51
|
Effects of Temoporfin-Based Photodynamic Therapy on the In Vitro Antibacterial Activity and Biocompatibility of Gelatin-Hyaluronic Acid Cross-Linked Hydrogel Membranes. Pharmaceutics 2022; 14:pharmaceutics14112314. [PMID: 36365133 PMCID: PMC9699569 DOI: 10.3390/pharmaceutics14112314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
This study was performed to design a hydrogel membrane that exhibits antibacterial properties and guides different tissues. Gelatin and hyaluronic acid were used as the main structures, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) was used as a cross-linker, and temoporfin was used as an antibacterial agent. The results revealed that the hydrogel membrane impregnated with temoporfin (HM-T) had a fixation index of >89%. Temoporfin was used in conjunction with a diode laser and did not significantly affect EDC-induced cross-linking. The inhibitory activity of temoporfin showed that HM-T15 and HM-T30 (light exposure for 15 and 30 min, respectively) had remarkable antibacterial properties. The cell survival rate of HM-T15 was 73% of that of the control group, indicating that temoporfin exposure for 15 min did not exert cytotoxic effects on L-929 cells. HM and HM-T15 hydrogel membranes showed good cell adhesion and proliferation after 14 days of dark incubation. However, the hydrogel membrane containing temoporfin significantly reduced pro-inflammatory gene expression. In summary, the HM-T15 group showed potential as a biodegradable material for biocompatible tissue-guarded regeneration membranes with antibacterial properties. This study demonstrated the potential of temoporfin for innovative biomaterials and delivery systems applied to new regenerative periodontal therapies.
Collapse
|
52
|
Zhao Q, Liu J, Liu S, Han J, Chen Y, Shen J, Zhu K, Ma X. Multipronged Micelles-Hydrogel for Targeted and Prolonged Drug Delivery in Chronic Wound Infections. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46224-46238. [PMID: 36201628 DOI: 10.1021/acsami.2c12530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chronic diabetic wounds are a growing threat globally. Many aspects contribute to its deterioration, including bacterial infection, unbalanced microenvironment, dysfunction of cell repair, etc. In this work, we designed a multipronged micelles-hydrogel platform loaded with curcumin and rifampicin (CRMs-hydrogel) for bacteria-infected chronic wound treatment. The curcumin- and rifampicin-loaded micelles (CRMs) exhibited both MMP9-responsive and epidermal growth factor receptor (EGFR)-targeting abilities. On the one hand, drugs could be released from micelles due to responsive disassembly by MMP9, a matrix metalloproteinase overexpressed in a chronic wound environment; on the other hand, CRMs showed specific targeting to EGFR on epithelial cells and fibroblasts and therefore increased intracellular drug delivery. The thermosensitive CRMs-hydrogel could form strong adhesion with the wound area and served as a suitable matrix for sustained release of CRMs directly at the wound bed, with excellent intracellular and extracellular bacterial elimination efficiency and wound healing promotion capability. We found that a single dose of CRMs-hydrogel achieved 99% antibacterial rate at the MRSA-infected diabetic wound, which effectively reduced inflammatory response and promoted the neovascularization and re-epithelialization process, with nearly half reduction of the skin barrier regeneration period. Collectively, our thermosensitive, MMP9-responsive, and targeted micelles-hydrogel nanoplatform is promising for chronic wound treatment.
Collapse
Affiliation(s)
- Qian Zhao
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Translational Research Center, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing102218, China
| | - Suhan Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Junhua Han
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Yingxian Chen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Kui Zhu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Xiaowei Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| |
Collapse
|
53
|
Reoperation on an Implant-Supported Restoration in the Maxillary Anterior Region to Correct a Complex Aesthetic Deficit. Case Rep Dent 2022; 2022:2956643. [PMID: 35992326 PMCID: PMC9391186 DOI: 10.1155/2022/2956643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/02/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction In an era in which patients are becoming more and more demanding and in which there are many ways to satisfy their needs, modern implantology must consider the correct management of soft tissues during treatment planning, aiming for both functional and aesthetic rehabilitation while creating a prosthetic construction that is in harmony not only with the natural dentition of the patient but also with their face. The patient who came to our notice had a rehabilitative prosthetic implant on the left central incisor area, which did not satisfy any functional or aesthetic parameter. Furthermore, he presented an altered passive eruption in the contralateral hemiarch. Materials and Methods The prosthetic crown was removed, the tissues were studied, and the team decided to proceed with customizing a provisional restoration that would cause the soft tissues to descend. A surgical periodontal procedure was then performed to solve the altered passive eruption condition that was also compromising the aesthetics. In conclusion, a permanent prosthetic crown was fixed into place. Discussion. Using a periodontal approach that was both surgical and prosthetic, the patient was rehabilitated correctly regaining both functions and aesthetics. It is of fundamental importance that each step in the procedure is carefully programmed; otherwise, the risk of making mistakes increases and solving the problems becomes less simple or less immediate. In order to do this, one must bear in mind that certain clinical cases can apparently concern just one tooth, yet the mouth must be considered as a whole, both functionally and aesthetically. To perform an optimal implantology, the clinician should be an expert in periodontology so that they can plan and, should it be necessary, perform all the therapeutical options (surgical and nonsurgical) that can lead to the best possible result. Conclusions The resolution of this complex clinical case has been documented in order to share useful advice for the resolution of analogous cases. We strongly advise that each proposed procedure be planned meticulously and that the periodontological aspect of the case never be separated from the prosthetic or the implantological aspects since the integration of the periodontal tissues is of vital importance for both the functional and the aesthetic results.
Collapse
|
54
|
Lee J, Min HK, Park CY, Kang HK, Jung SY, Min BM. A vitronectin-derived peptide prevents and restores alveolar bone loss by modulating bone re-modelling and expression of RANKL and IL-17A. J Clin Periodontol 2022; 49:799-813. [PMID: 35634689 DOI: 10.1111/jcpe.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022]
Abstract
AIM This study investigated whether a vitronectin-derived peptide (VnP-16) prevents and/or reverses alveolar bone resorption induced by ligature-induced periodontitis in rodents and identified the underlying mechanism. MATERIALS AND METHODS We evaluated the effects of VnP-16 on osteogenic differentiation in human periodontal ligament cells (hPDLCs), lipopolysaccharide-induced inflammatory responses in gingival fibroblasts, and immune response in T lymphocytes. Ligature-induced periodontitis was induced by ligating the bilateral mandibular first molars for 14 days in rats and for 7 days in mice (n = 10/group). VnP-16 (100 μg/10 μl) was applied topically into the gingival sulcus of rats via intra-sulcular injection, whereas the peptide (50 μg/5 μl) was administered directly into the gingiva of mice via intra-gingival injection. To evaluate the preventive and therapeutic effects of VnP-16, micro-computed tomography analysis and histological staining were then performed. RESULTS VnP-16 promoted osteogenic differentiation of periodontal ligament cells and inhibited the production of lipopolysaccharide-induced inflammatory mediators in gingival fibroblasts. Concomitantly, VnP-16 modulated the host immune response by reducing the number of receptor activator of NF-κB ligand (RANKL)-expressing lipopolysaccharide-stimulated CD4+ and CD8+ T cells, and by suppressing RANKL and interleukin (IL)-17A production. Furthermore, local administration of VnP-16 in rats and mice significantly prevented and reversed alveolar bone loss induced by ligature-induced periodontitis. VnP-16 enhanced osteoblastogenesis and simultaneously inhibited osteoclastogenesis and suppressed RANKL and IL-17A expression in vivo. CONCLUSIONS Our findings suggest that VnP-16 acts as a potent therapeutic agent for preventing and treating periodontitis by regulating bone re-modelling and immune and inflammatory responses.
