the marine environment forms an emerging threat to marine ecosystems. This study aimed to compare the gut and coelomic microbiota of Stichopus ocellatus with sediments between two coastal districts of Pahang, which potentially conferring as putative biomarkers for sediment pollution monitoring. The composition of the bacteria communities was determined using 16S rRNA V3-region gene amplicon sequencing, while hybrid whole-genome sequencing was employed to analyze the genome of Vibrio parahaemolyticus. The trace elements and antibiotic compositions were access using high-throughput spectrometry. The alpha- and beta-diversity of bacteria in gut and sediment samples from Kuantan differed substantially within (p-value = 0.017604) and between samples (p-value <0.007), respectively. Vibrio genera predominated in Kuantan samples, while Flavobacterium and Synechococcus_E genera predominated in Pekan samples. Vibrio parahaemolyticus revealed the presence of tet(35) and blaCARB-33 genes that conceived resistance towards tetracycline and beta-lactam antibiotics, respectively, which were detected in sediment and gut samples.
Collapse
Affiliation(s)
- Siew Shing Wei
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
| | - Choo Mei Yen
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
| | - Ian P G Marshall
- Center for Electromicrobiology, Department of Biology, Ny Munkegade 116, 8000 Aarhus C, Denmark.
| | - Hazrulrizawati Abd Hamid
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia; Centre for Research in Advanced Tropical Bioscience (Biotropic Centre), Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia.
| | - Shamrulazhar Shamzir Kamal
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| | | | - Hajar Fauzan Ahmad
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia.
| |
Collapse
|
54
|
Chen X, Chen J, Yu X, Sanganyado E, Wang L, Li P, Liu W. Effects of norfloxacin, copper, and their interactions on microbial communities in estuarine sediment. ENVIRONMENTAL RESEARCH 2022; 212:113506. [PMID: 35643312 DOI: 10.1016/j.envres.2022.113506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The discharge of antibiotics and metals in estuaries is of great concern since they threaten microbial communities that are critical for maintaining ecosystem function. To understand single and combined effects of norfloxacin (0-20 μg g-1) and copper (40 μg g-1) on microbial ecology in estuaries, we evaluated changes in bacteria population, inhibition rates, and microbial composition in estuarine sediments over a 28-day period. Bacteria population significantly decreased following single and combined exposure to norfloxacin and copper throughout the incubation period, except on Day 28 in treatments exposed to copper, 20 μg g-1 norfloxacin, or both. These three treatment groups had lower Shannon diversity and Simpson's indices on Day 28 than other treatments and the controls suggesting recovery in bacteria population did not correspond with recovery in richness and evenness. Furthermore, functional predictions revealed that the effect of time and contaminants were significantly different on some microbial community functions on Day 28, especially the combination of Cu and high concentration NFX, including aerobic chemoheterotrophy, methanol oxidation and methylotrophy. Thus, norfloxacin and copper had significant adverse effects on microbial communities in estuarine sediments; however, the combined effects were variable and depended on exposure duration and antibiotic concentration.
Collapse
Affiliation(s)
- Xiaohan Chen
- Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China
| | - Jinjin Chen
- Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China
| | - Xiaoxuan Yu
- Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China
| | - Edmond Sanganyado
- Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Lin Wang
- Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China
| | - Ping Li
- Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Wenhua Liu
- Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
| |
Collapse
|
55
|
Sabdono A, Lestari ES, Sibero MT. Biogeographic assessment of Gorgonian-associated bacteria with antipathogenic Urinary Tract Infections (UTIs) in Karimunjawa Marine National Park, Java Sea, Indonesia. NATURE CONSERVATION 2022. [DOI: 10.3897/natureconservation.49.84825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gorgonian corals of Karimunjawa are impacted by anthropogenic activities, such as increasingly high mariculture intensity with consequent eutrophication, overfishing, tourism, sewage, and other pollutant discharges, which result in changes in the microbial community structure. In this study, bacterial communities associated with six species of Gorgonian, Viminella sp., Ellisella sp., Antipathes sp., Melithaea sp., Astrogorgia sp., and Junceella sp. from both the Marine Protected Area (MPA) and non-Marine Protected Area (non-MPA) zones were screened for their antipathogenic potential against Urinary Tract Infections (UTIs) pathogens. The selected bacterial isolates were identified and compared for their abundance and diversity between the two zones. A total of 156 bacterial strains were assayed for their prospective antipathogenic compounds against seven UTI pathogens, including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Streptococcus saptophyticus, Acinetobacter baumannii, Klebsiella pneumonia, and Candida albicans. The results showed that 17 of 92 (18.48%) and 6 of 64 (9.37%) bacterial isolates from MPA and non-MPA, respectively, exhibited antimicrobial activity in at least one of the UTI pathogens. By analyzing the gene of 16S rRNA, it was discovered that the 17 isolates of MPA were associated with phyla Actinobacteria, Firmicutes and Proteobacteria, including Streptomyces zhaozhoue, Nocardiopsis salina, Micrococcus endophyticus, Brevibacterium casei, Micrococcus yunnanensis, Saccharopolyspora coralli, Bacillus paramycoides, Virgibacillus salarius, Oceanobacillus iheyensis, and Vibrio alginolyticus. In contrast, only six selected isolates of non-MPA were associated with the phyla Actinobacteria and Proteobacteria, including Nocardiopsis salina, Micrococcus yunnanensis, and Acinetobacter soli. The Diversity Index (H’), Species Richness (S), and Relative Abundance of the MPA zone were higher than those of non-MPA. These results demonstrated that Gorgonian octocoral species in the MPA region harbour varied bacteria and we propose that many Gorgonian-associated bacteria have the prospective for advancing broad-spectrum antibiotics.
Collapse
|
56
|
Fang W, Lin M, Shi J, Liang Z, Tu X, He Z, Qiu R, Wang S. Organic carbon and eukaryotic predation synergistically change resistance and resilience of aquatic microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154386. [PMID: 35331758 DOI: 10.1016/j.scitotenv.2022.154386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
With rapid global urbanization, anthropogenic activities alter aquatic biota in urban rivers through inputs of dissolved organic carbon (DOC) and nutrients. Microorganisms-mediated global element cycles provide functions in maintaining microbial ecology stability. The DOC (bottom-up control) and microbial predation (top-down control) may synergistically drive the competition and evolution of aquatic microbial communities, as well as their resistance and resilience, for which experimental evidences remain scarce. In this study, laboratory sediment-water column experiments were employed to mimic the organic carbon-driven water blackening and odorization process in urban rivers and to elucidate the impact of DOC on microbial ecology stability. Results showed that low (25-75 mg/L) and high DOC (100-150 mg/L) changed the aquatic microbial community assemblies in different patterns: (1) the low DOC enriched K-selection microorganisms (e.g., C39, Tolumonas and CR08G) with low biomass and low resilience, as well as high resistance to perturbations in changing microbial community assemblies; (2) the high DOC was associated with r-selection microorganisms (e.g., PSB-M-3 and Clostridium) with high biomass and improved resilience, together with low resistance detrimental to microbial ecology stability. Overall, this study provided new insight into the impact of DOC on aquatic microbial community stability, which may help guide sustainable urban river management.
Collapse
Affiliation(s)
- Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China; Zhongshan Municipal Ecology and Environment Bureau, Zhongshan, Guangdong 528403, China
| | - Muxing Lin
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Jiangjian Shi
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Xiang Tu
- State Environmental Protection Key Laboratory of Source Water Protection, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Rongliang Qiu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China.
| |
Collapse
|
57
|
Methylmercury, Trace Metals, Organotins and Their Effects on the Qatari Mangrove Shrimp, Palaemon khori. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Qatari mangroves of Al-Khor are being increasingly exposed to a wide variety of anthropogenic pollutants due to land reclamation and urban expansion. In this study, we evaluated the lethal and genotoxic effects of methylmercury, trace metals, and organotins, assessing mortality and aneuploidy levels (abnormal number of chromosomes) in the endemic shrimp Palaemon khori under laboratory conditions. In the experimental design, two different concentrations were used for each family of contaminant (single or combined): an environmental concentration equivalent to the maximum value reported in the environment and a value ten times higher, for a period of eight weeks. Survival decreased significantly when pollutants were administrated in combination, even at environmental concentrations (as shown by Cox proportional hazards ratios): similar levels of mortality would be reached by individual type of pollutants only at ten times the environmental concentration. This critical result, under controlled lab conditions, highlights the importance of monitoring mixtures of contaminant types over single ones in the marine environment. Aneuploidy was reported in all treatments and control ranging from 5% to 19% at week four and from 7% to 21% at week eight. All treatments presented significantly higher aneuploidy levels when compared to the control. However, no significant difference was observed between the two time periods, even though 30% of the treatments could not be assessed at week eight, as not enough animals were still alive. In conclusion, the use of endemic species should be considered a valuable tool to determine local perturbations, representing a regional bioindicator of multiple environmental stressors from the initial stages of contamination.
Collapse
|
58
|
Ghosh A, Saha R, Bhadury P. Metagenomic insights into surface water microbial communities of a South Asian mangrove ecosystem. PeerJ 2022; 10:e13169. [PMID: 35573175 PMCID: PMC9097664 DOI: 10.7717/peerj.13169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/04/2022] [Indexed: 01/12/2023] Open
Abstract
Estuaries are one of the most productive ecosystems and their productivity is maintained by resident microbial communities. Recent alterations driven by climate change have further escalated these stressors leading to the propagation of traits such as antibiotic resistance and heavy metal resistance in microbial communities. Surface water samples from eleven stations along the Thakuran and Matla estuaries of the Sundarbans Biosphere Reserve (SBR) of Sundarbans mangrove located in South Asia were sampled in monsoon (June) 2019 to elucidate resident microbial communities based on Nanopore sequencing. Metagenomic analyses revealed the widespread dominance of Proteobacteria across all the stations along with a high abundance of Firmicutes. Other phyla, including Euryarchaeota, Thaumarchaeota, Actinobacteria, Bacteroidetes and Cyanobacteria showed site-specific trends in abundance. Further taxonomic affiliations showed Gammaproteobacteria and Alphaproteobacteria to be dominant classes with high abundances of Bacilli in SBR_Stn58 and SBR_Stn113. Among the eukaryotic communities, the most abundant classes included Prasinophyceae, Saccharyomycetes and Sardariomycetes. Functional annotation showed metabolic activities such as carbohydrate, amino acid, nitrogen and phosphorus metabolisms to be uniformly distributed across all the studied stations. Pathways such as stress response, sulphur metabolism and motility-associated genes appeared in low abundances in SBR. Functional traits such as antibiotic resistance showed overwhelming dominance of genes involved in multidrug resistance along with widespread resistance towards commonly used antibiotics including Tetracycline, glycopeptide and aminoglycoside. Metal resistance genes including arsenic, nickel and copper were found in comparable abundances across the studied stations. The prevalence of ARG and MRG might indicate presence of pollutants and hint toward deteriorating ecosystem health status of Sundarbans mangrove.
Collapse
Affiliation(s)
- Anwesha Ghosh
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, India
| | - Ratul Saha
- Wildlife and Habitats Division, WWF-India Sundarbans Landscape, Kolkata, West Bengal, India
| | - Punyasloke Bhadury
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, India,Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, India
| |
Collapse
|
59
|
Ishaq SL, Turner SM, Tudor MS, MacRae JD, Hamlin H, Kilchenmann J, Lee G, Bouchard D. Many Questions Remain Unanswered About the Role of Microbial Transmission in Epizootic Shell Disease in American Lobsters (Homarus americanus). Front Microbiol 2022; 13:824950. [PMID: 35602067 PMCID: PMC9121004 DOI: 10.3389/fmicb.2022.824950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Despite decades of research on lobster species’ biology, ecology, and microbiology, there are still unresolved questions about the microbial communities which associate in or on lobsters under healthy or diseased states, microbial acquisition, as well as microbial transmission between lobsters and between lobsters and their environment. There is an untapped opportunity for metagenomics, metatranscriptomics, and metabolomics to be added to the existing wealth of knowledge to more precisely track disease transmission, etiology, and host-microbe dynamics. Moreover, we need to gain this knowledge of wild lobster microbiomes before climate change alters environmental and host-microbial communities more than it likely already has, throwing a socioeconomically critical industry into disarray. As with so many animal species, the effects of climate change often manifest as changes in movement, and in this perspective piece, we consider the movement of the American lobster (Homarus americanus), Atlantic Ocean currents, and the microorganisms associated with either.
