51
|
Alfaidy N. Prokineticin1 and pregnancy. ANNALES D'ENDOCRINOLOGIE 2016; 77:101-104. [PMID: 27172869 DOI: 10.1016/j.ando.2016.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 11/22/2022]
Abstract
Prokineticin 1 (PROK1), also called EG-VEGF, is a peptide of 86 amino acids with multiple biological functions. PROK1 acts via two G-protein coupled receptors: PROKR1 PROKR2. PROK1 is highly expressed in the placenta. This article reports the expression and the role of PROK1 during normal and pathological pregnancies: (i) during early pregnancy, PROK1 exhibits a peak of placental expression shortly before the establishment of the feto-maternal circulation; (ii) its receptors, PROKR1 PROKR2 are highly expressed in human placenta; (iii) its expression is increased by hypoxia; (iv) PROK1 inhibits extravillous trophoblasts migration and invasion and increases their proliferation and survival; (v) PROK1 is also a pro-angiogenic placental factor that increases microvascular placental endothelial cells proliferation, migration, invasion, and permeability. Circulating PROK1 levels are five times higher in pregnant women during the first trimester compared to the second and third trimesters. Also, its serum levels are higher in patients with preeclampsia (PE) and in patients with isolated intra-uterine growth restriction (IUGR). In mice, maintaining high level of PROK1 beyond its normal period of production (>10.5dpc) reproduces symptoms of PE. To date, our results demonstrated that PROK1 is a central factor of human placentation with direct roles both in the control of trophoblast invasion and villous growth. Thus, a failure in the expression of PROK1 and/or its receptor during pregnancy may contribute to the development of PE and/or IUGR. Besides theses original findings, we also report a direct role of this factor in parturition.
Collapse
Affiliation(s)
- Nadia Alfaidy
- Institut national de la santé et de la recherche médicale, unité 1036, University Grenoble-Alpes, 38041 Grenoble, France; Commissariat à l'énergie atomique (CEA), BIG-Biology of Cancer and Infection, 38054 Grenoble, France.
| |
Collapse
|
52
|
A Common Variant of PROK1 (V67I) Acts as a Genetic Modifier in Early Human Pregnancy through Down-Regulation of Gene Expression. Int J Mol Sci 2016; 17:ijms17020162. [PMID: 26828479 PMCID: PMC4783896 DOI: 10.3390/ijms17020162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/16/2016] [Accepted: 01/16/2016] [Indexed: 11/30/2022] Open
Abstract
PROK1-V67I has been shown to play a role as a modifier gene in the PROK1-PROKR system of human early pregnancy. To explore the related modifier mechanism of PROK1-V67I, we carried out a comparison study at the gene expression level and the cell function alternation of V67I, and its wild-type (WT), in transiently-transfected cells. We, respectively, performed quantitative RT-PCR and ELISA assays to evaluate the protein and/or transcript level of V67I and WT in HTR-8/SV neo, JAR, Ishikawa, and HEK293 cells. Transiently V67I- or WT-transfected HTR-8/SV neo and HEK293 cells were used to investigate cell function alternations. The transcript and protein expressions were down-regulated in all cell lines, ranging from 20% to 70%, compared with WT. There were no significant differences in the ligand activities of V67I and WT with regard to cell proliferation, cell invasion, calcium influx, and tubal formation. Both PROK1 alleles promoted cell invasion and intracellular calcium mobilization, whereas they had no significant effects on cell proliferation and tubal formation. In conclusion, the biological effects of PROK1-V67I on cell functions are similar to those of WT, and the common variant of V67I may act as a modifier in the PROK1-PROKR system through down-regulation of PROK1 expression. This study may provide a general mechanism that the common variant of V67I, modifying the disease severity of PROK1-related pathophysiologies.
Collapse
|
53
|
Dong H, Yu C, Mu J, Zhang J, Lin W. Role of EFNB2/EPHB4 signaling in spiral artery development during pregnancy: An appraisal. Mol Reprod Dev 2015; 83:12-8. [PMID: 26501487 DOI: 10.1002/mrd.22593] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 10/22/2015] [Indexed: 12/30/2022]
Abstract
EFNB2 and EPHB4, which belong to a large tyrosine kinase receptor superfamily, are molecular markers of arterial and venous blood vessels, respectively. EFNB2/EPHB4 signaling plays an important role in physiological and pathological angiogenesis, and its role in tumor vessel development has been extensively studied. Pregnancy and tumors share similar features, including continuous cell proliferation and increased demand for a blood supply. Our previous studies showed that Efnb2 and Ephb4 were expressed dynamically in the spiral arteries, uterine natural killer cells, and trophoblasts during mouse gestation Days 6.5-12.5. Moreover, uterine natural killer cells and trophoblasts are required for the modification of spiral arteries. Oxygen tension within the pregnant uterus, which contributes to the vascular development, also affects EFNB2 and EPHB4 expression. Considering the role of EFNB2/EPHB4 signaling in embryonic and tumor vascular development, and its dynamic expression in the decidua and placenta, we hypothesize that EFNB2 and EPHB4 are involved in the regulation of spiral artery remodeling. Investigating this hypothesis will help clarify the mechanisms of pathological pregnancy that may underlie abnormal spiral artery development.
Collapse
Affiliation(s)
- Hongmei Dong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chaoran Yu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jiao Mu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ji Zhang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Lin
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
54
|
Murthi P, Brouillet S, Pratt A, Borg A, Kalionis B, Goffin F, Tsatsaris V, Munaut C, Feige JJ, Benharouga M, Fournier T, Alfaidy N. An EG-VEGF-Dependent Decrease in Homeobox Gene NKX3.1 Contributes to Cytotrophoblast Dysfunction: A Possible Mechanism in Human Fetal Growth Restriction. Mol Med 2015; 21:645-656. [PMID: 26208047 PMCID: PMC4749495 DOI: 10.2119/molmed.2015.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/21/2015] [Indexed: 12/20/2022] Open
Abstract
Idiopathic fetal growth restriction (FGR) is frequently associated with placental insufficiency. Previous reports have provided evidence that endocrine gland-derived vascular endothelial growth factor (EG-VEGF), a placental secreted protein, is expressed during the first trimester of pregnancy, controls both trophoblast proliferation and invasion, and its increased expression is associated with human FGR. In this study, we hypothesize that EG-VEGF-dependent changes in placental homeobox gene expressions contribute to trophoblast dysfunction in idiopathic FGR. The changes in EG-VEGF-dependent homeobox gene expressions were determined using a homeobox gene cDNA array on placental explants of 8-12 wks gestation after stimulation with EG-VEGF in vitro for 24 h. The homeobox gene array identified a greater-than-five-fold increase in HOXA9, HOXC8, HOXC10, HOXD1, HOXD8, HOXD9 and HOXD11, while NKX 3.1 showed a greater-than-two-fold decrease in mRNA expression compared with untreated controls. Homeobox gene NKX3.1 was selected as a candidate because it is a downstream target of EG-VEGF and its expression and functional roles are largely unknown in control and idiopathic FGR-affected placentae. Real-time PCR and immunoblotting showed a significant decrease in NKX3.1 mRNA and protein levels, respectively, in placentae from FGR compared with control pregnancies. Gene inactivation in vitro using short-interference RNA specific for NKX3.1 demonstrated an increase in BeWo cell differentiation and a decrease in HTR-8/SVneo proliferation. We conclude that the decreased expression of homeobox gene NKX3.1 downstream of EG-VEGF may contribute to the trophoblast dysfunction associated with idiopathic FGR pregnancies.