Collapse
Affiliation(s)
- Junbeom Lee
- Department of Periodontology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, South Korea
| | - Cho Yeon Park
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Hyun Ki Kang
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Sung Youn Jung
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Byung-Moo Min
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
55
|
Webb BCW, Glogauer M, Santerre JP. The Structure and Function of Next-Generation Gingival Graft Substitutes-A Perspective on Multilayer Electrospun Constructs with Consideration of Vascularization. Int J Mol Sci 2022; 23:5256. [PMID: 35563649 PMCID: PMC9099797 DOI: 10.3390/ijms23095256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022] Open
Abstract
There is a shortage of suitable tissue-engineered solutions for gingival recession, a soft tissue defect of the oral cavity. Autologous tissue grafts lead to an increase in morbidity due to complications at the donor site. Although material substitutes are available on the market, their development is early, and work to produce more functional material substitutes is underway. The latter materials along with newly conceived tissue-engineered substitutes must maintain volumetric form over time and have advantageous mechanical and biological characteristics facilitating the regeneration of functional gingival tissue. This review conveys a comprehensive and timely perspective to provide insight towards future work in the field, by linking the structure (specifically multilayered systems) and function of electrospun material-based approaches for gingival tissue engineering and regeneration. Electrospun material composites are reviewed alongside existing commercial material substitutes', looking at current advantages and disadvantages. The importance of implementing physiologically relevant degradation profiles and mechanical properties into the design of material substitutes is presented and discussed. Further, given that the broader tissue engineering field has moved towards the use of pre-seeded scaffolds, a review of promising cell options, for generating tissue-engineered autologous gingival grafts from electrospun scaffolds is presented and their potential utility and limitations are discussed.
Collapse
Affiliation(s)
- Brian C. W. Webb
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada; (B.C.W.W.); (M.G.)
- Institute of Biomedical Engineering, University of Toronto, 164 Collage St Room 407, Toronto, ON M5S 3G9, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada; (B.C.W.W.); (M.G.)
| | - J. Paul Santerre
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada; (B.C.W.W.); (M.G.)
- Institute of Biomedical Engineering, University of Toronto, 164 Collage St Room 407, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
56
|
Iliopoulos JM, Layrolle P, Apatzidou DA. Microbial-stem cell interactions in periodontal disease. J Med Microbiol 2022; 71. [PMID: 35451943 DOI: 10.1099/jmm.0.001503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Periodontitis is initiated by hyper-inflammatory responses in the periodontal tissues that generate dysbiotic ecological changes within the microbial communities. As a result, supportive tissues of the tooth are damaged and periodontal attachment is lost. Gingival recession, formation of periodontal pockets with the presence of bleeding, and often suppuration and/or tooth mobility are evident upon clinical examination. These changes may ultimately lead to tooth loss. Mesenchymal stem cells (MSCs) are implicated in controlling periodontal disease progression and have been shown to play a key role in periodontal tissue homeostasis and regeneration. Evidence shows that MSCs interact with subgingival microorganisms and their by-products and modulate the activity of immune cells by either paracrine mechanisms or direct cell-to-cell contact. The aim of this review is to reveal the interactions that take place between microbes and in particular periodontal pathogens and MSCs in order to understand the factors and mechanisms that modulate the regenerative capacity of periodontal tissues and the ability of the host to defend against putative pathogens. The clinical implications of these interactions in terms of anti-inflammatory and paracrine responses of MSCs, anti-microbial properties and alterations in function including their regenerative potential are critically discussed based on literature findings. In addition, future directions to design periodontal research models and study ex vivo the microbial-stem cell interactions are introduced.
Collapse
Affiliation(s)
- Jordan M Iliopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Pierre Layrolle
- INSERM, ToNIC, Pavillon Baudot, CHU Purpan, University of Toulouse, Toulouse, UMR 1214, France
| | - Danae A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
57
|
Liu G, Zhang B, Wan T, Zhou C, Fan Y, Tian W, Jing W. A 3D-printed biphasic calcium phosphate scaffold loaded with platelet lysate/gelatin methacrylate to promote vascularization. J Mater Chem B 2022; 10:3138-3151. [PMID: 35352743 DOI: 10.1039/d2tb00006g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
3D-printed biphasic calcium phosphate (BCP) scaffolds show great clinical application potential in bone tissue engineering; however, vascularization of the scaffold is a crucial step for bone regeneration and is still difficult to be controlled. To enhance scaffold vascularization, a novel bioactive scaffold loaded with platelet lysate/gelatin methacrylate (PL/GelMA) in a BCP scaffold was proposed for promoting vascularization. The PL/GelMA/BCP scaffold was successfully prepared via digital light processing (DLP) printing and filled with PL/GelMA to promote the vascularization effect. In vitro evaluation indicated that human umbilical vein endothelial cells (HUVECs) adhered well on the PL/GelMA/BCP scaffold, and cell proliferation was significantly promoted by coculture with the scaffold. Moreover, a variety of growth factors (GFs) in the PL were detected which were slowly released from the scaffold to modulate the cell behaviour and promote the formation of blood vessel-like structures. Co-culturing with the PL/GelMA/BCP scaffold upregulated the expression of angiogenesis-related genes in cells. In vitro results showed that a higher capillary formation was also observed in PL/GelMA/BCP scaffolds implanted subcutaneously on the back of the rats. These results indicated that the vascularization ability of BCP was enhanced by filling it with PL/GelMA. The PL/GelMA/BCP scaffold has the potential to promote vascularization in tissue engineering.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd., Chengdu, Sichuan 610041, China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ting Wan
- Affiliated Hospital of Sichuan Nursing Vocational College (The Third People's Hospital of Sichuan Province), Chengdu 610071, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd., Chengdu, Sichuan 610041, China
| | - Wei Jing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd., Chengdu, Sichuan 610041, China
| |
Collapse
|
58
|
Fraser D, Caton J, Benoit DSW. Periodontal Wound Healing and Regeneration: Insights for Engineering New Therapeutic Approaches. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.815810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a widespread inflammatory disease that leads to loss of the tooth supporting periodontal tissues. The few therapies available to regenerate periodontal tissues have high costs and inherent limitations, inspiring the development of new approaches. Studies have shown that periodontal tissues have an inherent capacity for regeneration, driven by multipotent cells residing in the periodontal ligament (PDL). The purpose of this review is to describe the current understanding of the mechanisms driving periodontal wound healing and regeneration that can inform the development of new treatment approaches. The biologic basis underlying established therapies such as guided tissue regeneration (GTR) and growth factor delivery are reviewed, along with examples of biomaterials that have been engineered to improve the effectiveness of these approaches. Emerging therapies such as those targeting Wnt signaling, periodontal cell delivery or recruitment, and tissue engineered scaffolds are described in the context of periodontal wound healing, using key in vivo studies to illustrate the impact these approaches can have on the formation of new cementum, alveolar bone, and PDL. Finally, design principles for engineering new therapies are suggested which build on current knowledge of periodontal wound healing and regeneration.