Collapse
Affiliation(s)
- Suzanne L. Ishaq
- School of Food and Agriculture, University of Maine, Orono, ME, United States
- Aquaculture Research Institute, Orono, ME, United States
- *Correspondence: Suzanne L. Ishaq,
| | - Sarah M. Turner
- Aquaculture Research Institute, Orono, ME, United States
- Cooperative Extension, University of Maine, Orono, ME, United States
| | - M. Scarlett Tudor
- Aquaculture Research Institute, Orono, ME, United States
- Cooperative Extension, University of Maine, Orono, ME, United States
| | - Jean D. MacRae
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME, United States
| | - Heather Hamlin
- Aquaculture Research Institute, Orono, ME, United States
- School of Marine Sciences, University of Maine, Orono, ME, United States
| | - Joelle Kilchenmann
- School of Marine Sciences, University of Maine, Orono, ME, United States
| | - Grace Lee
- Department of Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Deborah Bouchard
- Aquaculture Research Institute, Orono, ME, United States
- Cooperative Extension, University of Maine, Orono, ME, United States
| |
Collapse
|
60
|
Zhang M, Zeng G, Liang D, Xu Y, Li Y, Huang X, Ma Y, Wang F, Liao C, Tang C, Li H, Pan Y, Sun D. An Analysis of the Colony Structure of Prokaryotes in the Jialing River Waters in Chongqing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095525. [PMID: 35564921 PMCID: PMC9101644 DOI: 10.3390/ijerph19095525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023]
Abstract
At present, research on the influence of human activities (especially urbanization) on the microbial diversity, structural composition, and spatial distribution of rivers is limited. In this paper, to explore the prokaryotic community structure and the relationship between the community and environmental factors in the Jialing River Basin of Chongqing, so as to provide a basis for monitoring microorganisms in the watershed. The V3–V4 region of the 16 S rRNA gene was analyzed by high-throughput sequencing and the microbial community of the waters of the Jialing River was analyzed for the diversity and composition of the prokaryotic community as well as the species difference of four samples and correlations with environmental factors. The main results of this study were as follows: (1) The diversity index showed that there were significant differences in the biodiversity among the four regions. At the genus level, Limnohabitans, unclassified_f_Comamonadaceae, and Hgcl_clade were the main dominant flora with a high abundance and evenness. (2) A Kruskal–Wallis H test was used to analyze the differences of species composition among the communities and the following conclusions were drawn: each group contained a relatively high abundance of Limnohabitans; the Shapingba District had a higher abundance of Limnohabitans, the Hechuan District had a wide range of unclassified_f_Comamonadaceae, and the Beibei District had a higher Hgcl_clade. (3) Through the determination of the physical and chemical indicators of the water—namely, total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll A, and an analysis by an RDA diagram, the results demonstrated that the distribution of microbial colonies was significantly affected by the environmental factors of the water. Chemical oxygen demand and ammonia nitrogen had a significant influence on the distribution of the colonies. Different biological colonies were also affected by different environmental factors.
Collapse
Affiliation(s)
- Maolan Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (G.Z.); (D.L.); (Y.X.); (X.H.); (F.W.); (C.L.); (C.T.)
| | - Guoming Zeng
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (G.Z.); (D.L.); (Y.X.); (X.H.); (F.W.); (C.L.); (C.T.)
| | - Dong Liang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (G.Z.); (D.L.); (Y.X.); (X.H.); (F.W.); (C.L.); (C.T.)
| | - Yiran Xu
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (G.Z.); (D.L.); (Y.X.); (X.H.); (F.W.); (C.L.); (C.T.)
| | - Yan Li
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; (Y.L.); (Y.M.)
| | - Xin Huang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (G.Z.); (D.L.); (Y.X.); (X.H.); (F.W.); (C.L.); (C.T.)
| | - Yonggang Ma
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; (Y.L.); (Y.M.)
| | - Fei Wang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (G.Z.); (D.L.); (Y.X.); (X.H.); (F.W.); (C.L.); (C.T.)
| | - Chenhui Liao
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (G.Z.); (D.L.); (Y.X.); (X.H.); (F.W.); (C.L.); (C.T.)
| | - Cheng Tang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (G.Z.); (D.L.); (Y.X.); (X.H.); (F.W.); (C.L.); (C.T.)
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
- Correspondence: (H.L.); (Y.P.); (D.S.); Tel./Fax: +86-173-6586-6501 (D.S.)
| | - Yunzhu Pan
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Correspondence: (H.L.); (Y.P.); (D.S.); Tel./Fax: +86-173-6586-6501 (D.S.)
| | - Da Sun
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- Correspondence: (H.L.); (Y.P.); (D.S.); Tel./Fax: +86-173-6586-6501 (D.S.)
| |
Collapse
|
61
|
Govindarajan A, Crum M, Adolacion J, Kiaghadi A, Acuña-Gonzalez E, Rifai HS, Willson RC. Sediment and their bacterial communities in an industrialized estuary after Hurricane Harvey. MARINE POLLUTION BULLETIN 2022; 175:113359. [PMID: 35124375 DOI: 10.1016/j.marpolbul.2022.113359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/26/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Estuaries experience variable physicochemical conditions, especially after hurricanes and due to anthropogenic sources of pollution. Their microbial communities are not as well understood in terms of community structure and diversity, particularly in response to stresses from pollution and severe events. This study presents a 16S rRNA-based description of sediment microbial communities in the Houston Ship Channel-Galveston Bay estuary after Hurricane Harvey in 2017. A total of 11 sites were sampled, and microbial genomic DNA was isolated from sediment. The presence and abundance of specific bacterial and archaeal taxa in the sediment indicated pollutant inputs from identified legacy sources. The abundance of certain microbial groups was explained by the mobilization of contaminated sediment and sediment transport due to Harvey. Several microorganisms involved in the biodegradation of xenobiotics were observed. The spatial occurrence of Dehalococcoidia, a degrader of persistent polychlorinated compounds, was explained in relation to sediment properties and contaminant concentrations.
Collapse
Affiliation(s)
| | - Mary Crum
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Jay Adolacion
- School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Mexico
| | - Amin Kiaghadi
- Civil and Environmental Engineering, University of Houston, Houston, TX, USA
| | - Edgar Acuña-Gonzalez
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey, Mexico
| | - Hanadi S Rifai
- Civil and Environmental Engineering, University of Houston, Houston, TX, USA.
| | - Richard C Willson
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
62
|
Orel N, Fadeev E, Klun K, Ličer M, Tinta T, Turk V. Bacterial Indicators Are Ubiquitous Members of Pelagic Microbiome in Anthropogenically Impacted Coastal Ecosystem. Front Microbiol 2022; 12:765091. [PMID: 35111137 PMCID: PMC8801744 DOI: 10.3389/fmicb.2021.765091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023] Open
Abstract
Coastal zones are exposed to various anthropogenic impacts, such as different types of wastewater pollution, e.g., treated wastewater discharges, leakage from sewage systems, and agricultural and urban runoff. These various inputs can introduce allochthonous organic matter and microbes, including pathogens, into the coastal marine environment. The presence of fecal bacterial indicators in the coastal environment is usually monitored using traditional culture-based methods that, however, fail to detect their uncultured representatives. We have conducted a year-around in situ survey of the pelagic microbiome of the dynamic coastal ecosystem, subjected to different anthropogenic pressures to depict the seasonal and spatial dynamics of traditional and alternative fecal bacterial indicators. To provide an insight into the environmental conditions under which bacterial indicators thrive, a suite of environmental factors and bacterial community dynamics were analyzed concurrently. Analyses of 16S rRNA amplicon sequences revealed that the coastal microbiome was primarily structured by seasonal changes regardless of the distance from the wastewater pollution sources. On the other hand, fecal bacterial indicators were not affected by seasons and accounted for up to 34% of the sequence proportion for a given sample. Even more so, traditional fecal indicator bacteria (Enterobacteriaceae) and alternative wastewater-associated bacteria (Lachnospiraceae, Ruminococcaceae, Arcobacteraceae, Pseudomonadaceae and Vibrionaceae) were part of the core coastal microbiome, i.e., present at all sampling stations. Microbial source tracking and Lagrangian particle tracking, which we employed to assess the potential pollution source, revealed the importance of riverine water as a vector for transmission of allochthonous microbes into the marine system. Further phylogenetic analysis showed that the Arcobacteraceae in our data set was affiliated with the pathogenic Arcobacter cryaerophilus, suggesting that a potential exposure risk for bacterial pathogens in anthropogenically impacted coastal zones remains. We emphasize that molecular analyses combined with statistical and oceanographic models may provide new insights for environmental health assessment and reveal the potential source and presence of microbial indicators, which are otherwise overlooked by a cultivation approach.
Collapse
Affiliation(s)
- Neža Orel
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- *Correspondence: Neža Orel,
| | - Eduard Fadeev
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Matjaž Ličer
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- Office for Meteorology, Hydrology and Oceanography, Slovenian Environment Agency, Ljubljana, Slovenia
| | - Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- Tinkara Tinta,
| | - Valentina Turk
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| |
Collapse
|
63
|
Vijayan J, Ammini P, Nathan VK. Diversity pattern of marine culturable heterotrophic bacteria in a region with coexisting upwelling and mud banks in the southeastern Arabian Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3967-3982. [PMID: 34398377 DOI: 10.1007/s11356-021-15772-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Mud banks and upwelling are two important oceanographic features occurring along the southwest coast of India during the southwest monsoon period. The study region, Alappuzha lying on the southwest coast of India, is unique due to the co-existence of upwelling and mud banks during the monsoon (MON) season. Water samples were collected from three stations, M1, M2, and M3, from April to September 2014, at weekly/biweekly intervals to determine the total bacterial abundance, viable prokaryotic counts, and total plate counts, along with measurements on physico-chemical parameters. For determining the heterotrophic culturable bacterial diversity, water samples were collected during two seasons, monsoon and pre-monsoon (PRM), from three stations. Water samples were inoculated into two non-selective broths for enrichment, DNA was extracted, and next-generation sequencing analysis was performed using Illumina Miseq sequencing. The sequence analysis revealed that dominant communities were Proteobacteria, followed by Firmicutes and Fusobacteria. Proportions of Fusobacteria increased during monsoon and proportions of Firmicutes were high in premonsoon season. Among Proteobacteria, Gammaproteobacteri is presented more than 99% of all the classes, irrespective of seasons. Vibrio was the most dominant genus during both seasons. The presence of anaerobic genera such as Propionigenium and Cetobacterium at all the stations during MON indicated the presence of upwelled waters. The genus Stenotrophomonas was observed in the M2 station alone. This study provides an overview of the culturable heterotrophic bacterial communities in a region in the southeastern Arabian Sea with coexisting mud banks and upwelling. The results of this study were compared with a published report on culture-independent bacterial diversity (from environmental DNA) from the same region. The study demonstrates that the use of culture media underrepresented the phylogenetic diversity and selectively enriched the class Gammaproteobacteria alone.
Collapse
Affiliation(s)
- Jasna Vijayan
- National Institute of Oceanography-CSIR, Regional Center, Dr. Salim Ali Road, Kochi, Kerala, 682018, India
| | - Parvathi Ammini
- National Institute of Oceanography-CSIR, Regional Center, Dr. Salim Ali Road, Kochi, Kerala, 682018, India.