Collapse
Affiliation(s)
- Padma Murthi
- Department of Perinatal Medicine Pregnancy Research Centre, The Royal Women’s Hospital and The University of Melbourne Department of Obstetrics and Gynaecology, The Royal Women’s Hospital, Victoria, Australia
- Department of Medicine, Monash University, Victoria, Australia
| | - Sophie Brouillet
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France
- Université Grenoble-Alpes, Grenoble, France
- Commissariat à L’Energie Atomique (CEA), iRTSV–Biology of Cancer and Infection, Grenoble, France
- Centre Hospitalier Universitaire de Grenoble, Hôpital Couple-Enfant, Centre Clinique et Biologique d’Assistance Médicale à la Procréation, La Tronche, France
| | - Anita Pratt
- Department of Perinatal Medicine Pregnancy Research Centre, The Royal Women’s Hospital and The University of Melbourne Department of Obstetrics and Gynaecology, The Royal Women’s Hospital, Victoria, Australia
| | - Anthony Borg
- Department of Perinatal Medicine Pregnancy Research Centre, The Royal Women’s Hospital and The University of Melbourne Department of Obstetrics and Gynaecology, The Royal Women’s Hospital, Victoria, Australia
| | - Bill Kalionis
- Department of Perinatal Medicine Pregnancy Research Centre, The Royal Women’s Hospital and The University of Melbourne Department of Obstetrics and Gynaecology, The Royal Women’s Hospital, Victoria, Australia
| | - Frederic Goffin
- Laboratory of Tumor and Developmental Biology, University of Liège, Belgium
| | - Vassilis Tsatsaris
- Department of Obstetrics and Gynecology, Hôpital Cochin, Maternité Port-Royal, Université Rene Descartes, Paris, France
| | - Carine Munaut
- Laboratory of Tumor and Developmental Biology, University of Liège, Belgium
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France
- Université Grenoble-Alpes, Grenoble, France
- Commissariat à L’Energie Atomique (CEA), iRTSV–Biology of Cancer and Infection, Grenoble, France
| | - Mohamed Benharouga
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5249, Laboratoire de Chimie et Biologie des Métaux, Grenoble, France
| | - Thierry Fournier
- INSERM, U1139; Universite Paris Descartes, UMR-S1139; and PremUp Foundation, Paris, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France
- Université Grenoble-Alpes, Grenoble, France
- Commissariat à L’Energie Atomique (CEA), iRTSV–Biology of Cancer and Infection, Grenoble, France
| |
Collapse
|
55
|
Lash GE. Molecular Cross-Talk at the Feto-Maternal Interface. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a023010. [PMID: 26385089 DOI: 10.1101/cshperspect.a023010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular cross-talk at the feto-maternal interface occurs between many different cell types, including uterine leukocytes, extravillous trophoblast cells, and uterine spiral arteries, is essential for the establishment and maintenance of pregnancy. This review concentrates on human pregnancy and examines three main areas in which cross-talk occurs; immune tolerance, regulation of extravillous trophoblast invasion, and remodeling of the uterine spiral arteries.
Collapse
Affiliation(s)
- Gendie E Lash
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
56
|
Garnier V, Traboulsi W, Salomon A, Brouillet S, Fournier T, Winkler C, Desvergne B, Hoffmann P, Zhou QY, Congiu C, Onnis V, Benharouga M, Feige JJ, Alfaidy N. PPARγ controls pregnancy outcome through activation of EG-VEGF: new insights into the mechanism of placental development. Am J Physiol Endocrinol Metab 2015; 309:E357-E369. [PMID: 26081281 DOI: 10.1152/ajpendo.00093.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/04/2015] [Indexed: 01/29/2023]
Abstract
PPARγ-deficient mice die at E9.5 due to placental abnormalities. The mechanism by which this occurs is unknown. We demonstrated that the new endocrine factor EG-VEGF controls the same processes as those described for PPARγ, suggesting potential regulation of EG-VEGF by PPARγ. EG-VEGF exerts its functions via prokineticin receptor 1 (PROKR1) and 2 (PROKR2). This study sought to investigate whether EG-VEGF mediates part of PPARγ effects on placental development. Three approaches were used: 1) in vitro, using human primary isolated cytotrophoblasts and the extravillous trophoblast cell line (HTR-8/SVneo); 2) ex vivo, using human placental explants (n = 46 placentas); and 3) in vivo, using gravid wild-type PPARγ(+/-) and PPARγ(-/-) mice. Major processes of placental development that are known to be controlled by PPARγ, such as trophoblast proliferation, migration, and invasion, were assessed in the absence or presence of PROKR1 and PROKR2 antagonists. In both human trophoblast cell and placental explants, we demonstrated that rosiglitazone, a PPARγ agonist, 1) increased EG-VEGF secretion, 2) increased EG-VEGF and its receptors mRNA and protein expression, 3) increased placental vascularization via PROKR1 and PROKR2, and 4) inhibited trophoblast migration and invasion via PROKR2. In the PPARγ(-/-) mouse placentas, EG-VEGF levels were significantly decreased, supporting an in vivo control of EG-VEGF/PROKRs system during pregnancy. The present data reveal EG-VEGF as a new mediator of PPARγ effects during pregnancy and bring new insights into the fine mechanism of trophoblast invasion.
Collapse
Affiliation(s)
- Vanessa Garnier
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France; Université Grenoble-Alpes, Grenoble, France; iRTSV-Biology of Cancer and Infection, Commissariat à l'Energie Atomique, Grenoble, France
| | - Wael Traboulsi
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France; Université Grenoble-Alpes, Grenoble, France; iRTSV-Biology of Cancer and Infection, Commissariat à l'Energie Atomique, Grenoble, France
| | - Aude Salomon
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France; Université Grenoble-Alpes, Grenoble, France; iRTSV-Biology of Cancer and Infection, Commissariat à l'Energie Atomique, Grenoble, France
| | - Sophie Brouillet
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France; Université Grenoble-Alpes, Grenoble, France; iRTSV-Biology of Cancer and Infection, Commissariat à l'Energie Atomique, Grenoble, France; Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Thierry Fournier
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1139, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; PremUP Foundation, Paris, France
| | - Carine Winkler
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Beatrice Desvergne
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Pascale Hoffmann
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France; Université Grenoble-Alpes, Grenoble, France; iRTSV-Biology of Cancer and Infection, Commissariat à l'Energie Atomique, Grenoble, France; Department of Obstetrics and Gynaecology, University Hospital of Grenoble, La Tronche, France; and
| | - Qun-Yong Zhou
- Department of Pharmacology, University of California-Irvine, Irvine, California
| | - Cenzo Congiu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Mohamed Benharouga
- Laboratoire de Chimie et Biologie des Métaux, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5249, Grenoble, France
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France; Université Grenoble-Alpes, Grenoble, France; iRTSV-Biology of Cancer and Infection, Commissariat à l'Energie Atomique, Grenoble, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France; Université Grenoble-Alpes, Grenoble, France; iRTSV-Biology of Cancer and Infection, Commissariat à l'Energie Atomique, Grenoble, France;
| |
Collapse
|
57
|
Chauvet S, Traboulsi W, Thevenon L, Kouadri A, Feige JJ, Camara B, Alfaidy N, Benharouga M. EG-VEGF, BV8, and their receptor expression in human bronchi and their modification in cystic fibrosis: Impact of CFTR mutation (delF508). Am J Physiol Lung Cell Mol Physiol 2015; 309:L314-22. [PMID: 26047640 DOI: 10.1152/ajplung.00382.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/22/2015] [Indexed: 12/22/2022] Open
Abstract
Enhanced lung angiogenesis has been reported in cystic fibrosis (CF). Recently, two highly homologous ligands, endocrine gland vascular endothelial growth factor (EG-VEGF) and mammalian Bv8, have been described as new angiogenic factors. Both ligands bind and activate two closely related G protein-coupled receptors, the prokineticin receptor (PROKR) 1 and 2. Yet, the expression, regulation, and potential role of EG-VEGF, BV8, and their receptors in normal and CF lung are still unknown. The expression of the receptors and their ligands was examined using molecular, biochemical, and immunocytochemistry analyses in lungs obtained from CF patients vs. control and in normal and CF bronchial epithelial cells. Cystic fibrosis transmembrane conductance regulator (CFTR) activity was evaluated in relation to both ligands, and concentrations of EG-VEGF were measured by ELISA. At the mRNA level, EG-VEGF, BV8, and PROKR2 gene expression was, respectively, approximately five, four, and two times higher in CF lungs compared with the controls. At the cellular level, both the ligands and their receptors showed elevated expressions in the CF condition. Similar results were observed at the protein level. The EG-VEGF secretion was apical and was approximately two times higher in CF compared with the normal epithelial cells. This secretion was increased following the inhibition of CFTR chloride channel activity. More importantly, EG-VEGF and BV8 increased the intracellular concentration of Ca(2+) and cAMP and stimulated CFTR-chloride channel activity. Altogether, these data suggest local roles for epithelial BV8 and EG-VEGF in the CF airway peribronchial vascular remodeling and highlighted the role of CFTR activity in both ligand biosynthesis and secretion.