Collapse
|
59
|
Ohshima H, Mishima K, Amizuka N. Oral biosciences: The annual review 2021. J Oral Biosci 2022; 64:1-7. [PMID: 35143953 DOI: 10.1016/j.job.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND The Journal of Oral Biosciences is devoted to advancing and disseminating fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT This review features review articles in the fields of "Extracellular Vesicles," "Propolis," "Odontogenic Tumors," "Periodontitis," "Periodontium," "Flavonoids," "Lactoferrin," "Dental Plaque," "Anatomy," "Induced Pluripotent Stem Cells," "Bone Cell Biology," "Dysgeusia," "Dental Caries," and "Dental Pulp Cavity," in addition to the review article by the winners of the "Lion Award" ("Sox9 function in salivary gland development") presented by the Japanese Association for Oral Biology. CONCLUSION These reviews in the Journal of Oral Biosciences have inspired its readers to broaden their knowledge regarding various aspects of oral biosciences. The current editorial review introduces these exciting review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 Kita-ku, Sapporo, 060-8586, Japan
| |
Collapse
|
60
|
Hao Y, Wang Y, Du M, Wang L, Liu Z, Zhang C, Cao Z, He H. Effects of long noncoding RNA H19 on cementoblast differentiation, mineralisation, and proliferation. Acta Odontol Scand 2022; 80:150-156. [PMID: 34392794 DOI: 10.1080/00016357.2021.1966096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Cementum which is a layer of thin and bone-like mineralised tissue covering tooth root surface is deposited and mineralised by cementoblasts. Recent studies suggested long noncoding RNA H19 (H19) promotes osteoblast differentiation and matrix mineralisation, however, the effect of H19 on cementoblasts remains unknown. This study aimed to clarify the regulatory effects of H19 on cementoblast differentiation, mineralisation, and proliferation. MATERIAL AND METHODS An immortalised murine cementoblast cell line OCCM-30 was used in this study. H19 expression was examined by real-time quantitative polymerase chain reaction (RT-qPCR) during OCCM-30 cell differentiation. OCCM-30 cells were transfected with lentivirus or siRNA to up-regulate or down-regulate H19, then the levels of runt-related transcription factor 2 (Runx2), osterix (Sp7), alkaline phosphatase (Alpl), bone sialoprotein (Ibsp), osteocalcin (Bglap) were tested by RT-qPCR or western blot. Alizarin red staining, ALP activity assay and MTS assay were performed to determine the mineralisation and proliferation ability of OCCM-30 cells. RESULTS H19 was dramatically increased during OCCM-30 cell differentiation. Overexpression of H19 increased the levels of Runx2, Sp7, Alpl, Ibsp, and Bglap and enhanced ALP activity and the formation of mineral nodules. While down-regulation of H19 suppressed the above cementoblast differentiation genes and inhibited ALP activity and mineral nodule formation. However, the proliferation of OCCM-30 cells was not affected. CONCLUSIONS H19 promotes the differentiation and mineralisation of cementoblasts without affecting cell proliferation.
Collapse
Affiliation(s)
- Yunru Hao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Yunlong Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Mingyuan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Leilei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Zhijian Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Chen Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| |
Collapse
|
61
|
Yang Y, Chu C, Xiao W, Liu L, Man Y, Lin J, Qu Y. Strategies for advanced particulate bone substitutes regulating the osteo-immune microenvironment. Biomed Mater 2022; 17. [PMID: 35168224 DOI: 10.1088/1748-605x/ac5572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/15/2022] [Indexed: 02/05/2023]
Abstract
The usage of bone substitute granule materials has improved the clinical results of alveolar bone deficiencies treatment and thus broadened applications in implant dentistry. However, because of the complicated mechanisms controlling the foreign body response, no perfect solution can avoid the fibrotic encapsulation of materials till now, which may impair the results of bone regeneration, even cause the implant materials rejection. Recently, the concept of 'osteoimmunology' has been stressed. The outcomes of bone regeneration are proved to be related to the bio-physicochemical properties of biomaterials, which allow them to regulate the biological behaviours of both innate and adaptive immune cells. With the development of single cell transcriptome, the truly heterogeneity of osteo-immune cells has been clarifying, which is helpful to overcome the limitations of traditional M1/M2 macrophage nomenclature and drive the advancements of particulate biomaterials applications. This review aims at introducing the mechanisms of optimal osseointegration regulated by immune systems and provides feasible strategies for the design of next generation 'osteoimmune-smart' particulate bone substitute materials in dental clinic.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chenyu Chu
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wenlan Xiao
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yi Man
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jie Lin
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yili Qu
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
62
|
Wang M, Li J, Ye Y, Chen D, Song J. SHED‐derived exosomes improve the repair capacity and osteogenesis potential of hPDLCs. Oral Dis 2022; 29:1692-1705. [PMID: 35152542 DOI: 10.1111/odi.14153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/10/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Exosomes secreted by stem cells are recognized as a critical component in tissue regeneration during stem cell-based therapy. Considering the limited sources and bone regeneration efficiency of human periodontal ligament cells (hPDLCs), we explored whether exosomes secreted by stem cells from human exfoliated deciduous teeth (SHED-exo) could improve the pluripotency and regenerative potential of hPDLCs. METHODS AND MATERIALS In hPDLCs, cell proliferation, migration, cell cycle, apoptosis, and osteogenic differentiation were detected after cells were exposed to SHED-exo (SHED-exo group), blank (control group), or control supernatant without exo (Csup group), via CCK-8, scratch analysis, flow cytometric, real-time PCR, and so on. Exosomes sequencing was performed to compare and analyze miRNAs contented in SHED-exo and hPDLC-exo. RESULTS As compared to control or Csup, SHED-exo significantly increased migration, apoptosis, and proliferation, promoted cell cycle transition from G1 to S phase in hPDLCs, and enhanced Runx2 expression and mineralization. In addition, it may be explained by the significant differences in miRNA contented in SHED-exo and hPDLC-exo. CONCLUSION Exosomes from SHED can improve cell proliferation, migration, cell cycle, apoptosis, and osteogenic differentiation of hPDLCs, which highlights the therapeutic value of this bioactive component in the regeneration of periodontal tissues using hPDLCs in clinical practice.