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, 682022, India.
| | - Vinod Kumar Nathan
- National Institute of Oceanography-CSIR, Regional Center, Dr. Salim Ali Road, Kochi, Kerala, 682018, India
- School of Chemical and Biotechnology, Sastra Deemed University Tirumalaisamudram, Thanjavur, Tamilnadu, 613401, India
| |
Collapse
|
64
|
All-In-One: Microbial Response to Natural and Anthropogenic Forcings in a Coastal Mediterranean Ecosystem, the Syracuse Bay (Ionian Sea, Italy). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse10010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacterial and phytoplankton communities are known to be in close relationships, but how natural and anthropogenic stressors can affect their dynamics is not fully understood. To study the response of microbial communities to environmental and human-induced perturbations, phytoplankton and bacterial communities were seasonally monitored in a Mediterranean coastal ecosystem, Syracuse Bay, where multiple conflicts co-exist. Quali-quantitative, seasonal surveys of the phytoplankton communities (diatoms, dinoflagellates and other taxa), the potential microbial enzymatic activity rates (leucine aminopeptidase, beta-glucosidase and alkaline phosphatase) and heterotrophic culturable bacterial abundance, together with the thermohaline structure and trophic status in terms of nutrient concentrations, phytoplankton biomass (as Chlorophyll-a), and total suspended and particulate organic matter, were carried out. The aim was to integrate microbial community dynamics in the context of the environmental characterization and disentangle microbial patterns related to natural changes from those driven by the anthropic impact on this ecosystem. In spite of the complex relationships between the habitat characteristics, microbial community abundance and metabolic potential, in Syracuse Bay, the availability of organic substrates differently originated by the local conditions appeared to drive the distribution and activity of microbial assemblage. A seasonal pattern of microbial abundances was observed, with the highest concentrations of phytoplankton in spring and low values in winter, whereas heterotrophic bacteria were more abundant during the autumn period. The autumn peaks of the rates of enzymatic activities suggested that not only phytoplankton-derived but also allochthonous organic polymers strongly stimulated microbial metabolism. Increased microbial response in terms of abundance and metabolic activities was detected especially at the sites directly affected by organic matter inputs related to agriculture or aquaculture activities. Nitrogen salts such as nitrate, rather than orthophosphate, were primary drivers of phytoplankton growth. This study also provides insights on the different seasonal scenarios of water quality in Syracuse Bay, which could be helpful for management plans of this Mediterranean coastal environment.
Collapse
|
65
|
Fang G, Yu H, Sheng H, Tang Y, Liang Z. Comparative analysis of microbial communities between water and sediment in Laoshan Bay marine ranching with varied aquaculture activities. MARINE POLLUTION BULLETIN 2021; 173:112990. [PMID: 34634629 DOI: 10.1016/j.marpolbul.2021.112990] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
We profiled and compared the bacterial and protist community compositions and dynamics in the Laoshan Bay marine ranching involving varied aquaculture activities. The dominant species, differential species and community compositions among the five aquaculture areas, two habitats and two periods were significantly different. The relationships between microbial communities and environmental factors were analyzed. We found that microbial communities in the water were more sensitive to the environmental changes than sediment, and the responses of bacterial and protist communities to the disturbances were varied. To meet the challenges of higher aquaculture density, the proportion of the positive correlations among co-occurrence networks in the water increased markedly from July to November; while the positive proportion in the sediment was stable. Potential ecological interactions and keystone taxa between bacteria and protists were studied. These results advanced our understanding of how mariculture stressors affect microbial communities in marine ranching.
Collapse
Affiliation(s)
- Guangjie Fang
- Fisheries College, Ocean University of China, Qingdao 266002, China
| | - Haolin Yu
- Fisheries College, Ocean University of China, Qingdao 266002, China
| | - Huaxiang Sheng
- Fisheries College, Ocean University of China, Qingdao 266002, China
| | - Yanli Tang
- Fisheries College, Ocean University of China, Qingdao 266002, China.
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai 264200, China
| |
Collapse
|
66
|
Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in the Central Adriatic Sea: Are They Connected to Urban Wastewater Inputs? WATER 2021. [DOI: 10.3390/w13233335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite last decades’ interventions within local and communitarian programs, the Mediterranean Sea still receives poorly treated urban wastewater (sewage). Wastewater treatment plants (WWTPs) performing primary sewage treatments have poor efficiency in removing microbial pollutants, including fecal indicator bacteria, pathogens, and mobile genetic elements conferring resistance to antimicrobials. Using a combination of molecular tools, we investigated four urban WWTPs (i.e., two performing only mechanical treatments and two performing a subsequent conventional secondary treatment by activated sludge) as continuous sources of microbial pollution for marine coastal waters. Sewage that underwent only primary treatments was characterized by a higher content of traditional and alternative fecal indicator bacteria, as well as potentially pathogenic bacteria (especially Acinetobacter, Coxiella, Prevotella, Streptococcus, Pseudomonas, Vibrio, Empedobacter, Paracoccus, and Leptotrichia), than those subjected to secondary treatment. However, seawater samples collected next to the discharging points of all the WWTPs investigated here revealed a marked fecal signature, despite significantly lower values in the presence of secondary treatment of the sewage. WWTPs in this study represented continuous sources of antibiotic resistance genes (ARGs) ermB, qnrS, sul2, tetA, and blaTEM (the latter only for three WWTPs out of four). Still, no clear effects of the two depuration strategies investigated here were detected. Some marine samples were identified as positive to the colistin-resistance gene mcr-1, an ARG that threatens colistin antibiotics’ clinical utility in treating infections with multidrug-resistant bacteria. This study provides evidence that the use of sole primary treatments in urban wastewater management results in pronounced inputs of microbial pollution into marine coastal waters. At the same time, the use of conventional treatments does not fully eliminate ARGs in treated wastewater. The complementary use of molecular techniques could successfully improve the evaluation of the depuration efficiency and help develop novel solutions for the treatment of urban wastewater.
Collapse
|
67
|
Hörstmann C, Buttigieg PL, John U, Raes EJ, Wolf-Gladrow D, Bracher A, Waite AM. Microbial diversity through an oceanographic lens: refining the concept of ocean provinces through trophic-level analysis and productivity-specific length scales. Environ Microbiol 2021; 24:404-419. [PMID: 34766422 DOI: 10.1111/1462-2920.15832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023]
Abstract
In the marine realm, microorganisms are responsible for the bulk of primary production, thereby sustaining marine life across all trophic levels. Longhurst provinces have distinct microbial fingerprints; however, little is known about how microbial diversity and primary productivity change at finer spatial scales. Here, we sampled the Atlantic Ocean from south to north (~50°S-50°N), every ~0.5° latitude. We conducted measurements of primary productivity, chlorophyll-a and relative abundance of 16S and 18S rRNA genes, alongside analyses of the physicochemical and hydrographic environment. We analysed the diversity of autotrophs, mixotrophs and heterotrophs, and noted distinct patterns among these guilds across provinces with high and low chlorophyll-a conditions. Eukaryotic autotrophs and prokaryotic heterotrophs showed a shared inter-province diversity pattern, distinct from the diversity pattern shared by mixotrophs, cyanobacteria and eukaryotic heterotrophs. Additionally, we calculated samplewise productivity-specific length scales, the potential horizontal displacement of microbial communities by surface currents to an intrinsic biological rate (here, specific primary productivity). This scale provides key context for our trophically disaggregated diversity analysis that we could relate to underlying oceanographic features. We integrate this element to provide more nuanced insights into the mosaic-like nature of microbial provincialism, linking diversity patterns to oceanographic transport through primary production.
Collapse
Affiliation(s)
- Cora Hörstmann
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Science, Bremerhaven, Germany.,Department of Life Sciences and Chemistry, Jacobs University gGmbH, Bremen, Germany
| | | | - Uwe John
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Science, Bremerhaven, Germany.,Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| | - Eric J Raes
- Ocean Frontier Institute and Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - Dieter Wolf-Gladrow
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Science, Bremerhaven, Germany
| | - Astrid Bracher
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Science, Bremerhaven, Germany.,Institute of Environmental Physics, University of Bremen, Bremen, Germany
| | - Anya M Waite
- Ocean Frontier Institute and Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
68
|
Holmes M, Spaak JW, De Laender F. Stressor richness intensifies productivity loss but mitigates biodiversity loss. Ecol Evol 2021; 11:14977-14987. [PMID: 34765154 PMCID: PMC8571636 DOI: 10.1002/ece3.8182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Ecosystems are subject to a multitude of anthropogenic environmental changes. Experimental research in the field of multiple stressors has typically involved varying the number of stressors, here termed stressor richness, but without controlling for total stressor intensity. Mistaking stressor intensity effects for stressor richness effects can misinform management decisions when there is a trade-off between mitigating these two factors. We incorporate multiple stressors into three community models and show that, at a fixed total stressor intensity, increasing stressor richness aggravates joint stressor effects on ecosystem functioning, but reduces effects on species persistence and composition. In addition, stressor richness weakens the positive selection and negative complementarity effects on ecosystem function. We identify the among-species variation of stressor effects on traits as a key determinant of the resulting community-level stressor effects. Taken together, our results unravel the mechanisms linking multiple environmental changes to biodiversity and ecosystem function.
Collapse
Affiliation(s)
- Mark Holmes
- Research Unit in Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and the Institute of Life, Earth, and EnvironmentUniversity of NamurNamurBelgium
| | - Jurg Werner Spaak
- Research Unit in Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and the Institute of Life, Earth, and EnvironmentUniversity of NamurNamurBelgium
| | - Frederik De Laender
- Research Unit in Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and the Institute of Life, Earth, and EnvironmentUniversity of NamurNamurBelgium
| |
Collapse
|
69
|
Kuchi N, Khandeparker L, Anil AC. Response of the bacterial metagenome in port environments to changing environmental conditions. MARINE POLLUTION BULLETIN 2021; 172:112869. [PMID: 34425364 DOI: 10.1016/j.marpolbul.2021.112869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Port environments are highly dynamic and hotspots for marine bioinvasion. This study investigated the bacterial diversity at two geographically distant ports (Mangalore-marine port; and Haldia-riverine port) using next-generation sequencing during southwest monsoon and non-monsoon (Pre-monsoon) seasons. During southwest monsoon, at both marine and riverine ports, operational taxonomic units (OTUs) affiliated to bacteria reported to have hydrocarbon degrading ability were observed. Whereas during pre-monsoon, a significant increase in benthic bacterial OTUs was evident at the marine port, and the riverine port was characterized by oceanic species OTUs. Results suggest that the dynamics of prevalent environmental conditions, driven by seasons, led to emergence of ecologically relevant bacteria, many of which have been observed for the first time in Indian coastal waters. Their presence could be used as indicators of prevailing environmental conditions and nature of anthropogenic influence in port ecosystems. Unravelling functional roles of such ecologically relevant species is a way forward.
Collapse
Affiliation(s)
- Nishanth Kuchi
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao, Goa, India
| | | | | |
Collapse
|
70
|
Liu X, Hu S, Sun R, Wu Y, Qiao Z, Wang S, Zhang Z, Cui C. Dissolved oxygen disturbs nitrate transformation by modifying microbial community, co-occurrence networks, and functional genes during aerobic-anoxic transition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148245. [PMID: 34380284 DOI: 10.1016/j.scitotenv.2021.148245] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 05/23/2023]
Abstract
No consensus has been achieved among researchers on the effect of dissolved oxygen (DO) on nitrate (NO3--N) transformation and the microbial community, especially during aerobic-anoxic transition. To supplement this knowledge, NO3--N transformation, microbial communities, co-occurrence networks, and functional genes were investigated during aerobic-anoxic transition via microcosm simulation. NO3--N transformation rate in the early stage (DO ≥2 mg/L) was always significantly higher than that in the later stage (DO <2 mg/L) during aerobic-anoxic transition, and NO2--N accumulation was more significant during the anoxic stage, consistent with the result obtained under constant DO conditions. These NO3--N transformation characteristics were not affected by other environmental factors, indicating the important role of DO in NO3--N transformation during aerobic-anoxic transition. Changes in DO provoked significant alterations in microbial diversity and abundance of functional bacteria dominated by Massilia, Bacillus, and Pseudomonas, leading to the variation in NO3--N transformation. Co-occurrence network analysis revealed that NO3--N transformation was performed by the interactions between functional bacteria including symbiotic and competitive relationship. In the presence of oxygen, these interactions accelerated the NO3--N transformation rate, and bacterial metabolization proceeded via increasingly varied pathways including aerobic and anoxic respiration, which was demonstrated through predicted genes. The higher relative abundance of genes narG, narH, and napA suggested the occurrence of coupled aerobic-anoxic denitrification in the early stage. NO3--N transformation rate decreased accompanied by a significant NO2--N accumulation with the weakening of coupled aerobic-anoxic denitrification during aerobic-anoxic transition. Structural equation modeling further demonstrated the relationship between DO and NO3--N transformation. DO affects NO3--N transformation by modifying microbial community, bacterial co-occurrence, and functional genes during aerobic-anoxic transition.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yaoguo Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Zixia Qiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Sichang Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zehong Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Chuwen Cui
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
71
|
Brumfield KD, Usmani M, Chen KM, Gangwar M, Jutla AS, Huq A, Colwell RR. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ Microbiol 2021; 23:7314-7340. [PMID: 34390611 DOI: 10.1111/1462-2920.15716] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Vibrio spp. thrive in warm water and moderate salinity, and they are associated with aquatic invertebrates, notably crustaceans and zooplankton. At least 12 Vibrio spp. are known to cause infection in humans, and Vibrio cholerae is well documented as the etiological agent of pandemic cholera. Pathogenic non-cholera Vibrio spp., e.g., Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Incidence of vibriosis is rising globally, with evidence that anthropogenic factors, primarily emissions of carbon dioxide associated with atmospheric warming and more frequent and intense heatwaves, significantly influence environmental parameters, e.g., temperature, salinity, and nutrients, all of which can enhance growth of Vibrio spp. in aquatic ecosystems. It is not possible to eliminate Vibrio spp., as they are autochthonous to the aquatic environment and many play a critical role in carbon and nitrogen cycling. Risk prediction models provide an early warning that is essential for safeguarding public health. This is especially important for regions of the world vulnerable to infrastructure instability, including lack of 'water, sanitation, and hygiene' (WASH), and a less resilient infrastructure that is vulnerable to natural calamity, e.g., hurricanes, floods, and earthquakes, and/or social disruption and civil unrest, arising from war, coups, political crisis, and economic recession. Incorporating environmental, social, and behavioural parameters into such models allows improved prediction, particularly of cholera epidemics. We have reported that damage to WASH infrastructure, coupled with elevated air temperatures and followed by above average rainfall, promotes exposure of a population to contaminated water and increases the risk of an outbreak of cholera. Interestingly, global predictive risk models successful for cholera have the potential, with modification, to predict diseases caused by other clinically relevant Vibrio spp. In the research reported here, the focus was on environmental parameters associated with incidence and distribution of clinically relevant Vibrio spp. and their role in disease transmission. In addition, molecular methods designed for detection and enumeration proved useful for predictive modelling and are described, namely in the context of prediction of environmental conditions favourable to Vibrio spp., hence human health risk.