Collapse
Affiliation(s)
- Sylvain Chauvet
- Centre National de la Recherche Scientifique, LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France
| | - Wael Traboulsi
- Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France; and
| | - Laura Thevenon
- Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France; and
| | - Amal Kouadri
- Centre National de la Recherche Scientifique, LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France
| | - Jean-Jacques Feige
- Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France; and
| | - Boubou Camara
- Centre de Ressources et de Compétences pour la Mucoviscidose, Clinique Universitaire de Pneumologie-Pole Thorax et Vaisseaux, CHU de Grenoble, France
| | - Nadia Alfaidy
- Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France; and
| | - Mohamed Benharouga
- Centre National de la Recherche Scientifique, LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France;
| |
Collapse
|
58
|
Gene-gene interactions and risk of recurrent miscarriages in carriers of endocrine gland–derived vascular endothelial growth factor and prokineticin receptor polymorphisms. Fertil Steril 2014; 102:1071-1077.e3. [DOI: 10.1016/j.fertnstert.2014.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/05/2014] [Accepted: 06/27/2014] [Indexed: 01/07/2023]
|
59
|
Dunand C, Hoffmann P, Sapin V, Blanchon L, Salomon A, Sergent F, Benharouga M, Sabra S, Guibourdenche J, Lye S, Feige J, Alfaidy N. Endocrine Gland-Derived Endothelial Growth Factor (EG-VEGF) Is a Potential Novel Regulator of Human Parturition1. Biol Reprod 2014; 91:73. [DOI: 10.1095/biolreprod.114.119990] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
60
|
Alfaidy N, Hoffmann P, Boufettal H, Samouh N, Aboussaouira T, Benharouga M, Feige JJ, Brouillet S. The multiple roles of EG-VEGF/PROK1 in normal and pathological placental angiogenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:451906. [PMID: 24955357 PMCID: PMC4052057 DOI: 10.1155/2014/451906] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 01/26/2023]
Abstract
Placentation is associated with several steps of vascular adaptations throughout pregnancy. These vascular changes occur both on the maternal and fetal sides, consisting of maternal uterine spiral arteries remodeling and placental vasculogenesis and angiogenesis, respectively. Placental angiogenesis is a pivotal process for efficient fetomaternal exchanges and placental development. This process is finely controlled throughout pregnancy, and it involves ubiquitous and pregnancy-specific angiogenic factors. In the last decade, endocrine gland derived vascular endothelial growth factor (EG-VEGF), also called prokineticin 1 (PROK1), has emerged as specific placental angiogenic factor that controls many aspects of normal and pathological placental angiogenesis such as recurrent pregnancy loss (RPL), gestational trophoblastic diseases (GTD), fetal growth restriction (FGR), and preeclampsia (PE). This review recapitulates EG-VEGF mediated-angiogenesis within the placenta and at the fetomaternal interface and proposes that its deregulation might contribute to the pathogenesis of several placental diseases including FGR and PE. More importantly this paper argues for EG-VEGF clinical relevance as a potential biomarker of the onset of pregnancy pathologies and discusses its potential usefulness for future therapeutic directions.
Collapse
Affiliation(s)
- Nadia Alfaidy
- Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Université Grenoble-Alpes, 38041 Grenoble, France
- Institut National de la Santé et de la Recherche Médicale U1036 (INSERM U1036), Biologie du Cancer et de l'Infection, Laboratoire BCI-iRTSV, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Pascale Hoffmann
- Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Université Grenoble-Alpes, 38041 Grenoble, France
- Institut National de la Santé et de la Recherche Médicale U1036 (INSERM U1036), Biologie du Cancer et de l'Infection, Laboratoire BCI-iRTSV, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- CHU de Grenoble, Hôpital Couple Enfant, Département de Génétique et Procréation, Centre d'Aide Médicale à la Procréation, CS 10217, 38043 Grenoble Cedex 9, France
| | - Houssine Boufettal
- Service de Gynécologie-Obstétrique “C”, Centre Hospitalier Universitaire Ibn Rochd, Faculté de Médecine et de Pharmacie, Université Hassan II, Ain Chok, 1 rue des Hôpitaux-ex Banaflous, 20360 Casablanca, Morocco
- Plateau Commun de Recherche, Unité de Culture Cellulaire, Faculté de Médecine et de Pharmacie, 19 rue Tarek Bnou Ziad, 20360 Casablanca, Morocco
| | - Naima Samouh
- Service de Gynécologie-Obstétrique “C”, Centre Hospitalier Universitaire Ibn Rochd, Faculté de Médecine et de Pharmacie, Université Hassan II, Ain Chok, 1 rue des Hôpitaux-ex Banaflous, 20360 Casablanca, Morocco
| | - Touria Aboussaouira
- Plateau Commun de Recherche, Unité de Culture Cellulaire, Faculté de Médecine et de Pharmacie, 19 rue Tarek Bnou Ziad, 20360 Casablanca, Morocco
| | - Mohamed Benharouga
- Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Université Grenoble-Alpes, 38041 Grenoble, France
- Centre National de la Recherche Scientifique, UMR 5249, 38054 Grenoble Cedex 9, France
| | - Jean-Jacques Feige
- Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Université Grenoble-Alpes, 38041 Grenoble, France
- Institut National de la Santé et de la Recherche Médicale U1036 (INSERM U1036), Biologie du Cancer et de l'Infection, Laboratoire BCI-iRTSV, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Sophie Brouillet
- Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Université Grenoble-Alpes, 38041 Grenoble, France
- Institut National de la Santé et de la Recherche Médicale U1036 (INSERM U1036), Biologie du Cancer et de l'Infection, Laboratoire BCI-iRTSV, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- CHU de Grenoble, Hôpital Couple Enfant, Département de Génétique et Procréation, Centre d'Aide Médicale à la Procréation, CS 10217, 38043 Grenoble Cedex 9, France
| |
Collapse
|
61
|
Brouillet S, Hoffmann P, Alfaidy N, Feige JJ. [Prokineticins: new regulatory peptides in human reproduction]. Med Sci (Paris) 2014; 30:274-9. [PMID: 24685218 DOI: 10.1051/medsci/20143003015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
During the last decade, there has been growing evidence for the involvement of prokineticins and their receptors (PROK/PROKR) in human reproduction, with multiple roles in the female and male reproductive systems. The PROK/PROKR signalling complex has been reported as a new actor in ovary, uterus, placenta, and testis physiology, with marked dysfunction in various pathological conditions such as polycystic ovary syndrome, recurrent pregnancy loss, preeclampsia, and ectopic pregnancy. Altogether, the results strongly suggest the involvement of prokineticins in spermatogenesis, oocyte competence, embryo implantation, pregnancy, and delivery, and argue for the clinical relevance of these cytokines and their receptors as diagnostic markers for several reproductive diseases.