Collapse
Affiliation(s)
- Menghong Wang
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Jie Li
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Yanyan Ye
- Army Medical University Chongqing China
| | - Duanjing Chen
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Jinlin Song
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| |
Collapse
|
63
|
de Almeida JM, Matheus HR, Sendão Alves BE, Rodrigues Gusman DJ, Nagata MJH, de Abreu Furquim EM, Ervolino E. Evaluation of antimicrobial photodynamic therapy with acidic methylene blue for the treatment of experimental periodontitis. PLoS One 2022; 17:e0263103. [PMID: 35143492 PMCID: PMC8830666 DOI: 10.1371/journal.pone.0263103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate the security and effectiveness of antimicrobial photodynamic therapy (aPDT) with a citric acid-based methylene blue (MB) on the periodontal repair following the treatment of ligature-induced experimental periodontitis (EP) in rats. MATERIAL AND METHODS Were used 120 male rats, randomly divided into 4 experimental groups (n = 30): no treatment (NT), SRP alone (SRP), SRP plus aPDT using conventional MB pH 7.0 (aPDT-pH7), SRP plus aPDT using acidic MB pH 1.0 (aPDT-pH1). EP was induced at day 0 by the placement of a ligature around the mandibular left first molars. Ten animals per group/period were euthanized at 14, 22 and 37 days. Histopathological, histometric (percentage of bone in the furcation [PBF]) and immunohistochemical (for tartrate-resistant acid phosphatase [TRAP] and osteocalcin [OCN]) analyses were performed. Data were statistically analyzed. RESULTS aPDT-pH1 showed the highest PBF as compared with the other treatments. Collectively, tissues' reaction to both dyes were controlled and healthy for the periodontium. Both aPDT protocols reduced the extent and intensity of the local inflammatory response, reduced the alveolar bone resorption, and promoted a better structural arrangement of the connective tissue as compared with SRP. TRAP expression was downregulated while OCN expression was upregulated by aPDT as compared with SRP alone. CONCLUSION Our data implicate that the novel MB pH 1.0 is as safe as the conventional MB for use in aPDT and raises its additional benefit of increasing the amount of alveolar bone in the furcation.
Collapse
Affiliation(s)
- Juliano Milanezi de Almeida
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- School of Dentistry, Nucleus of Study and Research in Periodontics and Implantology (NEPPI), São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Henrique Rinaldi Matheus
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- School of Dentistry, Nucleus of Study and Research in Periodontics and Implantology (NEPPI), São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Breno Edson Sendão Alves
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- School of Dentistry, Nucleus of Study and Research in Periodontics and Implantology (NEPPI), São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - David Jonathan Rodrigues Gusman
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- School of Dentistry, Nucleus of Study and Research in Periodontics and Implantology (NEPPI), São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Maria José Hitomi Nagata
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- School of Dentistry, Nucleus of Study and Research in Periodontics and Implantology (NEPPI), São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Elisa Mara de Abreu Furquim
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- School of Dentistry, Nucleus of Study and Research in Periodontics and Implantology (NEPPI), São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Edilson Ervolino
- School of Dentistry, Nucleus of Study and Research in Periodontics and Implantology (NEPPI), São Paulo State University (Unesp), Araçatuba, SP, Brazil
- Department of Basic Science, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| |
Collapse
|
64
|
Kawai MY, Ozasa R, Ishimoto T, Nakano T, Yamamoto H, Kashiwagi M, Yamanaka S, Nakao K, Maruyama H, Bessho K, Ohura K. Periodontal Tissue as a Biomaterial for Hard-Tissue Regeneration following bmp-2 Gene Transfer. MATERIALS 2022; 15:ma15030993. [PMID: 35160948 PMCID: PMC8840059 DOI: 10.3390/ma15030993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023]
Abstract
The application of periodontal tissue in regenerative medicine has gained increasing interest since it has a high potential to induce hard-tissue regeneration, and is easy to handle and graft to other areas of the oral cavity or tissues. Additionally, bone morphogenetic protein-2 (BMP-2) has a high potential to induce the differentiation of mesenchymal stem cells into osteogenic cells. We previously developed a system for a gene transfer to the periodontal tissues in animal models. In this study, we aimed to reveal the potential and efficiency of periodontal tissue as a biomaterial for hard-tissue regeneration following a bmp-2 gene transfer. A non-viral expression vector carrying bmp-2 was injected into the palate of the periodontal tissues of Wistar rats, followed by electroporation. The periodontal tissues were analyzed through bone morphometric analyses, including mineral apposition rate (MAR) determination and collagen micro-arrangement, which is a bone quality parameter, before and after a gene transfer. The MAR was significantly higher 3-6 d after the gene transfer than that before the gene transfer. Collagen orientation was normally maintained even after the bmp-2 gene transfer, suggesting that the bmp-2 gene transfer has no adverse effects on bone quality. Our results suggest that periodontal tissue electroporated with bmp-2 could be a novel biomaterial candidate for hard-tissue regeneration therapy.
Collapse
Affiliation(s)
- Mariko Yamamoto Kawai
- Department of Welfare, Kansai Women’s College, Osaka 582-0026, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
- Correspondence: ; Tel.: +81-72-977-6561; Fax: +81-72-977-9564
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
- Center for Aluminum and Advanced Materials Research and International Collaboration, School of Sustainable Design, University of Toyama, Toyama 930-8555, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
| | - Hiromitsu Yamamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Marina Kashiwagi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Shigeki Yamanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Kazumasa Nakao
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Hiroki Maruyama
- Department of Clinical Nephroscience, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata 951-8501, Japan;
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Kiyoshi Ohura
- Department of Nursing, Taisei Gakuin University, Osaka 587-8555, Japan;
| |
Collapse
|
65
|
Sun M, Liu Y, Jiao K, Jia W, Jiang K, Cheng Z, Liu G, Luo Y. A periodontal tissue regeneration strategy via biphasic release of zeolitic imidazolate framework-8 and FK506 using a uniaxial electrospun Janus nanofiber. J Mater Chem B 2022; 10:765-778. [PMID: 35040470 DOI: 10.1039/d1tb02174e] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Guided tissue regeneration (GTR) strategies are an effective approach to repair periodontal defects by using GTR membranes. However, commercial GTR membranes still have limitations in periodontal tissue regeneration owing to lack of antibacterial and osteogenic properties. The development of novel Janus nanofibers with biphasic release characteristics based on the therapeutic needs of GTR is essential to tackle this issue. Here, we developed a multifunctional Janus nanofiber via uniaxial electrospinning, with zeolitic imidazolate framework-8 nanoparticle (ZIF-8 NP) loading in the hydrophilic polyvinylpyrrolidone (PVP) part and FK506 embedding in the hydrophobic polycaprolactone (PCL) part. The release of Zn2+ conformed to the Ritger-Peppas kinetics which could effectively prevent bacterial infection, and the release profile of FK506 was fitted to a first-order equation which could provide persistent osteogenic stimulation for osteogenesis. The periodontal tissue regeneration data from a rat periodontitis model revealed that the multifunctional electrospun Janus nanofibers could be used as an effective bioplatform to restore alveolar bone impairment, compared with the control group. In summary, the Janus nanofibers with biphasic release characteristics quickly exert antibacterial function as well as continuously provide a microenvironment beneficial to the osteogenesis process, demonstrating its great potential for GTR treatment in dental clinic applications.