Collapse
Affiliation(s)
- Kyle D Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Moiz Usmani
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Kristine M Chen
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Mayank Gangwar
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Antarpreet S Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| |
Collapse
|
72
|
Moreira VA, Carvalho ACBD, Fontana LF, Bidone ED, Sabadini-Santos E. Applying enzymatic biomarkers of the in situ microbial community to assess the sediment risk from Sepetiba Bay (Brazil). MARINE POLLUTION BULLETIN 2021; 169:112547. [PMID: 34118576 DOI: 10.1016/j.marpolbul.2021.112547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The Quality Ratio (QR) index was applied in Sepetiba Bay to integrate geochemical and microbiological parameters of the in situ microbial community in order to classify the ecological risk of sediments. Total concentrations (C) of Hg, Cd, As, Pb, Cr, Cu and Zn (indicators of the mixture of contaminants) were determined at 26 stations and at a background area (C0) to calculate the contamination factor (CF = C/C0) and the degree of contamination (ΣCF). Enzymatic biomarkers of energy production into cell (dehydrogenase - DHA) and hydrolase of organic matter outside the cell (esterases - EST) were determined. The QR, a function of the microbial term (DHA/EST) and the geochemical term (TOC × ΣCF/fine-grained content), was able to segregate stations into the internal sector (east of the bay with the largest continental contributions) and the external sector (west of the bay), proving its accessibility (low-cost and fast) and efficiency for assessing ecological risk.
Collapse
Affiliation(s)
- Vanessa Almeida Moreira
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil.
| | - Angelo Cezar Borges de Carvalho
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Luiz Francisco Fontana
- Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Laboratório de Micropaleontologia - LABMICRO, Av. Pasteur 458, s. 500, Urca, Rio de Janeiro CEP 22290-240, RJ, Brazil
| | - Edison Dausacker Bidone
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Elisamara Sabadini-Santos
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| |
Collapse
|
73
|
Tao Y, Zhang L, Su Z, Dai T, Zhang Y, Huang B, Wen D. Nitrogen-cycling gene pool shrunk by species interactions among denser bacterial and archaeal community stimulated by excess organic matter and total nitrogen in a eutrophic bay. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105397. [PMID: 34157564 DOI: 10.1016/j.marenvres.2021.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Microbial densities, functional genes, and their responses to environment factors have been studied for years, but still a lot remains unknown about their interactions with each other. In this study, the abundances of 7 nitrogen cycling genes in the sediments from Hangzhou Bay were analyzed along with bacterial and archaeal 16S rRNA abundances as the biomarkers of their densities. The amount of organic matter (OM) and total nitrogen (TN) strongly positively correlated with each other and microbial densities, while total phosphate (TP) and ammonia-nitrogen (NH3-N) did not. Most studied genes were density suppressed, while nirS was density stable, and nosZ and hzo were density irrelevant. This suggests eutrophication could limit inorganic nitrogen cycle pathways and the removal of nitrogen in the sediment and emit more greenhouse gases. This study provides a new insight of microbial community structures, functions and their interactions in the sediments of eutrophic bays.
Collapse
Affiliation(s)
- Yile Tao
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Institute of Environmental Engineering, ETH Zurich, Zurich, 8093, Switzerland; Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Liyue Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tianjiao Dai
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yan Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, 316021, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
74
|
Martinez-Varela A, Cerro-Gálvez E, Auladell A, Sharma S, Moran MA, Kiene RP, Piña B, Dachs J, Vila-Costa M. Bacterial responses to background organic pollutants in the northeast subarctic Pacific Ocean. Environ Microbiol 2021; 23:4532-4546. [PMID: 34169620 DOI: 10.1111/1462-2920.15646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/16/2021] [Indexed: 12/13/2022]
Abstract
Thousands of man-made synthetic chemicals are released to oceans and compose the anthropogenic dissolved organic carbon (ADOC). Little is known about the effects of this chronic pollution on marine microbiome activities. In this study, we measured the pollution level at three sites in the Northeast Subarctic Pacific Ocean (NESAP) and investigated how mixtures of three model families of ADOC at different environmentally relevant concentrations affected naturally occurring marine bacterioplankton communities' structure and metabolic functioning. The offshore northernmost site (North) had the lowest concentrations of hydrocarbons, as well as organophosphate ester plasticizers, contrasting with the two other continental shelf sites, the southern coastal site (South) being the most contaminated. At North, ADOC stimulated bacterial growth and promoted an increase in the contribution of some Gammaproteobacteria groups (e.g. Alteromonadales) to the 16 rRNA pool. These groups are described as fast responders after oil spills. In contrast, minor changes in South microbiome activities were observed. Gene expression profiles at Central showed the coexistence of ADOC degradation and stress-response strategies to cope with ADOC toxicities. These results show that marine microbial communities at three distinct domains in NESAP are influenced by background concentrations of ADOC, expanding previous assessments for polar and temperate waters.
Collapse
Affiliation(s)
- Alícia Martinez-Varela
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Elena Cerro-Gálvez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Adrià Auladell
- Department of Marine Biology and Oceanography, Marine Science Institute, ICM-CSIC, Barcelona, Catalunya, Spain
| | - Shalabh Sharma
- Department of Marine Sciences, University of Georgia, Marine Sciences Building, Athens, GA, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Marine Sciences Building, Athens, GA, USA
| | - Ronald P Kiene
- Department of Marine Sciences, University of South Alabama, Mobile, AL, USA
| | - Benjamí Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Maria Vila-Costa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| |
Collapse
|
75
|
Wang J, Peng C, Li H, Zhang P, Liu X. The impact of microplastic-microbe interactions on animal health and biogeochemical cycles: A mini-review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145697. [PMID: 33940764 DOI: 10.1016/j.scitotenv.2021.145697] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 05/07/2023]
Abstract
Microplastic (MP) pollution has attracted global attention due to the extensive use of plastic products. The hydrophobic MP surface provides a habitat for multiple microorganisms. Although there have been several studies on the impact of plastic particles on microbial communities, there are few reviews that have systematically summarized the interaction between MPs and microbes and their effects on human health and biochemical circulation. The discussions in this review will take place under the following topics: (1) MPs prompt colonization, biofilm generation, and transfer of environmental microbes; (2) the microbial communities can cause the morphological alterations and biodegradation of MPs; (3) MP-microbe combinations can induce the alteration of intestinal flora and hazard animal health; (4) the biogeochemical cycles affected by MP-microbe interactions. This review will highlight the close interactions between MPs and microorganisms, and provide suggestions for future studies.
Collapse
Affiliation(s)
- Jiao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Chu Peng
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Hongyu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China.
| |
Collapse
|
76
|
The Urban River Syndrome: Achieving Sustainability Against a Backdrop of Accelerating Change. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126406. [PMID: 34199215 PMCID: PMC8296234 DOI: 10.3390/ijerph18126406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023]
Abstract
Human activities have been affecting rivers and other natural systems for millennia. Anthropogenic changes to rivers over the last few centuries led to the accelerating state of decline of coastal and estuarine regions globally. Urban rivers are parts of larger catchment ecosystems, which in turn form parts of wider nested, interconnected systems. Accurate modelling of urban rivers may not be possible because of the complex multisystem interactions operating concurrently and over different spatial and temporal scales. This paper overviews urban river syndrome, the accelerating deterioration of urban river ecology, and outlines growing conservation challenges of river restoration projects. This paper also reviews the river Thames, which is a typical urban river that suffers from growing anthropogenic effects and thus represents all urban rivers of similar type. A particular emphasis is made on ecosystem adaptation, widespread extinctions and the proliferation of non-native species in the urban Thames. This research emphasizes the need for a holistic systems approach to urban river restoration.
Collapse
|
77
|
Integrated Multi-omics Investigations Reveal the Key Role of Synergistic Microbial Networks in Removing Plasticizer Di-(2-Ethylhexyl) Phthalate from Estuarine Sediments. mSystems 2021; 6:e0035821. [PMID: 34100638 PMCID: PMC8269228 DOI: 10.1128/msystems.00358-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is the most widely used plasticizer worldwide, with an annual global production of more than 8 million tons. Because of its improper disposal, endocrine-disrupting DEHP often accumulates in estuarine sediments in industrialized countries at submillimolar levels, resulting in adverse effects on both ecosystems and human beings. The microbial degraders and biodegradation pathways of DEHP in O2-limited estuarine sediments remain elusive. Here, we employed an integrated meta-omics approach to identify the DEHP degradation pathway and major degraders in this ecosystem. Estuarine sediments were treated with DEHP or its derived metabolites, o-phthalic acid and benzoic acid. The rate of DEHP degradation in denitrifying mesocosms was two times slower than that of o-phthalic acid, suggesting that side chain hydrolysis of DEHP is the rate-limiting step of anaerobic DEHP degradation. On the basis of microbial community structures, functional gene expression, and metabolite profile analysis, we proposed that DEHP biodegradation in estuarine sediments is mainly achieved through synergistic networks between denitrifying proteobacteria. Acidovorax and Sedimenticola are the major degraders of DEHP side chains; the resulting o-phthalic acid is mainly degraded by Aestuariibacter through the UbiD-dependent benzoyl coenzyme A (benzoyl-CoA) pathway. We isolated and characterized Acidovorax sp. strain 210-6 and its extracellular hydrolase, which hydrolyzes both alkyl side chains of DEHP. Interestingly, genes encoding DEHP/mono-(2-ethylhexyl) phthalate (MEHP) hydrolase and phthaloyl-CoA decarboxylase—key enzymes for side chain hydrolysis and o-phthalic acid degradation, respectively—are flanked by transposases in these proteobacterial genomes, indicating that DEHP degradation capacity is likely transferred horizontally in microbial communities. IMPORTANCE Xenobiotic phthalate esters (PAEs) have been produced on a considerably large scale for only 70 years. The occurrence of endocrine-disrupting di-(2-ethylhexyl) phthalate (DEHP) in environments has raised public concern, and estuarine sediments are major DEHP reservoirs. Our multi-omics analyses indicated that complete DEHP degradation in O2-limited estuarine sediments depends on synergistic microbial networks between diverse denitrifying proteobacteria and uncultured candidates. Our data also suggested that the side chain hydrolysis of DEHP, rather than o-phthalic acid activation, is the rate-limiting step in DEHP biodegradation within O2-limited estuarine sediments. Therefore, deciphering the bacterial ecophysiology and related biochemical mechanisms can help facilitate the practice of bioremediation in O2-limited environments. Furthermore, the DEHP hydrolase genes of active DEHP degraders can be used as molecular markers to monitor environmental DEHP degradation. Finally, future studies on the directed evolution of identified DEHP/mono-(2-ethylhexyl) phthalate (MEHP) hydrolase would bring a more catalytically efficient DEHP/MEHP hydrolase into practice.