Collapse
Affiliation(s)
- Sophie Brouillet
- Centre hospitalier universitaire de Grenoble, hôpital couple-enfant, centre d'aide médicale à la procréation, CS 10217, 38043 Grenoble Cedex 9, France - Inserm U1036, biologie du cancer et de l'infection, iRTSV, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9, France - Commissariat à l'énergie atomique, institut de recherche en technologie et sciences pour le vivant, 38054 Grenoble Cedex 9, France - Université Grenoble-Alpes, 38041 Grenoble, France
| | - Pascale Hoffmann
- Centre hospitalier universitaire de Grenoble, hôpital couple-enfant, centre d'aide médicale à la procréation, CS 10217, 38043 Grenoble Cedex 9, France - Inserm U1036, biologie du cancer et de l'infection, iRTSV, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9, France - Commissariat à l'énergie atomique, institut de recherche en technologie et sciences pour le vivant, 38054 Grenoble Cedex 9, France - Université Grenoble-Alpes, 38041 Grenoble, France
| | - Nadia Alfaidy
- Inserm U1036, biologie du cancer et de l'infection, iRTSV, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9, France - Commissariat à l'énergie atomique, institut de recherche en technologie et sciences pour le vivant, 38054 Grenoble Cedex 9, France - Université Grenoble-Alpes, 38041 Grenoble, France
| | - Jean-Jacques Feige
- Inserm U1036, biologie du cancer et de l'infection, iRTSV, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9, France - Commissariat à l'énergie atomique, institut de recherche en technologie et sciences pour le vivant, 38054 Grenoble Cedex 9, France - Université Grenoble-Alpes, 38041 Grenoble, France
| |
Collapse
|
62
|
Holloway AC, Salomon A, Soares MJ, Garnier V, Raha S, Sergent F, Nicholson CJ, Feige JJ, Benharouga M, Alfaidy N. Characterization of the adverse effects of nicotine on placental development: in vivo and in vitro studies. Am J Physiol Endocrinol Metab 2014; 306:E443-E456. [PMID: 24368670 PMCID: PMC4865199 DOI: 10.1152/ajpendo.00478.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/17/2013] [Indexed: 11/22/2022]
Abstract
In utero exposure to nicotine is associated with increased risk of numerous adverse fetal and neonatal outcomes, which suggests that it acts directly to affect placental development and the establishment of the fetomaternal circulation (FC). This study used both in vivo [Wistar rats treated with 1 mg/kg nicotine from 2 wk prior to mating until gestational day (GD) 15] and in vitro (RCHO-1 cell line; treated with 10(-9) to 10(-3)M nicotine) models to examine the effects of nicotine on these pathways. At GD 15, control and treated placentas were examined for the impact of nicotine on 1) trophoblast invasion, proliferation, and degree of hypoxia, 2) labyrinth vascularization, 3) expression of key genes of placental development, and 4) expression of placental angiogenic factors. The RCHO-1 cell line was used to determine the direct effects of nicotine on trophoblast differentiation. Our in vivo experiments show that nicotine inhibits trophoblast interstitial invasion, increases placental hypoxia, downregulates labyrinth vascularization as well as key transcription factors Hand1 and GCM1, and decreases local and circulating EG-VEGF, a key placental angiogenic factor. The in vitro experiments confirmed the inhibitory effects of nicotine on the trophoblast migration, invasion, and differentiation processes and demonstrated that those effects are most likely due to a dysregulation in the expression of nicotine receptors and a decrease in MMP9 activity. Taken together, these data suggest that adverse effects of maternal smoking on pregnancy outcome are due in part to direct and endocrine effects of nicotine on the main processes of placental development and establishment of FC.
Collapse
Affiliation(s)
- A. C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - A. Salomon
- Commissariat à l'Energie Atomique, Grenoble, France
- Université Joseph Fourrier, Grenoble, France
- Institut National de la Santé et de la Recherche Médicale, Grenoble, France
| | - M. J. Soares
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - V. Garnier
- Commissariat à l'Energie Atomique, Grenoble, France
- Université Joseph Fourrier, Grenoble, France
- Institut National de la Santé et de la Recherche Médicale, Grenoble, France
| | - S. Raha
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; and
| | - F. Sergent
- Commissariat à l'Energie Atomique, Grenoble, France
- Université Joseph Fourrier, Grenoble, France
- Institut National de la Santé et de la Recherche Médicale, Grenoble, France
| | - C. J. Nicholson
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - J. J. Feige
- Commissariat à l'Energie Atomique, Grenoble, France
- Université Joseph Fourrier, Grenoble, France
- Institut National de la Santé et de la Recherche Médicale, Grenoble, France
| | - M. Benharouga
- Centre National de la Recherche Scientifique, Grenoble, France
- Commissariat à l'Energie Atomique, Grenoble, France
- Université Joseph Fourrier, Grenoble, France
| | - N. Alfaidy
- Commissariat à l'Energie Atomique, Grenoble, France
- Université Joseph Fourrier, Grenoble, France
- Institut National de la Santé et de la Recherche Médicale, Grenoble, France
| |
Collapse
|
63
|
Lannagan TRM, Wilson MR, Denison F, Norman JE, Catalano RD, Jabbour HN. Prokineticin 1 induces a pro-inflammatory response in murine fetal membranes but does not induce preterm delivery. Reproduction 2013; 146:581-91. [PMID: 24051059 PMCID: PMC3805954 DOI: 10.1530/rep-13-0295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanisms that regulate the induction of term or preterm delivery (PTD) are not fully understood. Infection is known to play a role in the induction of pro-inflammatory cascades in uteroplacental tissues associated with preterm pathological parturition. Similar but not identical cascades are evident in term labour. In the current study, we used a mouse model to evaluate the role of prokineticins in term and preterm parturition. Prokineticins are multi-functioning secreted proteins that signal through G-protein-coupled receptors to induce gene expression, including genes important in inflammatory responses. Expression of prokineticins (Prok1 and Prok2) was quantified in murine uteroplacental tissues by QPCR in the days preceding labour (days 16-19). Prok1 mRNA expression increased significantly on D18 in fetal membranes (compared with D16) but not in uterus or placenta. Intrauterine injection of PROK1 on D17 induced fetal membrane mRNA expression of the pro-inflammatory mediators Il6, Il1b, Tnf, Cxcl2 and Cxcl5, which are not normally up-regulated until D19 of pregnancy. However, intrauterine injection of PROK1 did not result in PTD. As expected, injection of lipopolysaccharide (LPS) induced PTD, but this was not associated with changes in expression of Prok1 or its receptor (Prokr1) in fetal membranes. These results suggest that although Prok1 exhibits dynamic mRNA regulation in fetal membranes preceding labour and induces a pro-inflammatory response when injected into the uterus on D17, it is insufficient to induce PTD. Additionally, prokineticin up-regulation appears not to be part of the LPS-induced inflammatory response in mouse fetal membranes.