Collapse
Affiliation(s)
- Maolei Sun
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yun Liu
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Kun Jiao
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Wenyuan Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Kongzhao Jiang
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agriculture University, Changchun 130118, P. R. China
| | - Guomin Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yungang Luo
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| |
Collapse
|
66
|
Johnson TM, Vargas SM, Wagner JC, Lincicum AR, Stancoven BW, Lancaster DD. The Triangle Suture for Membrane Fixation in Guided Bone Regeneration Procedures: A Report of two Cases. Clin Adv Periodontics 2022; 12:186-193. [PMID: 34986274 DOI: 10.1002/cap.10193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Existing evidence supports superior treatment outcomes in guided bone regeneration (GBR) procedures employing membrane fixation. The purpose of this report is to present a specific flap design and suturing method for stabilizing GBR barrier membranes. CASE PRESENTATION Two generally healthy patients received GBR using native collagen membranes stabilized with absorbable sutures. In both cases, we fixed barrier membranes apically using "triangle" sutures. Sling sutures (Case 1) or triangle sutures (Case 2) secured the crestal and palatal aspects of the membranes. No postoperative complications occurred, and both sites exhibited favorable alveolar ridge volume for implant placement. CONCLUSIONS The described triangle suture technique reliably stabilized GBR barrier membranes without the need for fixation hardware. Compared with suturing methods that limit graft volume and apply pressure over the grafted area, the triangle suture may offer clinical advantages.
Collapse
Affiliation(s)
- Thomas M Johnson
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Sarah M Vargas
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Jennah C Wagner
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Adam R Lincicum
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Brian W Stancoven
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Douglas D Lancaster
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| |
Collapse
|
67
|
Periodontal Cell Therapy: A Systematic Review and Meta-analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:377-397. [DOI: 10.1007/978-3-030-96881-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
68
|
Abstract
Periodontal disease is one of the most common diagnoses in small animal veterinary medicine. This infectious disease of the periodontium is characterized by the inflammation and destruction of the supporting structures of teeth, including periodontal ligament, cementum, and alveolar bone. Traditional periodontal repair techniques make use of open flap debridement, application of graft materials, and membranes to prevent epithelial downgrowth and formation of a long junctional epithelium, which inhibits regeneration and true healing. These techniques have variable efficacy and are made more challenging in veterinary patients due to the cost of treatment for clients, need for anesthesia for surgery and reevaluation, and difficulty in performing necessary diligent home care to maintain oral health. Tissue engineering focuses on methods to regenerate the periodontal apparatus and not simply to repair the tissue, with the possibility of restoring normal physiological functions and health to a previously diseased site. This paper examines tissue engineering applications in periodontal disease by discussing experimental studies that focus on dogs and other animal species where it could potentially be applied in veterinary medicine. The main areas of focus of tissue engineering are discussed, including scaffolds, signaling molecules, stem cells, and gene therapy. To date, although outcomes can still be unpredictable, tissue engineering has been proven to successfully regenerate lost periodontal tissues and this new possibility for treating veterinary patients is discussed.
Collapse
Affiliation(s)
- Emily Ward
- Eastside Veterinary Dentistry, Woodinville, WA, USA
| |
Collapse
|
69
|
Miyashita Y, Kuraji R, Ito H, Numabe Y. Wound healing in periodontal disease induces macrophage polarization characterized by different arginine-metabolizing enzymes. J Periodontal Res 2021; 57:357-370. [PMID: 34918843 DOI: 10.1111/jre.12965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Macrophages play important roles from the initiation of inflammation to wound healing. Two phenotypes of macrophages, namely pro-inflammatory type macrophages (M1-MΦ) and anti-inflammatory type macrophages (M2-MΦ), have been reported. Two contrasting metabolic enzymes that use arginine as a substrate, inducible nitric oxide synthase (iNOS), and arginase-1 (Arg-1), have been identified as M1-MΦ and M2-MΦ markers, respectively. The purpose of this study was to elucidate the temporal dynamics of the macrophage phenotype during the progression and healing phases of experimental periodontitis in mice. MATERIAL AND METHODS A total of 63 C57BL/6J mice were divided into the following 3 groups: control (C), periodontitis (P), and healing (H). To induce periodontitis, a silk ligature was placed around the maxillary bilateral second molars of mice in the periodontitis and healing groups. In the healing group, the ligature was removed 3 days after ligation to induce tissue healing. Maxillary tissue was collected on day 0 for the control group, days 1, 3, 5, and 7 for the periodontitis group (P1, P3, P5, and P7), and days 5 and 7 for the healing group (H5 and H7: 3 days with the ligation + 2 days or 4 days following ligature removal). The left side of the maxilla was subjected to bone structure analysis using micro-computed tomography and gene expression analysis using polymerase chain reaction. On the right side, immunohistochemistry was performed to histopathologically evaluate the localization of macrophages by phenotype in the periodontal tissue. RESULTS In the alveolar bone structure analysis, the linear distance of bone height increased significantly in the P5 and P7 groups, whereas bone volume fraction and bone mineral density decreased over time after ligature placement; in the healing group (H5 and H7), these parameters improved significantly compared with the periodontitis group (P5 and P7). Expression of genes encoding pro-inflammatory cytokines and iNOS increased in the periodontitis group, and expression of anti-inflammatory cytokine genes and Arg-1 increased in the healing group. Furthermore, the iNOS/Arg-1 expression ratio increased with ligation, whereas the ratio in the healing groups (H5 and H7) significantly decreased compared with the periodontitis groups (P5 and P7). Immunofluorescence staining revealed a significant increase in the number of iNOS-positive macrophages in the periodontitis group and decrease in the healing group. In contrast, the number of Arg-1-positive macrophages decreased in the periodontitis group and increased in the healing group. CONCLUSION The results of the present study suggest that wound healing in periodontal disease induces macrophage polarization from M1-MΦ to M2-MΦ characterized by iNOS and Arg-1.