Collapse
|
78
|
Effect of pyrene and phenanthrene in shaping bacterial communities in seagrass meadows sediments. Arch Microbiol 2021; 203:4259-4272. [PMID: 34100100 DOI: 10.1007/s00203-021-02410-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), originating from anthropogenic and natural sources, are highly concerned environmental pollutants. This study investigated the impact of two model PAHs (pyrene and phenanthrene) on bacterial community succession in the seagrass meadows sediment in a lab-scale microcosm. Halophila ovalis sediment slurry microcosms were established, one group was placed as a control, and the other two were treated with pyrene and phenanthrene. Bacterial community succession in response to respective PAHs was investigated by 16S rRNA amplicon sequencing. The results demonstrated that bacterial diversity decrease in each microcosm during the incubation process; however, the composition of bacterial communities in each microcosm was significantly different. Proteobacteria (37-89%), Firmicutes (9-41%), and Bacteroides (7-21%) were the predominant group at the phylum levels. Their abundance varies during the incubation process. Several previously reported hydrocarbon-degrading genera, such as Pseudomonas, Spinghobium, Sphingobacterium, Mycobacterium, Pseudoxanthomonas, Idiomarina, Stenotrophomonas, were detected in higher abundance in pyrene- and phenanthrene-treated microcosms. However, these genera were distinctly distributed in the pyrene and phenanthrene treatments, suggesting that certain bacterial groups favorably degrade different PAHs. Statistical analyses, such as ANOSIM and PERMANOVA, also revealed that significant differences existed among the treatments' bacterial consortia (P < 0.05). This work showed that polycyclic aromatic hydrocarbon significantly affects bacterial community succession, and different PAHs might influence the bacterial community succession differently.
Collapse
|
79
|
Pepi M, Focardi S. Antibiotic-Resistant Bacteria in Aquaculture and Climate Change: A Challenge for Health in the Mediterranean Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5723. [PMID: 34073520 PMCID: PMC8198758 DOI: 10.3390/ijerph18115723] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 12/30/2022]
Abstract
Aquaculture is the productive activity that will play a crucial role in the challenges of the millennium, such as the need for proteins that support humans and the respect for the environment. Aquaculture is an important economic activity in the Mediterranean basin. A great impact is presented, however, by aquaculture practices as they involve the use of antibiotics for treatment and prophylaxis. As a consequence of the use of antibiotics in aquaculture, antibiotic resistance is induced in the surrounding bacteria in the column water, sediment, and fish-associated bacterial strains. Through horizontal gene transfer, bacteria can diffuse antibiotic-resistance genes and mobile resistance genes further spreading genetic determinants. Once triggered, antibiotic resistance easily spreads among aquatic microbial communities and, from there, can reach human pathogenic bacteria, making vain the use of antibiotics for human health. Climate change claims a significant role in this context, as rising temperatures can affect cell physiology in bacteria in the same way as antibiotics, causing antibiotic resistance to begin with. The Mediterranean Sea represents a 'hot spot' in terms of climate change and aspects of antibiotic resistance in aquaculture in this area can be significantly amplified, thus increasing threats to human health. Practices must be adopted to counteract negative impacts on human health, with a reduction in the use of antibiotics as a pivotal point. In the meantime, it is necessary to act against climate change by reducing anthropogenic impacts, for example by reducing CO2 emissions into the atmosphere. The One Health type approach, which involves the intervention of different skills, such as veterinary, ecology, and medicine in compliance with the principles of sustainability, is necessary and strongly recommended to face these important challenges for human and animal health, and for environmental safety in the Mediterranean area.
Collapse
Affiliation(s)
- Milva Pepi
- Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Silvano Focardi
- Department of Environmental Sciences, Università di Siena, Via Mattioli, 4, 53100 Siena, Italy
| |
Collapse
|
80
|
Grandel NE, Reyes Gamas K, Bennett MR. Control of synthetic microbial consortia in time, space, and composition. Trends Microbiol 2021; 29:1095-1105. [PMID: 33966922 DOI: 10.1016/j.tim.2021.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
While synthetic microbial systems are becoming increasingly complicated, single-strain systems cannot match the complexity of their multicellular counterparts. Such complexity, however, is much more difficult to control. Recent advances have increased our ability to control temporal, spatial, and community compositional organization, including modular adhesive systems, strain growth relationships, and asymmetric cell division. While these systems generally work independently, combining them into unified systems has proven difficult. Once such unification is proven successful we will unlock a new frontier of synthetic biology and open the door to the creation of synthetic biological systems with true multicellularity.
Collapse
Affiliation(s)
- Nicolas E Grandel
- Graduate Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
| | - Kiara Reyes Gamas
- Graduate Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
| | - Matthew R Bennett
- Department of Biosciences, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
81
|
Glasner B, Henríquez-Castillo C, Alfaro FD, Trefault N, Andrade S, De la Iglesia R. Decoupling of biotic and abiotic patterns in a coastal area affected by chronic metal micronutrients disturbances. MARINE POLLUTION BULLETIN 2021; 166:111608. [PMID: 33838915 DOI: 10.1016/j.marpolbul.2020.111608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
Coastal systems are highly productive areas for primary productivity and ecosystem services and host a large number of human activities. Since industrialization, metal micronutrients in these regions have increased. Phytoplankton use metals as micronutrients in metabolic processes, but in excess, had deleterious effects. In coastal systems, picoeukaryotes represent a diverse and abundant group with widespread distribution and fundamental roles in biogeochemical cycling. We combined different approaches to explore picoeukaryotes seasonal variability in a chronically metal polluted coastal area at the south-eastern Pacific Ocean. Through remote and field measurements to monitor environmental conditions and 18S rRNA gene sequencing for taxonomic profiling, we determined metal chronic effect on picoeukaryote community's structure. Our results revealed a stable richness and a variable distribution of the relative abundance, despite the physicochemical seasonal variations. These results suggest that chronic metal contamination influences temporal heterogeneity of picoeukaryote communities, with a decoupling between abiotic and biotic patterns.
Collapse
Affiliation(s)
- B Glasner
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Henríquez-Castillo
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados de Zonas Áridas (CEAZA), Coquimbo, Chile; Facultad de Ciencias del Mar, Universidad Catolica del Norte, Coquimbo, Chile
| | - F D Alfaro
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Piramide 5750, Huechuraba, Santiago, Chile; Instituto de Ecología & Biodiversidad (IEB), Casilla 653, Santiago, Chile
| | - N Trefault
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Piramide 5750, Huechuraba, Santiago, Chile
| | - S Andrade
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Piramide 5750, Huechuraba, Santiago, Chile
| | - R De la Iglesia
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
82
|
Li N, Dong K, Jiang G, Tang J, Xu Q, Li X, Kang Z, Zou S, Chen X, Adams JM, Zhao H. Stochastic processes dominate marine free-living Vibrio community assembly in a subtropical gulf. FEMS Microbiol Ecol 2021; 96:5912833. [PMID: 32990746 DOI: 10.1093/femsec/fiaa198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023] Open
Abstract
Understanding the effects of eutrophication on heterotrophic bacteria, a primary responder to eutrophication, is critical for predicting the responses of ecosystems to marine environmental pollution. Vibrio are indigenous in coastal water and of significance to geochemical cycling and public health. In this study, we investigated the diversity and assembly features of Vibrio, as well as their relationship with the environmental factors in the subtropical Beibu Gulf. We found that the alpha diversity of Vibrio increased in parallel with the trophic state they occupy. A Mantel test indicated that the trophic state was correlated to Vibrio beta diversity and the correlation gradually strengthened at higher trophic states. Variation partitioning analysis suggested that the geographic distance was an important factor impacting the variables of Vibrio communities in all the samples, but nutrients exerted more influence in the more highly eutrophic samples. Our results demonstrated that stochastic processes govern the turnover of marine Vibrio communities in the Beibu Gulf and that ecological drift was the most important process for assembly of the Vibrio communities.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), 175 Mingxiu East Road, Nanning, Guangxi, 530001, China
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Gonglingxia Jiang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), 175 Mingxiu East Road, Nanning, Guangxi, 530001, China
| | - Jinli Tang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), 175 Mingxiu East Road, Nanning, Guangxi, 530001, China
| | - Qiangsheng Xu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), 175 Mingxiu East Road, Nanning, Guangxi, 530001, China
| | - Xiaoli Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), 175 Mingxiu East Road, Nanning, Guangxi, 530001, China
| | - Zhenjun Kang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, 12 Binhai Avenue, Qinzhou, Guangxi, 535011, China
| | - Shuqi Zou
- Department of Biological Sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Xing Chen
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), 175 Mingxiu East Road, Nanning, Guangxi, 530001, China
| | - Jonathan M Adams
- School of Geographical and Oceanographic Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 21002, China
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), 175 Mingxiu East Road, Nanning, Guangxi, 530001, China
| |
Collapse
|
83
|
The Effect of Chromium on Photosynthesis and Lipid Accumulation in Two Chlorophyte Microalgae. ENERGIES 2021. [DOI: 10.3390/en14082260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heavy metals have adverse effects on microalgae metabolism and growth. Photosynthesis and lipid profile are quite sensitive to heavy metal toxicity. The impact of hexavalent chromium—Cr(VI) on photosynthesis and lipid accumulation in Mucidosphaerium pulchellum and Micractinium pusillum exposed to different concentrations (0–500 μg L−1) was investigated for 11 days. A significant (p < 0.05) increase in lipid content was observed with increasing Cr(VI) concentration. However, growth was suppressed at higher concentrations exceeding 100 μg L−1. Addition of Cr(VI) in the cell culture medium showed a negative effect on quantum yield (Fv/Fm), and a photosynthetic inhibition of >65% was noted in both species at 500 μg L−1. However, the lipid gravimetric analysis presented inner cell lipid content up to 36% and 30% of dry weight biomass for M. pulchellum and M. pusillum, respectively. The fatty acids profiles of both microalgae species showed higher levels of hexadecenoic acid as well as ω3, ω6, and ω7 fatty acids. The effect of Cr(VI) on photosynthesis and lipid accumulation in both microalgae species was concentration and exposure time dependent. This shows that an appropriate concentration of Cr(VI) in culture medium could be beneficial for higher lipid accumulation in freshwater eukaryotic microalgae species.
Collapse
|
84
|
Hongxia M, Jingfeng F, Jiwen L, Zhiyi W, Yantao W, Dongwei L, Mengfei L, Tingting S, Yuan J, Huiling H, Jixue S. Full-length 16S rRNA gene sequencing reveals spatiotemporal dynamics of bacterial community in a heavily polluted estuary, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116567. [PMID: 33578312 DOI: 10.1016/j.envpol.2021.116567] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Understanding the bacterial community structure of the river estuary could provide insights into the resident microorganisms in response to environmental pollution. In this study, the bacterial community structure of Liaohe Estuary was investigated using single-molecule real-time sequencing (SMRT). A total of 57 samples were collected and grouped according to habitat, space, season, and lifestyle. In seawater, regardless of whether it is particle-attached (PA) or free-living (FL) bacteria, the area with higher alpha diversity is the nearshore area in the dry season, while it is the midstream area in the wet season. The bacterial communities in sediment and seawater samples were different at the genus level in the nearshore area, and habitat type was the main factor. A marked difference in the bacterial community was observed in the dry season between different lifestyles but not in the wet season, which resulted from lifestyle transitions of bacterioplankton. Bacterial community varied spatially but not seasonally in sediment samples. In seawater, both FL and PA bacterial communities varied spatially during the wet season. Seasonal differences were only observed in FL bacterial community. Zn and sand were the principal determining factors of the bacterial community in the sediment, Cu and salinity were the main environmental factors for FL bacteria, and Cu, salinity, Zn and temperature were the main environmental factors for PA bacteria. Besides, the tide and nutrients were also the main drivers of the bacterial community in seawater. The indicative taxa, related to Cyanobium_PCC-6307, Pseudomonas and Vibrio, further evidenced the presence of possible bloom, crude oil and pathogen contamination. Overall, our results can contribute to the knowledge of the bacterial community and anthropogenic impacts on the Liaohe Estuary.