Collapse
|
64
|
Brouillet S, Hoffmann P, Thomas-Cadi C, Bergues U, Feige JJ, Alfaidy N, Hennebicq S. [PROK1, prognostic marker of embryo implantation?]. ACTA ACUST UNITED AC 2013; 41:562-5. [PMID: 23972922 DOI: 10.1016/j.gyobfe.2013.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/09/2013] [Indexed: 11/26/2022]
Abstract
In spite of improvements in assisted reproductive technology (ART) during the last 30 years, the rate of pregnancy remains constrained, as only about 25 % of embryo transfer lead to successful pregnancies, even with an average of two embryos replaced. Embryo selection is currently based on the establishment of morphokinetic scores, a method that obviously exhibits limitations. Therefore, the assessment of embryo development potency by criteria of higher predictive value is mandatory in order to increase the rates of pregnancy. Nowadays, there is increasing evidence that angiogenic factors might contribute to the success of the implantation and to the pregnancy outcome. Among these factors, prokineticin 1 (PROK1) and its receptors (PROKRs) constitute new targets that showed over the last ten years strong biological features directly linked to ovarian physiology, endometrial receptivity, embryo implantation and thus successful pregnancies. In ART, the rates of circulating PROK1 were reported in 2012 as significantly linked to the quality of embryonic cohort, as well as to the rates of pregnancy. Our preliminary data suggest a high potential of this cytokine in the success of implantation and pregnancy, and strongly overtones the emergency to investigate the value of its measurement in conditioned media of oocytes and embryo cultures in ART.
Collapse
Affiliation(s)
- S Brouillet
- Centre d'aide médicale à la procréation, CHU de Grenoble, hôpital Couple-Enfant, CS 10217, 38043 Grenoble cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
65
|
Imbalance of expression of bFGF and PK1 is associated with defective maturation and antenatal placental insufficiency. Eur J Obstet Gynecol Reprod Biol 2013; 170:352-7. [PMID: 23891065 DOI: 10.1016/j.ejogrb.2013.06.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/29/2013] [Accepted: 06/28/2013] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Defective placental maturation is associated with restricted functional capacity and adverse perinatal fetal outcomes. The aim of the study was a comparative analysis of the role of mRNA expression of various angiogenic factors in placental maturation defects. STUDY DESIGN We examined the mRNA expression patterns of prokineticin 1 (PK1), its receptors (PKRs), basic-fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) in tissue from third-trimester placentae that exhibited delayed or accelerated villous maturation. RESULTS The expression of PK1 and PKR2 was elevated in placental tissue exhibiting accelerated maturation and a predominant differentiation of terminal villi. The opposite was found in tissue exhibiting delayed maturation and deficiency of the terminal villi. In addition, low expression of bFGF correlated with the predominant differentiation of terminal villi, whereas the opposite was observed when terminal villi were deficient. The expression of VEGF, PIGF, and PKR1 showed no significant differences between the groups. CONCLUSION Defective placental maturation is associated with an imbalance of expression of bFGF and PK1. Our results demonstrate an involvement of the PK1/PKR2-signalling pathway in the regulation of the functional adequate capillarization in late pregnancy. We propose the bFGF/PK1-ratio as a monitor of placental function and a possible indicator of latent clinical problems, such as placental dysfunction leading to fetal hypoxia.
Collapse
|
66
|
Su MT, Lin SH, Chen YC, Wu LW, Kuo PL. Prokineticin receptor variants (PKR1-I379V and PKR2-V331M) are protective genotypes in human early pregnancy. Reproduction 2013; 146:63-73. [DOI: 10.1530/rep-13-0043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and its receptor genes (PROKR1(PKR1) andPROKR2(PKR2)) play an important role in human early pregnancy. We have previously shown thatPROKR1andPROKR2are associated with recurrent miscarriage (RM) using the tag-SNP method. In this study, we aimed to identifyPROKR1andPROKR2variants in idiopathic RM patients by genotyping of the entire coding regions. Peripheral blood DNA samples of 100 RM women and 100 controls were subjected to sequence the entire exons ofPROKR1andPROKR2. Significant non-synonymous variant genotypes present in the original 200 samples were further confirmed in the extended samples of 144 RM patients and 153 controls. Genetic variants that were over- or under-represented in the patients were ectopically expressed in HEK293 and JAR cells to investigate their effects on intracellular calcium influx, cell proliferation, cell invasion, cell–cell adhesion, and tube organization. We found that the allele and genotype frequencies ofPROKR1(I379V) andPROKR2(V331M) were significantly increased in the normal control groups compared with idiopathic RM women (P<0.05).PROKR1(I379V) andPROKR2(V331M) decreased intracellular calcium influx but increased cell invasiveness (P<0.05), whereas cell proliferation, cell–cell adhesion, and tube organization were not significantly affected. In conclusion,PROKR1(I379V) andPROKR2(V331M) variants conferred lower risk for RM and may play protective roles in early pregnancy by altering calcium signaling and facilitating cell invasiveness.
Collapse
|
67
|
Boufettal H, Feige JJ, Benharouga M, Aboussaouira T, Nadifi S, Mahdaoui S, Samouh N, Alfaidy N. [Potential role of the angiogenic factor "EG-VEGF" in gestational trophoblastic diseases]. ACTA ACUST UNITED AC 2013; 61:178-83. [PMID: 23647696 DOI: 10.1016/j.patbio.2013.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 02/15/2013] [Indexed: 10/26/2022]
Abstract
Gestational trophoblastic disease (MGT) includes a wide spectrum of pathologies of the placenta, ranging from benign precancerous lesions, with gestational trophoblastic tumors. Metastases are the leading causes of death as a result of this tumor. They represent a major problem for obstetrics and for the public health system. To date, there is no predictor of the progression of molar pregnancies to gestational trophoblastic tumor (GTT). Only an unfavorable plasma hCG monitoring after evacuation of hydatidiform mole is used to diagnose a TTG. The causes of the development of this cancer are still poorly understood. Increasing data in the literature suggests a close association between the development of this tumor and poor placental vascularization during the first trimester of pregnancy. The development of the human placenta depends on a coordination between the trophoblast and endothelial cells. A disruption in the expression of angiogenic factors could contribute to uterine or extra-uterine tissue invasion by extravillous trophoblast, contributing to the development of TTG. This review sheds lights on the phenomenon of angiogenesis during normal and abnormal placentation, especially during the MGT and reports preliminary finding concerning, the variability of expression of "Endocrine Gland-Derived Vascular Endothelial Growth Factor" (EG-VEGF), a specific placental angiogenic factor, in normal and molar placentas, and the potential role of differentiated expressions of the main placental angiogenic factors in the scalability of hydatidiform moles towards a recovery or towards the development of gestational trophoblastic tumor. Deciphering the mechanisms by which the angiogenic factor influences these processes will help understand the pathophysiology of MGT and to create opportunities for early diagnosis and treatment of the latter.