Collapse
Affiliation(s)
- Yukihiro Miyashita
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Ryutaro Kuraji
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.,Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan
| | - Hiroshi Ito
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| |
Collapse
|
70
|
Baniulyte G, Ali K, Burns L. Guided tissue regeneration techniques involving blood-derived products in periradicular surgery: a systematic review and meta-analysis protocol. JBI Evid Synth 2021; 19:3378-3383. [PMID: 34392266 DOI: 10.11124/jbies-21-00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The objective of this review is to evaluate the clinical outcomes of standard periradicular surgery versus periradicular surgery with the use of guided tissue regeneration techniques involving blood-derived products in patients undergoing periradicular surgery. INTRODUCTION Guided tissue regeneration techniques have been available in dentistry for decades. Primarily used during periodontal surgery and implant placement, their usefulness in periapical surgery has been garnering increased attention. According to current available evidence, guided tissue regeneration can improve clinical patient outcomes. No systematic reviews have been carried out to investigate guided tissue regeneration techniques involving blood-derived products in periradicular surgery. INCLUSION CRITERIA Randomized controlled trials that investigate the outcomes of guided tissue regeneration techniques involving blood-derived products versus standard periradicular surgery technique, will be included for review. Studies will be excluded if they contain patients who have previously undergone periradicular surgery or the treatment was carried out on unrestorable teeth (ie, due to periodontal disease or root fractures). METHODS The databases MEDLINE, Embase, Dentistry and Oral Sciences Source, and Cochrane CENTRAL will be used to locate published reports of studies. Reference lists of relevant past systematic reviews will be used to identify further studies. Unpublished studies will be sought using international trials registries and repositories. Two reviewers will carry out independent screening of records for inclusion and the selected studies will be critically appraised prior to data extraction and synthesis. Meta-analysis will be performed if appropriate. SYSTEMATIC REVIEW REGISTRATION NUMBER PROSPERO CRD42020222663.
Collapse
Affiliation(s)
- Gabriele Baniulyte
- Oral and Maxillofacial Surgery Department, Royal Devon and Exeter Hospital, Exeter, United Kingdom.,Peninsula Dental School, University of Plymouth, United Kingdom
| | - Kamran Ali
- Peninsula Dental School, University of Plymouth, United Kingdom
| | - Lorna Burns
- Peninsula Dental School, University of Plymouth, United Kingdom
| |
Collapse
|
71
|
Abstract
Technological innovations in cellular and molecular aspects of tissue engineering --scaffolds, stem cells and 3D printed tissues --have been dramatically increased in the last decade. However, regenerative treatment still has challenges in translation to clinic. This is partly due to failure of addressing an essential element of wound healing, inflammation. It is now well-recognized that inflammation is an active process. This paradigm shift opened up a new avenue of therapeutic approaches called "host-modulation." Host-modulation therapies capable of modulating inflammatory response at multiple levels and mimicking the natural sequence of wound healing offer a new direction and promising clinical translation.
Collapse
|
72
|
Apical approach in periodontal reconstructive surgery with enamel matrix derivate and enamel matrix derivate plus bone substitutes: a randomized, controlled clinical trial. Clin Oral Investig 2021; 26:2793-2805. [PMID: 34791548 PMCID: PMC8898230 DOI: 10.1007/s00784-021-04256-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/23/2021] [Indexed: 11/17/2022]
Abstract
Objectives This parallel, randomized controlled clinical trial evaluated the influence of bone substitutes (BS) on the efficacy of the non-incised papillae surgical approach (NIPSA) with enamel matrix derivate (EMD) in resolving deep, isolated, combined non-contained intrabony and supra-alveolar periodontal defects, preserving the soft tissue. Material and methods Twenty-four patients were randomized to treatment with NIPSA and EMD or NIPSA plus EMD and BS. Bleeding on probing (BoP), interproximal clinical attachment level (CAL), interproximal probing depth (PD), recession (REC), location of the tip of the papilla (TP), and width of the keratinized tissue (KT) were evaluated before surgery and at 1 year post-surgery (primary outcomes). Wound closure was assessed at 1 week post‐surgery, and supra‐alveolar attachment gain (SUPRA-AG) was recorded at 1 year post‐surgery. Results At 1 week, 87.5% of cases registered complete wound closure and there were no cases of necrosis, without differences between groups (p > .05). At 1 year, all cases showed negative BoP. A significant PD reduction (NIPSA + EMD 8.25 ± 2.70 mm vs. NIPSA + EMD + BS 6.83 ± 0.81 mm) and CAL gain (NIPSA + EMD 8.33 ± 2.74 mm vs. NIPSA + EMD + BS 7.08 ± 2.68 mm) were observed (p < .001) in both groups, without significant between-group differences (p > .05). The residual PD was < 5 mm in all defects (NIPSA + EMD 2.50 ± 0.67 mm vs. NIPSA + EMD + BS 2.67 ± 0.78 mm). Soft tissues were preserved without significant between-group differences (REC: NIPSA + EMD 0.25 ± 0.45 mm vs. NIPSA + EMD + BS 0.17 ± 0.58 mm, p > .05; KT: 0.00 ± 0.43 mm vs. 0.08 ± 0.67 mm, p > .05). There were improvements in the papilla in both groups (TP: NIPSA + EMD 0.33 ± 0.49 mm vs. NIPSA + EMD + BS 0.45 ± 0.52 mm, p > .05), which was only significant in the NIPSA EMD + BS group (0.45 ± 0.52 mm; p < .05). In both groups, CAL gain was recorded in the supra-alveolar component, showing full resolution of the intrabony component of the defect in all cases (SUPRA-AG: NIPSA + EMD 1.83 ± 1.11 mm vs. NIPSA + EMD + BS 2.00 ± 1.76 mm, p > .05). Conclusions NIPSA and EMD with or without BS seem to be a valid surgical approach in the treatment of isolated, deep non-contained periodontal defects. In our study, both treatments resulted in significant PD reduction and CAL gain, that extended in the supra-alveolar component, without differences with the use of BS. Both treatments resulted in soft tissue preservation. However, the addition of BS may improve interdental papillary tissue. Clinical relevance
NIPSA, with or without bone substitutes, resulted in significant periodontal improvement, with soft tissue preservation in isolated, deep non-contained periodontal defects. The application of bone substitutes may provide interproximal soft tissue gain. Clinical trial registration Clinicaltrials.gov: NCT04712630. Supplementary Information The online version contains supplementary material available at 10.1007/s00784-021-04256-1.
Collapse
|
73
|
Mokhtari MR, Ahrari F, Dokouhaki S, Fallahrastegar A, Ghasemzadeh A. Effectiveness of an 810-nm Diode Laser in Addition to Non-surgical Periodontal Therapy in Patients With Chronic Periodontitis: A Randomized Single-Blind Clinical Trial. J Lasers Med Sci 2021; 12:e37. [PMID: 34733760 DOI: 10.34172/jlms.2021.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/06/2021] [Indexed: 11/09/2022]
Abstract
Introduction: This study evaluated the effectiveness of an 810-nm diode laser as an adjunct to scaling and root planning (SRP) in improving periodontal parameters in patients with chronic periodontitis. Methods: This randomized clinical trial consisted of 36 patients (16 females and 20 males) with chronic periodontitis and pocket depths of 4-6 mm. The quadrants were randomly divided into two sides; one side of each patient was selected as the laser group (SRP + laser) and the other side served as the control group (SRP alone). An 810-nm diode laser was applied in the laser side to remove the outer gingival epithelium (1.5 W, CW) as well as the inner epithelium of the periodontal pockets (1 W, CW). The clinical parameters including bleeding on probing (BOP), probing depth (PD), plaque index (PI), and clinical attachment level (CAL) were measured at baseline and 6 and 18 weeks after therapy. Results: In both groups, there was a significant improvement in BOP, PD, PI and CAL over the course of the experiment (P < 0.001). Significantly lower BOP was found in the SRP + laser group than the SRP alone group after 6 and 18 weeks of intervention (P < 0.05). The difference in other parameters was not significant between the two groups, neither at 6 nor at 18 weeks after the treatment (P > 0.05). Conclusion: Within the limitations of this study, the association of the diode laser with standard non-surgical periodontal therapy (SRP) provided minimal additional benefits for patients with moderate chronic periodontitis.