Collapse
Affiliation(s)
- Ming Hongxia
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Fan Jingfeng
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Liu Jiwen
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Wan Zhiyi
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Wang Yantao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China; Dalian Ocean University, Dalian, 116023, China
| | - Li Dongwei
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China; Dalian Maritime University, Dalian, 116026, China
| | - Li Mengfei
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China; Dalian Ocean University, Dalian, 116023, China
| | - Shi Tingting
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Jin Yuan
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Huang Huiling
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China; Dalian Ocean University, Dalian, 116023, China
| | - Song Jixue
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| |
Collapse
|
85
|
Nguyen TT, Paulsen JE, Landfald B. Seafloor deposition of water-based drill cuttings generates distinctive and lengthy sediment bacterial community changes. MARINE POLLUTION BULLETIN 2021; 164:111987. [PMID: 33515825 DOI: 10.1016/j.marpolbul.2021.111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The spatial extent and persistence of bacterial change caused by deposition of water-based drill cuttings on the seafloor were explored by a community-wide approach. Ten centimeter sediment cores were sampled along transects extending from ≤15 m to 250 m from three nearby drilling sites in the southern Barents Sea. Eight months, 8 years and 15 years, respectively, had passed since the completion of the drillings. At locations heavily affected by drill cuttings, the two most recent sites showed distinct, corresponding deviances from native Barents Sea bacterial community profiles. Otherwise marginal groups, including Mollicutes and Clostridia, showed significant increases in relative abundance. Beyond 100 m from the boreholes the microbiotas appeared undisturbed, as they did at any distance from the 15-years old borehole. The extent of the biological distortion, as indicated by the present microbial study, agreed with previously published macrofaunal surveys at the same drilling sites.
Collapse
Affiliation(s)
- Tan T Nguyen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, PO Box 6050 Langnes, 9037 Tromsø, Norway.
| | | | - Bjarne Landfald
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, PO Box 6050 Langnes, 9037 Tromsø, Norway.
| |
Collapse
|
86
|
Biddanda B, Dila D, Weinke A, Mancuso J, Villar-Argaiz M, Medina-Sánchez JM, González-Olalla JM, Carrillo P. Housekeeping in the Hydrosphere: Microbial Cooking, Cleaning, and Control under Stress. Life (Basel) 2021; 11:152. [PMID: 33671121 PMCID: PMC7922117 DOI: 10.3390/life11020152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/02/2022] Open
Abstract
Who's cooking, who's cleaning, and who's got the remote control within the waters blanketing Earth? Anatomically tiny, numerically dominant microbes are the crucial "homemakers" of the watery household. Phytoplankton's culinary abilities enable them to create food by absorbing sunlight to fix carbon and release oxygen, making microbial autotrophs top-chefs in the aquatic kitchen. However, they are not the only bioengineers that balance this complex household. Ubiquitous heterotrophic microbes including prokaryotic bacteria and archaea (both "bacteria" henceforth), eukaryotic protists, and viruses, recycle organic matter and make inorganic nutrients available to primary producers. Grazing protists compete with viruses for bacterial biomass, whereas mixotrophic protists produce new organic matter as well as consume microbial biomass. When viruses press remote-control buttons, by modifying host genomes or lysing them, the outcome can reverberate throughout the microbial community and beyond. Despite recognition of the vital role of microbes in biosphere housekeeping, impacts of anthropogenic stressors and climate change on their biodiversity, evolution, and ecological function remain poorly understood. How trillions of the smallest organisms in Earth's largest ecosystem respond will be hugely consequential. By making the study of ecology personal, the "housekeeping" perspective can provide better insights into changing ecosystem structure and function at all scales.
Collapse
Affiliation(s)
- Bopaiah Biddanda
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI 49441, USA; (A.W.); (J.M.)
| | - Deborah Dila
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA;
| | - Anthony Weinke
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI 49441, USA; (A.W.); (J.M.)
| | - Jasmine Mancuso
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI 49441, USA; (A.W.); (J.M.)
| | - Manuel Villar-Argaiz
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (M.V.-A.); (J.M.M.-S.)
| | - Juan Manuel Medina-Sánchez
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (M.V.-A.); (J.M.M.-S.)
| | - Juan Manuel González-Olalla
- Instituto Universitario de Investigación del Agua, Universidad de Granada, 18071 Granada, Spain; (J.M.G.-O.); (P.C.)
| | - Presentación Carrillo
- Instituto Universitario de Investigación del Agua, Universidad de Granada, 18071 Granada, Spain; (J.M.G.-O.); (P.C.)
| |
Collapse
|
87
|
Jokanović S, Kajan K, Perović S, Ivanić M, Mačić V, Orlić S. Anthropogenic influence on the environmental health along Montenegro coast based on the bacterial and chemical characterization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116383. [PMID: 33387780 DOI: 10.1016/j.envpol.2020.116383] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Coastal marine sediments are particularly exposed to human activities. The function of a coastal ecosystem is largely affected by eutrophication, wastewater discharges, chemical pollution, port activities, industry and tourism. Bacterial classification can be used as a measure in assessing the harmful effects on the ecosystem. This study provided insight into the environmental health of the coastal region of Montenegro analyzing the possible impact of PAHs and PCBs upon the bacterial community diversity and function as well as nutrients. Two stations at the shipyards were defined as very high PAH polluted together with PCB concentration exceeding threshold values. The bacterial community at the OTU level clustered together all stations except the most polluted site (SBL), the main tourist destination in Montenegro (BDV) and the estuary site (ADB) forming the independent clusters. Bacterial community based on the OTU level was driven by PAHs, TOC and silt content. The lowest richness and diversity were indicated at the site with the highest concentration of PAHs and PCBs with the highest abundance of Alphaproteobacteria followed by Gammaproteobacteria. OTUs affiliated to phyla BRC1, Dadabacteria and Spirochaetes were present with a total abundance higher than 1% only at the most polluted site indicating their persistence and possible potential for degradation of aromatic compounds. To compare functional capabilities potentially related to biodegradation of aromatic compounds and active transport systems, PICRUSt was used to predict metagenomes of the sediments. From our data, we identified specific bacterial community and predicted metabolic pathways that give us a picture of the environmental health along the coast of Montenegro, which provides us a new insight into human-induced pollution impacts on the coastal ecosystem.
Collapse
Affiliation(s)
- Sandra Jokanović
- Institute of Marine Biology, University of Montenegro, 85 330, Kotor, Montenegro
| | - Katarina Kajan
- Ruđer Bošković Institute, Division of Materials Chemistry, 10 000, Zagreb, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), University of Split, 21 000, Split, Croatia
| | - Svetlana Perović
- Faculty of Science and Mathematics, University of Montenegro, 81 000, Podgorica, Montenegro
| | - Maja Ivanić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, 10 000, Zagreb, Croatia
| | - Vesna Mačić
- Institute of Marine Biology, University of Montenegro, 85 330, Kotor, Montenegro
| | - Sandi Orlić
- Ruđer Bošković Institute, Division of Materials Chemistry, 10 000, Zagreb, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), University of Split, 21 000, Split, Croatia.
| |
Collapse
|
88
|
Stevick RJ, Post AF, Gómez-Chiarri M. Functional plasticity in oyster gut microbiomes along a eutrophication gradient in an urbanized estuary. Anim Microbiome 2021; 3:5. [PMID: 33499983 PMCID: PMC7934548 DOI: 10.1186/s42523-020-00066-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/29/2020] [Indexed: 01/04/2023] Open
Abstract
Background Oysters in coastal environments are subject to fluctuating environmental conditions that may impact the ecosystem services they provide. Oyster-associated microbiomes are responsible for some of these services, particularly nutrient cycling in benthic habitats. The effects of climate change on host-associated microbiome composition are well-known, but functional changes and how they may impact host physiology and ecosystem functioning are poorly characterized. We investigated how environmental parameters affect oyster-associated microbial community structure and function along a trophic gradient in Narragansett Bay, Rhode Island, USA. Adult eastern oyster, Crassostrea virginica, gut and seawater samples were collected at 5 sites along this estuarine nutrient gradient in August 2017. Samples were analyzed by 16S rRNA gene sequencing to characterize bacterial community structures and metatranscriptomes were sequenced to determine oyster gut microbiome responses to local environments. Results There were significant differences in bacterial community structure between the eastern oyster gut and water samples, suggesting selection of certain taxa by the oyster host. Increasing salinity, pH, and dissolved oxygen, and decreasing nitrate, nitrite and phosphate concentrations were observed along the North to South gradient. Transcriptionally active bacterial taxa were similar for the different sites, but expression of oyster-associated microbial genes involved in nutrient (nitrogen and phosphorus) cycling varied throughout the Bay, reflecting the local nutrient regimes and prevailing environmental conditions. Conclusions The observed shifts in microbial community composition and function inform how estuarine conditions affect host-associated microbiomes and their ecosystem services. As the effects of estuarine acidification are expected to increase due to the combined effects of eutrophication, coastal pollution, and climate change, it is important to determine relationships between host health, microbial community structure, and environmental conditions in benthic communities. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-020-00066-0.
Collapse
Affiliation(s)
- Rebecca J Stevick
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Anton F Post
- Division of Research, Florida Atlantic University, Boca Raton, FL, USA
| | - Marta Gómez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
89
|
Abstract
Freshwater iron mats are dynamic geochemical environments with broad ecological diversity, primarily formed by the iron-oxidizing bacteria. The community features functional groups involved in biogeochemical cycles for iron, sulfur, carbon, and nitrogen. Despite this complexity, iron mat communities provide an excellent model system for exploring microbial ecological interactions and ecological theories in situ Syntrophies and competition between the functional groups in iron mats, how they connect cycles, and the maintenance of these communities by taxons outside bacteria (the eukaryota, archaea, and viruses) have been largely unstudied. Here, we review what is currently known about freshwater iron mat communities, the taxa that reside there, and the interactions between these organisms, and we propose ways in which future studies may uncover exciting new discoveries. For example, the archaea in these mats may play a greater role than previously thought as they are diverse and widespread in iron mats based on 16S rRNA genes and include methanogenic taxa. Studies with a holistic view of the iron mat community members focusing on their diverse interactions will expand our understanding of community functions, such as those involved in pollution removal. To begin addressing questions regarding the fundamental interactions and to identify the conditions in which they occur, more laboratory culturing techniques and coculture studies, more network and keystone species analyses, and the expansion of studies to more freshwater iron mat systems are necessary. Increasingly accessible bioinformatic, geochemical, and culturing tools now open avenues to address the questions that we pose herein.