Collapse
Affiliation(s)
- H Boufettal
- 29, lotissement Abdelmoumen, résidence Al Mokhtar, 20340 Casablanca, Maroc; Centre d'études doctorales, formation doctorale en génétique et biologie moléculaire, faculté de médecine et de pharmacie, université Aïn Chok, Casablanca, Maroc; Service de gynécologie-obstétrique « C », faculté de médecine et de pharmacie, université Aïn Chok, CHU Ibn Rochd, Casablanca, Maroc.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Alfaidy N, Chauvet S, Donadio-Andrei S, Salomon A, Saoudi Y, Richaud P, Aude-Garcia C, Hoffmann P, Andrieux A, Moulis JM, Feige JJ, Benharouga M. Prion protein expression and functional importance in developmental angiogenesis: role in oxidative stress and copper homeostasis. Antioxid Redox Signal 2013; 18:400-11. [PMID: 22861352 DOI: 10.1089/ars.2012.4637] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIM It has been convincingly shown that oxidative stress and toxicity by deregulated metals, such as copper (Cu), are tightly linked to the development of pre-eclampsia and intrauterine growth retardation (IUGR), the most threatening pathologies of human pregnancy. However, mechanisms implemented to control these effects are far from being understood. Among proteins that bind Cu and insure cellular protection against oxidative stress is the cellular prion protein (PrP(C)), a glycosyl phosphatidyl inositol-anchored glycoprotein, which we reported to be highly expressed in human placenta. Herein, we investigated the pathophysiological role of PrP(C) in Cu and oxidative stress homeostasis in vitro using human placenta and trophoblast cells, and in vivo using three strains of mice (C57Bl6, PrP(C) knockout mice [PrP(-/-)], and PrP(C) overexpressing mice [Tga20]). RESULTS At the cellular level, PrP(C) protection against oxidative stress was established in multiple angiogenic processes: proliferation, migration, and tube-like organization. For the animal models, lack (PrP(-/-)) or overexpression (Tga20) of PrP(C) in gravid mice caused severe IUGR that was correlated with a decrease in litter size, changes in Cu homeostasis, increase in oxidative stress response, development of hypoxic environment, failure in placental function, and maintenance of growth defects of the offspring even 7.5 months after delivery. INNOVATION PrP(C) could serve as a marker for the idiopathic IUGR disease. CONCLUSION These findings demonstrate the stress-protective role of PrP(C) during development, and propose PrP(C) dysregulation as a novel causative element of IUGR.
Collapse
Affiliation(s)
- Nadia Alfaidy
- Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Brouillet S, Murthi P, Hoffmann P, Salomon A, Sergent F, De Mazancourt P, Dakouane-Giudicelli M, Dieudonné MN, Rozenberg P, Vaiman D, Barbaux S, Benharouga M, Feige J, Alfaidy N. EG-VEGF controls placental growth and survival in normal and pathological pregnancies: case of fetal growth restriction (FGR). Cell Mol Life Sci 2013; 70:511-25. [PMID: 22941044 PMCID: PMC11113665 DOI: 10.1007/s00018-012-1141-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 02/05/2023]
Abstract
Identifiable causes of fetal growth restriction (FGR) account for 30 % of cases, but the remainders are idiopathic and are frequently associated with placental dysfunction. We have shown that the angiogenic factor endocrine gland-derived VEGF (EG-VEGF) and its receptors, prokineticin receptor 1 (PROKR1) and 2, (1) are abundantly expressed in human placenta, (2) are up-regulated by hypoxia, (3) control trophoblast invasion, and that EG-VEGF circulating levels are the highest during the first trimester of pregnancy, the period of important placental growth. These findings suggest that EG-VEGF/PROKR1 and 2 might be involved in normal and FGR placental development. To test this hypothesis, we used placental explants, primary trophoblast cultures, and placental and serum samples collected from FGR and age-matched control women. Our results show that (1) EG-VEGF increases trophoblast proliferation ([(3)H]-thymidine incorporation and Ki67-staining) via the homeobox-gene, HLX (2) the proliferative effect involves PROKR1 but not PROKR2, (3) EG-VEGF does not affect syncytium formation (measurement of syncytin 1 and 2 and β hCG production) (4) EG-VEGF increases the vascularization of the placental villi and insures their survival, (5) EG-VEGF, PROKR1, and PROKR2 mRNA and protein levels are significantly elevated in FGR placentas, and (6) EG-VEGF circulating levels are significantly higher in FGR patients. Altogether, our results identify EG-VEGF as a new placental growth factor acting during the first trimester of pregnancy, established its mechanism of action, and provide evidence for its deregulation in FGR. We propose that EG-VEGF/PROKR1 and 2 increases occur in FGR as a compensatory mechanism to insure proper pregnancy progress.
Collapse
Affiliation(s)
- S. Brouillet
- Laboratoire BCI -iRTSV, Institut National de la Santé et de la Recherche Médicale U1036, Biologie du Cancer et de l’Infection, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique, Institut de Recherche en Technologie et Sciences pour le Vivant, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - P. Murthi
- Department of Perinatal Medicine Pregnancy Research Centre, Royal Women’s Hospital, Parkville, VIC 3052 Australia
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, University of Melbourne, Parkville, VIC 3052 Australia
| | - P. Hoffmann
- Laboratoire BCI -iRTSV, Institut National de la Santé et de la Recherche Médicale U1036, Biologie du Cancer et de l’Infection, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique, Institut de Recherche en Technologie et Sciences pour le Vivant, Grenoble, France
- Université Joseph Fourier, Grenoble, France
- Département de Gynécologie, Obstétrique et Médecine de la Reproduction, Centre Hospitalier Régional Universitaire de Grenoble, Grenoble, France
| | - A. Salomon
- Laboratoire BCI -iRTSV, Institut National de la Santé et de la Recherche Médicale U1036, Biologie du Cancer et de l’Infection, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique, Institut de Recherche en Technologie et Sciences pour le Vivant, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - F. Sergent
- Laboratoire BCI -iRTSV, Institut National de la Santé et de la Recherche Médicale U1036, Biologie du Cancer et de l’Infection, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique, Institut de Recherche en Technologie et Sciences pour le Vivant, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - P. De Mazancourt
- Université de Versailles-St Quentin, Service de Biochimie et Biologie Moléculaire EA2493, Poissy, France
| | - M. Dakouane-Giudicelli
- Université de Versailles-St Quentin, Service de Biochimie et Biologie Moléculaire EA2493, Poissy, France
| | - M. N. Dieudonné
- Université de Versailles-St Quentin, Service de Biochimie et Biologie Moléculaire EA2493, Poissy, France
| | - P. Rozenberg
- Université de Versailles-St Quentin, Service de Biochimie et Biologie Moléculaire EA2493, Poissy, France
| | - D. Vaiman
- Département Génétique et Développement, Institut Cochin, Paris, France
| | - S. Barbaux
- Département Génétique et Développement, Institut Cochin, Paris, France
| | - M. Benharouga
- Commissariat à l’Energie Atomique, Institut de Recherche en Technologie et Sciences pour le Vivant, Grenoble, France
- Université Joseph Fourier, Grenoble, France
- Centre National de la Recherche Scientifique, UMR 5249, Grenoble, France
| | - J.–J. Feige
- Laboratoire BCI -iRTSV, Institut National de la Santé et de la Recherche Médicale U1036, Biologie du Cancer et de l’Infection, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique, Institut de Recherche en Technologie et Sciences pour le Vivant, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - N. Alfaidy
- Laboratoire BCI -iRTSV, Institut National de la Santé et de la Recherche Médicale U1036, Biologie du Cancer et de l’Infection, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique, Institut de Recherche en Technologie et Sciences pour le Vivant, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| |
Collapse
|
70
|
Kaur KK, Allahbadia G, Singh M. An update on the role of prokineticins in human reproduction-potential therapeutic implications. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojgen.2013.33023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
71
|
Kaspi E, Guillet B, Piercecchi-Marti MD, Alfaidy N, Bretelle F, Bertaud-Foucault A, Stalin J, Rambeloson L, Lacroix O, Blot-Chabaud M, Dignat-George F, Bardin N. Identification of soluble CD146 as a regulator of trophoblast migration: potential role in placental vascular development. Angiogenesis 2012; 16:329-42. [PMID: 23108590 DOI: 10.1007/s10456-012-9317-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/15/2012] [Indexed: 11/24/2022]
Abstract
Both vasculogenesis and angiogenesis occur during normal placental vascular development. Additionally, the placenta undergoes a process of vascular mimicry (pseudo-vasculogenesis) where the placental extravillous trophoblast (EVT) that invade the spiral arteries convert from an epithelial to an endothelial phenotype during normal pregnancy. As soluble CD146 (sCD146) constitutes a new physiological factor with angiogenic properties, we hypothesized that it could be involved in the regulation of placental vascular development by acting on EVT. Using placental villous explants, we demonstrated that sCD146 inhibits EVT outgrowth. Consistently, we showed that sCD146 inhibits the ability of EVT cells (HTR8/SVneo) to migrate, invade and form tubes in Matrigel, without affecting their proliferation or apoptosis. The involvement of sCD146 in human pregnancy was investigated by evaluation of sCD146 levels in 50 pregnant women. We observed physiological down-regulation of sCD146 throughout pregnancy. These results prompted us to investigate the effect of prolonged sCD146 administration in a rat model of pregnancy. Repeated systemic sCD146 injections after coupling caused a significant decrease of pregnancy rate and number of embryos. Histological studies performed on placenta evidenced a reduced migration of glycogen cells (analogous to EVT in rat) in sCD146-treated rats. We propose that in human, sCD146 could represent both an attractive biomarker of placental vascular development and a therapeutic target in pregnancy complications associated with pathological angiogenesis.