Collapse
Affiliation(s)
- Majid Reza Mokhtari
- Department of Periodontontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Ahrari
- Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokoufeh Dokouhaki
- Student Research Committee, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Fallahrastegar
- Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ghasemzadeh
- Student Research Committee, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
74
|
The Role of Blood Clot in Guided Bone Regeneration: Biological Considerations and Clinical Applications with Titanium Foil. MATERIALS 2021; 14:ma14216642. [PMID: 34772167 PMCID: PMC8587813 DOI: 10.3390/ma14216642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
In Guided Bone Regeneration (GBR) materials and techniques are essential to achieve the expected results. Thanks to their properties, blood clots induce bone healing, maturation, differentiation and organization. The preferred material to protect the clot in Guided Bone Regeneration is the titanium foil, as it can be shaped according to the bone defect. Furthermore, its exposition in the oral cavity does not impair the procedure. We report on five clinical cases in order to explain the management of blood clots in combination with titanium foil barriers in different clinical settings. Besides being the best choice to protect the clot, the titanium foil represents an excellent barrier that is useful in GBR due to its biocompatibility, handling, and mechanical strength properties. The clot alone is the best natural scaffold to obtain the ideal bone quality and avoid the persistence of not-resorbed granules of filler materials in the newly regenerated bone. Even though clot contraction still needs to be improved, as it impacts the volume of the regenerated bone, future studies in GBR should be inspired by the clot and its fundamental properties.
Collapse
|
75
|
Ferreira JA, Kantorski KZ, Dubey N, Daghrery A, Fenno JC, Mishina Y, Chan HL, Mendonça G, Bottino MC. Personalized and Defect-Specific Antibiotic-Laden Scaffolds for Periodontal Infection Ablation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49642-49657. [PMID: 34637255 DOI: 10.1021/acsami.1c11787] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Periodontitis compromises the integrity and function of tooth-supporting structures. Although therapeutic approaches have been offered, predictable regeneration of periodontal tissues remains intangible, particularly in anatomically complex defects. In this work, personalized and defect-specific antibiotic-laden polymeric scaffolds containing metronidazole (MET), tetracycline (TCH), or their combination (MET/TCH) were created via electrospinning. An initial screening of the synthesized fibers comprising chemo-morphological analyses, cytocompatibility assessment, and antimicrobial validation against periodontopathogens was accomplished to determine the cell-friendly and anti-infective nature of the scaffolds. According to the cytocompatibility and antimicrobial data, the 1:3 MET/TCH formulation was used to obtain three-dimensional defect-specific scaffolds to treat periodontally compromised three-wall osseous defects in rats. Inflammatory cell response and new bone formation were assessed by histology. Micro-computerized tomography was performed to assess bone loss in the furcation area at 2 and 6 weeks post implantation. Chemo-morphological and cell compatibility analyses confirmed the synthesis of cytocompatible antibiotic-laden fibers with antimicrobial action. Importantly, the 1:3 MET/TCH defect-specific scaffolds led to increased new bone formation, lower bone loss, and reduced inflammatory response when compared to antibiotic-free scaffolds. Altogether, our results suggest that the fabrication of defect-specific antibiotic-laden scaffolds holds great potential toward the development of personalized (i.e., patient-specific medication) scaffolds to ablate infection while affording regenerative properties.
Collapse
Affiliation(s)
- Jessica A Ferreira
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Karla Z Kantorski
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
- Post-Graduate Program in Oral Sciences (Periodontology Unit), School of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Arwa Daghrery
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Hsun-Liang Chan
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Gustavo Mendonça
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| |
Collapse
|
76
|
Hakariya M, Arisaka Y, Masuda H, Yoda T, Tamura A, Iwata T, Yui N. Tissue Adhesion-Anisotropic Polyrotaxane Hydrogels Bilayered with Collagen. Gels 2021; 7:gels7040168. [PMID: 34698173 PMCID: PMC8544508 DOI: 10.3390/gels7040168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Hydrogels are promising materials in tissue engineering scaffolds for healing and regenerating damaged biological tissues. Previously, we developed supramolecular hydrogels using polyrotaxane (PRX), consisting of multiple cyclic molecules threaded by an axis polymer for modulating cellular responses. However, since hydrogels generally have a large amount of water, their adhesion to tissues is extremely weak. Herein, we designed a bilayered hydrogel with a PRX layer and a collagen layer (PRX/collagen hydrogel) to achieve rapid and strong adhesion to the target tissue. The PRX/collagen hydrogel was fabricated by polymerizing PRX crosslinkers in water with placement of a collagen sponge. The differences in components between the PRX and collagen layers were analyzed using Fourier transform infrared spectroscopy (FT-IR). After confirming that the fibroblasts adhered to both layers of the PRX/collagen hydrogels, the hydrogels were implanted subcutaneously in mice. The PRX hydrogel without collagen moved out of its placement site 24 h after implantation, whereas the bilayer hydrogel was perfectly adherent at the site. Together, these findings indicate that the bilayer structure generated using PRX and collagen may be a rational design for performing anisotropic adhesion.
Collapse
Affiliation(s)
- Masahiro Hakariya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (T.I.)
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan; (Y.A.); (A.T.)
| | - Hiroki Masuda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (H.M.); (T.Y.)
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (H.M.); (T.Y.)
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan; (Y.A.); (A.T.)
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (T.I.)
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan; (Y.A.); (A.T.)
- Correspondence:
| |
Collapse
|
77
|
Immunohistochemical Evaluation of Periodontal Regeneration Using a Porous Collagen Scaffold. Int J Mol Sci 2021; 22:ijms222010915. [PMID: 34681574 PMCID: PMC8535773 DOI: 10.3390/ijms222010915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
(1) Aim: To immunohistochemically evaluate the effect of a volume-stable collagen scaffold (VCMX) on periodontal regeneration. (2) Methods: In eight beagle dogs, acute two-wall intrabony defects were treated with open flap debridement either with VCMX (test) or without (control). After 12 weeks, eight defects out of four animals were processed for paraffin histology and immunohistochemistry. (3) Results: All defects (four test + four control) revealed periodontal regeneration with cementum and bone formation. VCMX remnants were integrated in bone, periodontal ligament (PDL), and cementum. No differences in immunohistochemical labeling patterns were observed between test and control sites. New bone and cementum were labeled for bone sialoprotein, while the regenerated PDL was labeled for periostin and collagen type 1. Cytokeratin-positive epithelial cell rests of Malassez were detected in 50% of the defects. The regenerated PDL demonstrated a larger blood vessel area at the test (14.48% ± 3.52%) than at control sites (8.04% ± 1.85%, p = 0.0007). The number of blood vessels was higher in the regenerated PDL (test + control) compared to the pristine one (p = 0.012). The cell proliferative index was not statistically significantly different in pristine and regenerated PDL. (4) Conclusions: The data suggest a positive effect of VCMX on angiogenesis and an equally high cell turnover in the regenerated and pristine PDL. This VCMX supported periodontal regeneration in intrabony defects.