Collapse
Affiliation(s)
- Chequita N Brooks
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Erin K Field
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
90
|
Chen X, Zhao H, Jiang G, Tang J, Xu Q, Huang L, Chen S, Zou S, Dong K, Li N. Responses of Free-Living Vibrio Community to Seasonal Environmental Variation in a Subtropical Inland Bay. Front Microbiol 2020; 11:610974. [PMID: 33381102 PMCID: PMC7767907 DOI: 10.3389/fmicb.2020.610974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/11/2020] [Indexed: 01/02/2023] Open
Abstract
Vibrio are widely distributed in aquatic environments and strongly associated with eutrophic environments and human health through the consumption of contaminated seafood. However, the response of the Vibrio community to seasonal variation in eutrophic environments is poorly understood. In this study, we used a Vibrio-specific 16S rRNA sequencing approach to reveal the seasonal distribution pattern and diversity of the Vibrio community in the Maowei Sea, Beibu Gulf of China. The Shannon diversity of the Vibrio community was highest in the summer, while β-diversity analysis showed that Vibrio community structures were significantly different between seasons. Distance-based redundancy analysis (dbRDA) and Mantel test analysis suggested that total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), dissolved inorganic nitrogen (DIN), salinity, and temperature were the key environmental factors shaping the Vibrio community structure, indicating a strong filtering effect of trophic condition on Vibrio communities. Furthermore, through random forest analysis, V. fluvialis, V. alginolyticus, V. proteolyticus, V. splendidus, and the other eight Vibrio species were more sensitive to eutrophic changes. This study revealed seasonal changes in Vibrio communities and the influence of environmental variation on Vibrio community composition, contributing to a better understanding of their potential ecological roles in a subtropical inland bay.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Gonglingxia Jiang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Jinli Tang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Qiangsheng Xu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Lengjinghua Huang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Si Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shuqi Zou
- Department of Biological Sciences, Kyonggi University, Suwon-si, South Korea
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, Suwon-si, South Korea
| | - Nan Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| |
Collapse
|
91
|
Human proximity suppresses fish recruitment by altering mangrove-associated odour cues. Sci Rep 2020; 10:21091. [PMID: 33273575 PMCID: PMC7713406 DOI: 10.1038/s41598-020-77722-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/13/2020] [Indexed: 11/23/2022] Open
Abstract
Human-driven threats to coastal marine communities could potentially affect chemically mediated behaviours that have evolved to facilitate crucial ecological processes. Chemical cues and their importance remain inadequately understood in marine systems, but cues from coastal vegetation can provide sensory information guiding aquatic animals to key resources or habitats. In the tropics, mangroves are a ubiquitous component of healthy coastal ecosystems, associated with a range of habitats from river mouths to coral reefs. Because mangrove leaf litter is a predictable cue to coastal habitats, chemical information from mangrove leaves could provide a source of settlement cues for coastal fishes, drawing larvae towards shallow benthic habitats or inducing settlement. In choice assays, juvenile fishes from the Caribbean (Belize) and Indo-Pacific (Fiji) were attracted to cues from mangroves leaves and were more attracted to cues from mangroves distant from human settlement. In the field, experimental reefs supplemented with mangrove leaves grown away from humans attracted more fish recruits from a greater diversity of species than reefs supplemented with leaves grown near humans. Together, this suggests that human use of coastal areas alters natural chemical cues, negatively affecting the behavioural responses of larval fishes and potentially suppressing recruitment. Overall, our findings highlight the critical links that exist between marine and terrestrial habitats, and the importance of considering these in the broader conservation and management of coastal ecosystems.
Collapse
|
92
|
Nasri A, Allouche M, Hannachi A, Harrath AH, Aldahmash W, Alwasel S, Mahmoudi E, Beyrem H, Boufahja F. Restructuring of a meiobenthic assemblage after sediment contamination with an antibacterial compound: Case study of ciprofloxacin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111084. [PMID: 32810644 DOI: 10.1016/j.ecoenv.2020.111084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
A microcosm experiment was conducted to evaluate the impacts of the fluoroquinolone antibiotic ciprofloxacin on meiobenthic taxa abundance, nematode genus structure, and functional trait parameters. Sediment samples were experimentally enriched with four different doses of ciprofloxacin [D1 (50 ppm Dry weight 'DW'), D2 (100 ppm DW), D3 (200 ppm DW), and D4 (500 ppm DW)] and were then compared with non-enriched sediments (controls). After one month of exposure, the data showed that ciprofloxacin had altered the meiofaunal taxa abundance. A change in the structure of nematofaunal genera was observed, particularly with the highest dose (D4), which was characterized by the lowest taxonomic diversity. The SIMPER analysis revealed that the average dissimilarity between nematode communities increased with increasing doses of ciprofloxacin. Two dimensional (2D) non-metric multidimensional scaling (nMDS) plots and relative abundances of functional groups of nematode genus assemblages revealed that all functional trait abundances were affected, particularly with the highest dose. However, only the amphid shape and feeding group functions showed a clear distribution separation between the control and ciprofloxacin treatments. The nMDS second-stage ordination of inter-matrix rank correlations for matrices including genus and functional traits showed that the tail shape was the closest functional trait to the generic distribution. Thus, only the curves of cumulative dominance related to the tail shape mirrored discernibly the sedimentary concentrations in ciprofloxacin.
Collapse
Affiliation(s)
- Ahmed Nasri
- Laboratory of Biomonitoring of the Environment, University of Carthage, Faculty of Sciences of Bizerte, Zarzouna, 7021, Bizerte, Tunisia.
| | - Mohamed Allouche
- Laboratory of Biomonitoring of the Environment, University of Carthage, Faculty of Sciences of Bizerte, Zarzouna, 7021, Bizerte, Tunisia
| | - Amel Hannachi
- Laboratory of Biomonitoring of the Environment, University of Carthage, Faculty of Sciences of Bizerte, Zarzouna, 7021, Bizerte, Tunisia
| | - Abdel Halim Harrath
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Waleed Aldahmash
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alwasel
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ezzeddine Mahmoudi
- Laboratory of Biomonitoring of the Environment, University of Carthage, Faculty of Sciences of Bizerte, Zarzouna, 7021, Bizerte, Tunisia
| | - Hamouda Beyrem
- Laboratory of Biomonitoring of the Environment, University of Carthage, Faculty of Sciences of Bizerte, Zarzouna, 7021, Bizerte, Tunisia
| | - Fehmi Boufahja
- Laboratory of Biomonitoring of the Environment, University of Carthage, Faculty of Sciences of Bizerte, Zarzouna, 7021, Bizerte, Tunisia
| |
Collapse
|
93
|
Ferrera I, Reñé A, Funosas D, Camp J, Massana R, Gasol JM, Garcés E. Assessment of microbial plankton diversity as an ecological indicator in the NW Mediterranean coast. MARINE POLLUTION BULLETIN 2020; 160:111691. [PMID: 33181960 DOI: 10.1016/j.marpolbul.2020.111691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
High-throughput sequencing of microbial assemblages has been proposed as an alternative methodology to the traditional ones used in marine monitoring and environmental assessment. Here, we evaluated pico- and nanoplankton diversity as ecological indicators in NW Mediterranean coastal waters by comparing their diversity in samples subjected to varying degrees of continental pressures. Using metabarcoding of the 16S and 18S rRNA genes, we explored whether alphadiversity indices, abundance of Operational Taxonomic Units and taxonomic groups (and their ratios) provide information on the ecological quality of coastal waters. Our results revealed that only eukaryotic diversity metrics and a limited number of prokaryotic and eukaryotic taxa displayed potential in assessing continental influences in our surveyed area, resulting thus in a restrained potential of microbial plankton diversity as an ecological indicator. Therefore, incorporating microbial plankton diversity in environmental assessment could not always result in a significant improvement of current marine monitoring strategies.
Collapse
Affiliation(s)
- Isabel Ferrera
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, Spain; Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, Fuengirola, Málaga, Spain.
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, Spain
| | - David Funosas
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, Spain
| | - Jordi Camp
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, Spain
| | - Ramon Massana
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, Spain.
| |
Collapse
|
94
|
Nasri A, Allouche M, Hannachi A, Barkaoui T, Barhoumi B, Saidi I, D'Agostino F, Mahmoudi E, Beyrem H, Boufahja F. Nematodes trophic groups changing via reducing of bacterial population density after sediment enrichment to ciprofloxacin antibiotic: Case study of Marine Mediterranean community. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105632. [PMID: 33010638 DOI: 10.1016/j.aquatox.2020.105632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
An experiment was carried out using microcosms to evaluate the impact of the fluoroquinolone antibiotic on nematode trophic groups structure and bacterial abundance. Sediment samples were experimentally enriched with four increasing doses of ciprofloxacin [D1 (50 ppm), D2 (100 ppm), D3 (200 ppm) and D4 (500 ppm)] and compared to non-enriched sediments (used as control). Ciprofloxacin changed the trophic composition of nematodes taxa where the relative abundance of microvores (M), epigrowth feeders (EF) and ciliate consumers (CF), raised in a control microcosm, was highly affected and significantly decreased in response to the increasing doses. Nevertheless, the abundance of deposit feeders (DF), optional predators (FP) and exclusive predators (Pr) showed a significant increase. Results from the multivariate analysis showed a clear impact of this antibiotic on nematode trophic assemblages. Microcosms treated with the three highest doses [D2, D3 and D4] were different from the control. The exceptions were those treated with the lowest dose, D1, and which were grouped with the control. The SIMPER analysis results showed that the average dissimilarity continuously increased in the treated microcosms compared to the control. Furthermore, our results have shown that ciprofloxacin also leads to a significant decrease in bacterial density with the highest dose, which could explain the results obtained for nematode trophic groups distribution. Thus, the bacteriophages nematodes only use bacteria as a nutrition source and the lack or presence in small quantity of this food could induce a decrease in their abundance as well as changing of nematodes groups repartition. Our work demonstrates that the nematode responses were dependent on sediment enrichment with ciprofloxacin and opens new perspectives on the potential impact of antibiotics on functional nematode diversity.
Collapse
Affiliation(s)
- Ahmed Nasri
- Laboratory of Environment Biomonitoring, University of Carthage, Faculty of Sciences of Bizerta (FSB), 7021 Zarzouna, Bizerta, Tunisia.
| | - Mohamed Allouche
- Laboratory of Environment Biomonitoring, University of Carthage, Faculty of Sciences of Bizerta (FSB), 7021 Zarzouna, Bizerta, Tunisia
| | - Amel Hannachi
- Laboratory of Environment Biomonitoring, University of Carthage, Faculty of Sciences of Bizerta (FSB), 7021 Zarzouna, Bizerta, Tunisia
| | - Taha Barkaoui
- Laboratory of Biochemistry and Molecular Biology, Faculty of Science of Bizerta, Bizerta, Tunisia
| | - Badreddine Barhoumi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Ibtihel Saidi
- Laboratory of Environment Biomonitoring, University of Carthage, Faculty of Sciences of Bizerta (FSB), 7021 Zarzouna, Bizerta, Tunisia
| | - Fabio D'Agostino
- Institute for the Study of Anthropogenic Impacts and Sustainability in the Marine Environment" of Council National of Research (CNR-IAS), Italy
| | - Ezzeddine Mahmoudi
- Laboratory of Environment Biomonitoring, University of Carthage, Faculty of Sciences of Bizerta (FSB), 7021 Zarzouna, Bizerta, Tunisia
| | - Hamouda Beyrem
- Laboratory of Environment Biomonitoring, University of Carthage, Faculty of Sciences of Bizerta (FSB), 7021 Zarzouna, Bizerta, Tunisia
| | - Fehmi Boufahja
- Laboratory of Environment Biomonitoring, University of Carthage, Faculty of Sciences of Bizerta (FSB), 7021 Zarzouna, Bizerta, Tunisia
| |
Collapse
|
95
|
Bradshaw DJ, Dickens NJ, Trefry JH, McCarthy PJ. Defining the sediment prokaryotic communities of the Indian River Lagoon, FL, USA, an Estuary of National Significance. PLoS One 2020; 15:e0236305. [PMID: 33105476 PMCID: PMC7588086 DOI: 10.1371/journal.pone.0236305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
The Indian River Lagoon, located on the east coast of Florida, USA, is an Estuary of National Significance and an important economic and ecological resource. The Indian River Lagoon faces several environmental pressures, including freshwater discharges through the St. Lucie Estuary; accumulation of anoxic, fine-grained, organic-rich sediment; and metal contamination from agriculture and marinas. Although the Indian River Lagoon has been well-studied, little is known about its microbial communities; thus, a two-year 16S amplicon sequencing study was conducted to assess the spatiotemporal changes of the sediment bacterial and archaeal groups. In general, the Indian River Lagoon exhibited a prokaryotic community that was consistent with other estuarine studies. Statistically different communities were found between the Indian River Lagoon and St. Lucie Estuary due to changes in porewater salinity causing microbes that require salts for growth to be higher in the Indian River Lagoon. The St. Lucie Estuary exhibited more obvious prokaryotic seasonality, such as a higher relative abundance of Betaproteobacteriales in wet season and a higher relative abundance of Flavobacteriales in dry season samples. Distance-based linear models revealed these communities were more affected by changes in total organic matter and copper than changes in temperature. Anaerobic prokaryotes, such as Campylobacterales, were more associated with high total organic matter and copper samples while aerobic prokaryotes, such as Nitrosopumilales, were more associated with low total organic matter and copper samples. This initial study fills the knowledge gap on the Indian River Lagoon bacterial and archaeal communities and serves as important data for future studies to compare to determine possible future changes due to human impacts or environmental changes.