Collapse
Affiliation(s)
- Elise Kaspi
- Inserm UMR-S 1076, Faculté de Pharmacie, Aix-Marseille University, 27 Bd Jean Moulin, 13385, Marseille Cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Brouillet S, Hoffmann P, Feige JJ, Alfaidy N. EG-VEGF: a key endocrine factor in placental development. Trends Endocrinol Metab 2012; 23:501-508. [PMID: 22709436 DOI: 10.1016/j.tem.2012.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/14/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
Abstract
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF), also named prokineticin 1, is the canonical member of the prokineticin family. Numerous reports suggest a direct involvement of this peptide in normal and pathological reproductive processes. Recent advances propose EG-VEGF as a key endocrine factor that controls many aspects of placental development and suggest its involvement in the development of preeclampsia (PE), the most threatening pathology of human pregnancy. This review describes the finely tuned action and regulation of EG-VEGF throughout human pregnancy, argues for its clinical relevance as a potential diagnostic marker of the onset of PE, and discusses future research directions for therapeutic targeting of EG-VEGF.
Collapse
Affiliation(s)
- Sophie Brouillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1036, Grenoble, France
| | | | | | | |
Collapse
|
73
|
Lala N, Girish GV, Cloutier-Bosworth A, Lala PK. Mechanisms in decorin regulation of vascular endothelial growth factor-induced human trophoblast migration and acquisition of endothelial phenotype. Biol Reprod 2012; 87:59. [PMID: 22699486 DOI: 10.1095/biolreprod.111.097881] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Extravillous trophoblast (EVT) cells of the human placenta invade the uterine decidua and utero-placental arteries to establish an efficient exchange of key molecules between maternal and fetal blood. Trophoblast invasion is stringently regulated in situ both positively and negatively by a variety of factors at the fetal-maternal interface to maintain a healthy utero-placental homeostasis. One such factor, decorin, a transforming growth factor (TGF)-beta binding, leucine-rich proteoglycan produced by the decidua, negatively regulates EVT proliferation, migration, and invasiveness independent of TGF-beta. We reported that these decorin actions were mediated by its binding to multiple tyrosine kinase receptors, including vascular endothelial growth factor receptor (VEGFR)-2. The present study explores the mechanisms underlying decorin antagonism of VEGF (VEGF-A) stimulation of endovascular differentiation of EVT using our EVT cell line, HTR-8/SVneo. We observe that decorin inhibits VEGF-induced EVT cell migration and endothelial-like tube formation on matrigel. VEGF activates MAPKs (p38 MAPK, MEK3/6, and ERK1/2) in EVT cells, and the activation is blocked in both cases by decorin. Employing selective MAPK inhibitors, we show that both p38 and ERK pathways contribute independently to VEGF-induced EVT migration and capillary-like tube formation. VEGF upregulates the vascular endothelial (VE) markers VE-cadherin and beta-catenin in EVT and endothelial cells, and this upregulation is blocked by decorin and MAPK inhibitors. These results suggest that decorin inhibits VEGF-A stimulation of trophoblast migration and endovascular differentiation by interfering with p38 MAPK and ERK1/2 activation. Thus decorin-mediated dual impediment of endovascular differentiation of the EVT and angiogenesis may have implications for pathogenesis of preeclampsia, a hypoinvasive trophoblast disorder in pregnancy.
Collapse
Affiliation(s)
- Neena Lala
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
74
|
WEN CW, NING DG, LIU RJ, ZHANG YW. A Novel Target for Starving Tumor Therapy: Endocrine-gland-derived Vascular Endothelial Growth Factor*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
75
|
Brouillet S, Hoffmann P, Chauvet S, Salomon A, Chamboredon S, Sergent F, Benharouga M, Feige JJ, Alfaidy N. Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors. Cell Mol Life Sci 2012; 69:1537-50. [PMID: 22138749 PMCID: PMC11115148 DOI: 10.1007/s00018-011-0889-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/02/2011] [Accepted: 11/14/2011] [Indexed: 11/25/2022]
Abstract
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.
Collapse
MESH Headings
- Base Sequence
- Cells, Cultured
- Chorionic Gonadotropin/metabolism
- Chorionic Gonadotropin/pharmacology
- DNA Primers/genetics
- Female
- Gene Expression/drug effects
- Humans
- In Vitro Techniques
- Models, Biological
- Molecular Sequence Data
- Placenta/drug effects
- Placenta/metabolism
- Placentation
- Pregnancy
- Pregnancy Trimester, First
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, LH/metabolism
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Trophoblasts/drug effects
- Trophoblasts/metabolism
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/genetics
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/metabolism
Collapse
Affiliation(s)
- S Brouillet
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Laboratoire Biologie du Cancer et de l'Infection, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
James JL, Cartwright JE, Whitley GS, Greenhill DR, Hoppe A. The regulation of trophoblast migration across endothelial cells by low shear stress: consequences for vascular remodelling in pregnancy. Cardiovasc Res 2011; 93:152-61. [DOI: 10.1093/cvr/cvr276] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
77
|
Gorowiec MR, Catalano RD, Norman JE, Denison FC, Jabbour HN. Prokineticin 1 induces inflammatory response in human myometrium: a potential role in initiating term and preterm parturition. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2709-19. [PMID: 21983634 PMCID: PMC3228917 DOI: 10.1016/j.ajpath.2011.08.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/21/2011] [Accepted: 08/18/2011] [Indexed: 01/14/2023]
Abstract
The infiltration of human myometrium and cervix with leukocytes and the formation of a pro-inflammatory environment within the uterus have been associated with the initiation of both term and preterm parturition. The mechanism regulating the onset of this pro-inflammatory cascade is not fully elucidated. We demonstrate that prokineticin 1 (PROK1) is up-regulated in human myometrium and placenta during labor. The expression of PROK1 receptor remains unchanged during labor and is abundantly expressed in the myometrium. Gene array analysis identified 65 genes up-regulated by PROK1 in human myometrium, mainly cytokines and chemokines, including IL-1β, chemokine C-C motif ligand 3, and colony-stimulating factor 3. In addition, we demonstrate that PROK1 increases the expression of chemokine C-C motif ligand 20, IL-6, IL-8, prostaglandin synthase 2, and prostaglandin E(2) and F(2α) secretion. The treatment of myometrial explants with 100 ng/mL of lipopolysaccharide up-regulates the expression of PROK1, PROK1 receptor, and inflammatory mediators. The infection of myometrial explants with lentiviral microRNA targeting PROK1, preceding treatment with lipopolysaccharide, reduces the expression of inflammatory genes. We propose that PROK1 is a novel inflammatory mediator that can contribute to the onset of human parturition at term and partially mediate premature onset of inflammatory pathways during bacterial infection.
Collapse
Affiliation(s)
- Marta R Gorowiec
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
78
|
Alpha II Antiplasmin Deficiency Complicating Pregnancy: A Case Report. Obstet Gynecol Int 2011; 2011:698648. [PMID: 21765837 PMCID: PMC3135094 DOI: 10.1155/2011/698648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 03/14/2011] [Indexed: 11/25/2022] Open
Abstract
Background. Alpha II antiplasmin is a protein involved in the inhibition of fibrinolysis. A deficiency in this protein leads to increased hemorrhage. It is inherited in an autosomal recessive fashion. Case. 30-year-old Gravida 1, Para 0, presented for prenatal care with her first and subsequently her second pregnancy. Her medical history was significant for a known deficiency in alpha II antiplasmin. Her first and second pregnancies were complicated by nonobstetrical hemorrhage requiring transfusions and severe preeclampsia requiring preterm deliveries.
Conclusion. Alpha II antiplasmin deficiency resulted in multiple episodes of nonobstetrical hemorrhages requiring transfusion and ultimately preterm deliveries due to severe preeclampsia.
Both infants and mother had a good outcome. The presence of this disorder may require a multidisciplinary team approach involving obstetricians, pediatricians, and hematologists. Precis. Alpha II antiplasmin deficiency is a rare autosomal recessive disorder leading to increased fibrinolysis and hemorrhage. We present a case report of a pregnancy complicated by this disorder.
Collapse
|
79
|
Waddell JM, Evans J, Jabbour HN, Denison FC. CTGF expression is up-regulated by PROK1 in early pregnancy and influences HTR-8/Svneo cell adhesion and network formation. Hum Reprod 2010; 26:67-75. [PMID: 21098624 PMCID: PMC3005999 DOI: 10.1093/humrep/deq294] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Prokineticin-1 (PROK1) and connective tissue growth factor (CTGF) are expressed in human endometrium and first-trimester decidua and have individually been proposed to have roles in implantation and placentation. We have recently demonstrated that CTGF may be a target gene for PROK1 in gene array analysis of a prokineticin receptor-1 stably transfected Ishikawa endometrial epithelial cell line (PROKR1-Ishikawa). The first aim of the study was to determine the effect of PROK1 on CTGF expression in PROKR1-Ishikawa cells and first-trimester decidua samples. Secondly, the effect of CTGF on trophoblast-derived HTR-8/SVneo cell adhesion and network formation was investigated. METHODS AND RESULTS Real-time qPCR showed that CTGF expression is elevated in first-trimester decidua compared with non-pregnant endometrium. In decidua, CTGF co-localized with PROKR1 to the glandular epithelium and a subset of stromal cells. PROK1 increased CTGF mRNA and protein expression in PROKR1-Ishikawa cells and first-trimester human decidua (8–12 weeks gestation). Knock down of endogenous PROK1 using micro RNA constructs targeted at PROK1, resulted in decreased expression of CTGF mRNA and protein in decidua. Inhibitors of specific cell signalling molecules demonstrated that PROK1 regulates CTGF expression via the Gq, phospholipase C (PLC), cSrc, epidermal growth factor receptor (EGFR), mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) kinase pathway activation. Treatment of trophoblast-derived HTR-8/Svneo cells with 1 µg/ml CTGF significantly increased adhesion to collagen IV, and differentiation of the cells into tube-like structures in matrigel. CONCLUSIONS CTGF expression in early pregnancy decidua is regulated by PROK1, via activation of the Gq, PLC, cSrc, EGFR, MAPK/ERK kinase pathway. CTGF in turn may contribute to the regulation of trophoblast conversion of maternal spiral arteries.
Collapse
Affiliation(s)
- Jennifer M Waddell
- Medical Research Council, Human Reproductive Sciences Unit, The Queen's Medical Research Institute, Edinburgh, UK
| | | | | | | |
Collapse
|
80
|
Bussen S, Bussen D. Influence of the vascular endothelial growth factor on the development of severe pre-eclampsia or HELLP syndrome. Arch Gynecol Obstet 2010; 284:551-7. [DOI: 10.1007/s00404-010-1704-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/22/2010] [Indexed: 12/25/2022]
|
81
|
Brouillet S, Hoffmann P, Benharouga M, Salomon A, Schaal JP, Feige JJ, Alfaidy N. Molecular characterization of EG-VEGF-mediated angiogenesis: differential effects on microvascular and macrovascular endothelial cells. Mol Biol Cell 2010; 21:2832-43. [PMID: 20587779 PMCID: PMC2921113 DOI: 10.1091/mbc.e10-01-0059] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Endocrine gland derived vascular endothelial growth factor (EG-VEGF) also called prokineticin (PK1), has been identified and linked to several biological processes including angiogenesis. EG-VEGF is abundantly expressed in the highest vascularized organ, the human placenta. Here we characterized its angiogenic effect using different experimental procedures. Immunohistochemistry was used to localize EG-VEGF receptors (PROKR1 and PROKR2) in placental and umbilical cord tissue. Primary microvascular placental endothelial cell (HPEC) and umbilical vein-derived macrovascular EC (HUVEC) were used to assess its effects on proliferation, migration, cell survival, pseudovascular organization, spheroid sprouting, permeability and paracellular transport. siRNA and neutralizing antibody strategies were used to differentiate PROKR1- from PROKR2-mediated effects. Our results show that 1) HPEC and HUVEC express both types of receptors 2) EG-VEGF stimulates HPEC's proliferation, migration and survival, but increases only survival in HUVECs. and 3) EG-VEGF was more potent than VEGF in stimulating HPEC sprout formation, pseudovascular organization, and it significantly increases HPEC permeability and paracellular transport. More importantly, we demonstrated that PROKR1 mediates EG-VEGF angiogenic effects, whereas PROKR2 mediates cellular permeability. Altogether, these data characterized angiogenic processes mediated by EG-VEGF, depicted a new angiogenic factor in the placenta, and suggest a novel view of the regulation of angiogenesis in placental pathologies.
Collapse
Affiliation(s)
- Sophie Brouillet
- Institut National de la Santé et de la Recherche Médicale, Unité 878, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|