Collapse
Affiliation(s)
- David J. Bradshaw
- Department of Biological Sciences, Harbor Branch Oceanographic Institute at Florida Atlantic University, Fort Pierce, FL, United States of America
| | - Nicholas J. Dickens
- Department of Biological Sciences, Harbor Branch Oceanographic Institute at Florida Atlantic University, Fort Pierce, FL, United States of America
| | - John H. Trefry
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Peter J. McCarthy
- Department of Biological Sciences, Harbor Branch Oceanographic Institute at Florida Atlantic University, Fort Pierce, FL, United States of America
| |
Collapse
|
96
|
Di Cesare A, Pjevac P, Eckert E, Curkov N, Miko Šparica M, Corno G, Orlić S. The role of metal contamination in shaping microbial communities in heavily polluted marine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114823. [PMID: 32512474 DOI: 10.1016/j.envpol.2020.114823] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms in coastal sediments are fundamental for ecosystem functioning, and regulate processes relevant in global biogeochemical cycles. Still, our understanding of the effects anthropogenic perturbation and pollution can have on microbial communities in marine sediments is limited. We surveyed the microbial diversity, and the occurrence and abundance of metal and antibiotic resistance genes is sediments collected from the Pula Bay (Croatia), one of the most significantly polluted sites along the Croatian coast. With a collection of 14 samples from the bay area, we were able to generate a detailed status quo picture of a site that only recently started a cleaning and remediation process (closing of sewage pipes and reduction of industrial activity). The concentrations of heavy metals in Pula Bay sediments are significantly higher than in pristine sediments from the Adriatic Sea, and in some cases, manifold exceed international sediment quality guidelines. While the sedimentary concentrations of heavy metals did significantly influence the abundance of the tested metal resistance genes, no strong effect of heavy metal pollution on the overall microbial community composition was observed. Like in many other marine sediments, Gammaproteobacteria, Bacteroidota and Desulfobacterota dominated the microbial community composition in most samples, and community assembly was primarily driven by water column depth and nutrient (carbon and nitrogen) availability, regardless of the degree of heavy metal pollution.
Collapse
Affiliation(s)
- Andrea Di Cesare
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Petra Pjevac
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1090, Vienna, Austria
| | - Ester Eckert
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Neven Curkov
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | | | - Gianluca Corno
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Sandi Orlić
- Ruđer Bošković Institute, Division of Material Chemistry, Zagreb, Croatia; Center of Excellence for Science and Technology Integrating Mediterranean Region, Microbial Ecology, Zagreb, Croatia.
| |
Collapse
|
97
|
Seasonality in Spatial Turnover of Bacterioplankton Along an Ecological Gradient in the East China Sea: Biogeographic Patterns, Processes and Drivers. Microorganisms 2020; 8:microorganisms8101484. [PMID: 32992545 PMCID: PMC7600760 DOI: 10.3390/microorganisms8101484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
Seasonal succession in bacterioplankton is a common process in marine waters. However, seasonality in their spatial turnover is largely unknown. Here, we investigated spatial turnover of surface bacterioplankton along a nearshore-to-offshore gradient in the East China Sea across four seasons. Although seasonality overwhelmed spatial variability of bacterioplankton composition, we found significant spatial turnover of bacterioplankton along the gradient as well as overall seasonal consistency in biogeographic patterns (including distance-decay relationship and covariation of community composition with distance to shore) with subtle changes. Bacterioplankton assembly was consistently dominated by deterministic mechanisms across seasons, with changes in specific processes. We found overall seasonal consistency in abiotic factors (mainly salinity and nitrogen and phosphorus nutrients) shaping bacterioplankton composition, while phytoplankton showed a similar influence as abiotic factors only in spring. Although key taxa responsible for bacterioplankton spatial turnover showed certain season-specificity, seasonal switching between closely related taxa occurred within most dominant families. Moreover, many close relatives showed different responding patterns to the environmental gradients in different seasons, suggesting their differences in both seasonally climatic and spatially environmental preferences. Our results provide insights into seasonal consistency and variability in spatial turnover of bacterioplankton in terms of biogeographic patterns, ecological processes, and external and internal drivers.
Collapse
|
98
|
Aubé J, Senin P, Bonin P, Pringault O, Jeziorski C, Bouchez O, Klopp C, Guyoneaud R, Goñi-Urriza M. Meta-omics Provides Insights into the Impact of Hydrocarbon Contamination on Microbial Mat Functioning. MICROBIAL ECOLOGY 2020; 80:286-295. [PMID: 32076743 DOI: 10.1007/s00248-020-01493-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Photosynthetic microbial mats are stable, self-supported communities. Due to their coastal localization, these mats are frequently exposed to hydrocarbon contamination and are able to grow on it. To decipher how this contamination disturbs the functioning of microbial mats, we compared two mats: a contaminated mat exposed to chronic petroleum contamination and a reference mat. The taxonomic and metabolic structures of the mats in spring and fall were determined using metagenomic and metatranscriptomic approaches. Extremely high contamination disturbed the seasonal variations of the mat. ABC transporters, two-component systems, and type IV secretion system-related genes were overabundant in the contaminated mats. Xenobiotic degradation metabolism was minor in the metagenomes of both mats, and only the expression of genes involved in polycyclic aromatic hydrocarbon degradation was higher in the contaminated mat. Interestingly, the expression rates of genes involved in hydrocarbon activation decreased during the 1-year study period, concomitant with the decrease in easily degradable hydrocarbons, suggesting a transient effect of hydrocarbon contamination. Alteromonadales and Oceanospirillales hydrocarbonoclastic bacteria appeared to be key in hydrocarbon remediation in the contaminated mat. Overall, the contaminated microbial mat was able to cope with hydrocarbon contamination and displayed an adaptive functioning that modified seasonal behaviour.
Collapse
Affiliation(s)
- Johanne Aubé
- Environmental Microbiology, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
- Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, IFREMER, CNRS, Université de Bretagne Occidentale, Plouzané, France
| | - Pavel Senin
- Environmental Microbiology, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
- Plateforme Bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, INRA, Castanet-Tolosan, France
| | - Patricia Bonin
- Mediterranean Institute of Oceanography (MIO), Aix Marseille University, Université de Toulon, CNRS/INSU/IRD, UM 110, Marseille, France
| | - Olivier Pringault
- UMR 9190 MARBEC IRD-Ifremer-CNRS, Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | | | - Olivier Bouchez
- GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, France
| | - Christophe Klopp
- Plateforme Bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, INRA, Castanet-Tolosan, France
| | - Rémy Guyoneaud
- Environmental Microbiology, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Marisol Goñi-Urriza
- Environmental Microbiology, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
99
|
Tsiola A, Michoud G, Fodelianakis S, Karakassis I, Kotoulas G, Pavlidou A, Pavloudi C, Pitta P, Simboura N, Daffonchio D, Tsapakis M. Viral Metagenomic Content Reflects Seawater Ecological Quality in the Coastal Zone. Viruses 2020; 12:v12080806. [PMID: 32722579 PMCID: PMC7472104 DOI: 10.3390/v12080806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 01/21/2023] Open
Abstract
Viruses interfere with their host’s metabolism through the expression of auxiliary metabolic genes (AMGs) that, until now, are mostly studied under large physicochemical gradients. Here, we focus on coastal marine ecosystems and we sequence the viral metagenome (virome) of samples with discrete levels of human-driven disturbances. We aim to describe the relevance of viromics with respect to ecological quality status, defined by the classic seawater trophic index (TRIX). Neither viral (family level) nor bacterial (family level, based on 16S rRNA sequencing) community structure correlated with TRIX. AMGs involved in the Calvin and tricarboxylic acid cycles were found at stations with poor ecological quality, supporting viral lysis by modifying the host’s energy supply. AMGs involved in “non-traditional” energy-production pathways (3HP, sulfur oxidation) were found irrespective of ecological quality, highlighting the importance of recognizing the prevalent metabolic paths and their intermediate byproducts. Various AMGs explained the variability between stations with poor vs. good ecological quality. Our study confirms the pivotal role of the virome content in ecosystem functioning, acting as a “pool” of available functions that may be transferred to the hosts. Further, it suggests that AMGs could be used as an ultra-sensitive metric of energy-production pathways with relevance in the vulnerable coastal zone and its ecological quality.
Collapse
Affiliation(s)
- Anastasia Tsiola
- Institute of Oceanography, Hellenic Centre for Marine Research, 71003 Heraklion Crete, Greece; (P.P.); (M.T.)
- Department of Biology, University of Crete, 70013 Heraklion Crete, Greece;
- Institute of Marine Biology, Biotechnology & Aquaculture, 71003 Heraklion Crete, Greece; (G.K.); (C.P.)
- Correspondence: ; Tel.: +30-2810-337713; Fax: +30-2810-337822
| | - Grégoire Michoud
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia; (G.M.); (S.F.); (D.D.)
| | - Stilianos Fodelianakis
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia; (G.M.); (S.F.); (D.D.)
| | - Ioannis Karakassis
- Department of Biology, University of Crete, 70013 Heraklion Crete, Greece;
| | - Georgios Kotoulas
- Institute of Marine Biology, Biotechnology & Aquaculture, 71003 Heraklion Crete, Greece; (G.K.); (C.P.)
| | - Alexandra Pavlidou
- Institute of Oceanography, Hellenic Centre for Marine Research, 19013 Anavyssos Attiki, Greece; (A.P.); (N.S.)
| | - Christina Pavloudi
- Institute of Marine Biology, Biotechnology & Aquaculture, 71003 Heraklion Crete, Greece; (G.K.); (C.P.)
| | - Paraskevi Pitta
- Institute of Oceanography, Hellenic Centre for Marine Research, 71003 Heraklion Crete, Greece; (P.P.); (M.T.)
| | - Nomiki Simboura
- Institute of Oceanography, Hellenic Centre for Marine Research, 19013 Anavyssos Attiki, Greece; (A.P.); (N.S.)
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia; (G.M.); (S.F.); (D.D.)
| | - Manolis Tsapakis
- Institute of Oceanography, Hellenic Centre for Marine Research, 71003 Heraklion Crete, Greece; (P.P.); (M.T.)
| |
Collapse
|
100
|
Nascimento JR, Easson CG, Jurelevicius DDA, Lopez JV, Bidone ED, Sabadini-Santos E. Microbial community shift under exposure of dredged sediments from a eutrophic bay. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:539. [PMID: 32705349 DOI: 10.1007/s10661-020-08507-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Microbial communities occur in almost every habitat. To evaluate the homeostasis disruption of in situ microbiomes, dredged sediments from Guanabara Bay-Brazil (GB) were mixed with sediments from outside of the bay (D) in three different proportions (25%, 50%, and 75%) which we called GBD25, GBD50, and GBD75. Grain size, TOC, and metals-as indicators of complex contamination-dehydrogenase (DHA) and esterase enzymes (EST)-as indicators of microbial community availability-were determined. Microbial community composition was addressed by amplifying the 16S rRNA gene for DGGE analysis and sequencing using MiSeq platform (Illumina).We applied the quality ratio index (QR) to the GB, D, and every GBD mixture to integrate geochemical parameters with our microbiome data. QR indicated high environmental risk for GB and every GBD mixture, and low risk for D. The community shifted from aerobic to anaerobic profile, consistent with the characteristics of GB. Sample D was dominated by JTB255 marine benthic group, related to low impacted areas. Milano-WF1B-44 was the most representative of GB, often found in anaerobic and sulfur enriched environments. In GBD, the denitrifying sulfur-oxidizing bacteria, Sulfurovum, was the most representative, typically found in suboxic or anoxic niches. The canonical correspondence analysis was able to explain 60% of the community composition variation and exhibit the decrease of environmental quality as the contamination increases. Physiological and taxonomic shifts of the microbial assemblage in sediments were inferred by QR, which was suitable to determine sediment risk. The study produced sufficient information to improve the dredging plan and management.
Collapse
Affiliation(s)
- Juliana R Nascimento
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-150, Brazil.
| | - Cole G Easson
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, 33004, USA
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Diogo de A Jurelevicius
- Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21944-570, Brazil
| | - Jose V Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, 33004, USA
| | - Edison D Bidone
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-150, Brazil
| | - Elisamara Sabadini-Santos
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-150, Brazil
| |
Collapse
|