Collapse
|
78
|
Hang K, Ying L, Bai J, Wang Y, Kuang Z, Xue D, Pan Z. Knockdown of SERPINB2 enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells via activation of the Wnt/β-catenin signalling pathway. Stem Cell Res Ther 2021; 12:525. [PMID: 34620242 PMCID: PMC8499504 DOI: 10.1186/s13287-021-02581-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/22/2021] [Indexed: 01/13/2023] Open
Abstract
Background Globally, bone fractures are the most common musculoskeletal trauma, and approximately 8–10% of cases that fall into the categories of delayed or non-union healing. To date, there are no efficient pharmacological agents to accelerate the healing of bone fractures. Thus, it is necessary to find new strategies that accelerate bone healing and reduce the incidence of non-union or delayed fracture healing. Previous studies have revealed that the plasminogen activation system has been demonstrated to play an important role in bone metabolism. However,
the function of SERPINB2 in the osteogenesis of hBMSCs remains unclear. Therefore, in this study, we investigated the effects and mechanism of SERPINB2 on osteogenic differentiation. Methods We investigated the osteogenesis effects of hBMSCs by both exogenous SerpinB2 protein and SERPINB2 gene silencing in vitro. Cell proliferation assay was used to assess the effect of exogenous SerpinB2 or SERPINB2 silencing on proliferation of hBMSCs. qPCR and Western blotting analysis detected the expression of target genes and proteins respectively. ALP staining was used to evaluated ALP activity and Alizarin Red staining (ARS) was used to evaluate mineral deposition. In vivo, a murie tibial fracture model was established, histological evaluation and radiographic analysis was used to confirm the therapeutic effects of SERPINB2 silencing in fracture healing. Statistical significance between two groups was determined by Student’s t test, one-way ANOVA or Bonferroni’s post-hoc test according to the distribution of the tested population. Results The addition of exogenous SerpinB2 protein inhibted osteoblast differentiation of hBMSCs in vitro, while SERPINB2 gene silencing significant promote osteoblast differentiation of hBMSCs in vitro. And silenced SERPINB2 gene also increased mineral deposits. Moreover, β-catenin levels were up-regulated by SERPINB2 gene depletion. And the enhancement of osteogenic differentiation induced by SERPINB2 silencing was almost inhibited by specific Wnt/β-catenin signaling pathway inhibitor. In a murine tibial fracture model, local injection of SERPINB2 siRNA improved bone fracture healing. Conclusions Taken together, these findings indicate that SERPINB2 silencing promoted osteogenic differentiation of BMSCs via the Wnt/β-catenin signaling pathway, and silenced SERPINB2 in vivo effectively promotes fracture healing, suggesting that SERPINB2 may be a novel target for bone fracture healing. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02581-6.
Collapse
Affiliation(s)
- Kai Hang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Li Ying
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Jinwu Bai
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Yibo Wang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Zhihui Kuang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Deting Xue
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China. .,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.
| | - Zhijun Pan
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China. .,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
79
|
Rojas MA, Marini L, Russo P, Blardi V, Schmidlin PR, Pilloni A. Clinical Pilot Series of Non-Self-Contained Periodontal Infrabony Defects Treated with a Slowly Resorbable Bovine Pericardium Membrane in Combination with Low-Temperature-Treated Decellularized Bovine Bone Particles. Dent J (Basel) 2021; 9:dj9100110. [PMID: 34677172 PMCID: PMC8534930 DOI: 10.3390/dj9100110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
The aim of this case series was to present the clinical outcomes of non-contained intrabony periodontal defects (IPDs) treated by means of papillary preservation flaps in association with a slowly resorbable bovine pericardium membrane (BPM) and a low-temperature-treated bovine bone graft (BBG). Eight healthy, non-smoking patients (two males and six females, mean age 48 ± 8 years) with stage 3 periodontitis and at least one site with residual probing depth (PD) ≥ 6 mm associated with a non-contained IPD ≥ 3 mm were treated. Two weeks after surgery, no adverse events were observed, and an early wound healing score (EHS) of 8.1 ± 1.0 was recorded. After 1 year, the mean probing depth (PD) reduction and mean clinical attachment level gain (CAL-gain) accounted for 4.8 ± 0.7 and 3.5 ± 0.7 mm, respectively, whereas the mean gingival recession (REC) was of 1.2 ± 0.3 mm. Radiographic bone fill was observed in all cases. In conclusion, the treatment of non-contained IPDs with a slowly resorbable BPM and a low-temperature-treated BBG could be considered safe and may result in significant clinical improvements 1 year after surgery.
Collapse
Affiliation(s)
- Mariana A Rojas
- Section of Periodontics, Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Lorenzo Marini
- Section of Periodontics, Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Paola Russo
- Section of Periodontics, Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Vittorio Blardi
- Section of Periodontics, Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Patrick R Schmidlin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, Division of Periodontology & Peri-Implant Diseases, University of Zurich, 8032 Zürich, Switzerland
| | - Andrea Pilloni
- Section of Periodontics, Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
80
|
Farimani Z, Shamshiri AR, Asl Roosta H, Akbari S, Bohlouli M. Regenerative benefits of using growth factors in treatment of periodontal defects: A systematic review and meta-analysis with Trial Sequential Analysis on preclinical studies. J Tissue Eng Regen Med 2021; 15:964-997. [PMID: 34480421 DOI: 10.1002/term.3241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/13/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023]
Abstract
The ultimate goal in periodontal treatments is to achieve a functional and anatomical regeneration of the lost tissues. Numerous studies have in some way illustrated the beneficial effects of biologic modifiers in this process, yet they are subject to a rather large degree of diversity in their results. Thanks to the promising outcomes of bioengineering techniques in the field of periodontal regeneration, this systematic review aims to evaluate the effect of various biologic modifiers used in periodontal defects of animal models. Electronic databases (Medline, Scopus, Embase, Web of Science, and Google Scholar) were searched (March 2010-December 2020) for every study that used biomolecules for regeneration of periodontal osseous defects in animal models. Regenerated bone height or area, new cementum, new connective tissues, new regenerated periodontal ligament and the dimensions of epithelial attachment (either in mm/mm2 or percentage) were the investigated outcomes. The risk of bias of the included studies was assessed using the SYRCLE tool. In closing, there was a meta-analysis carried out on the outcomes of interest. Trial Sequential Analysis was also carried out to figure out the power of meta-analytic outcomes. From 1995 studies which were found in the initial search, 34 studies were included in this review, and 20 of them were selected for the meta-analysis. The eligible studies were categorized according to the morphology of the experimental periodontal defects as one-, two-, and three-wall intrabony defects; furcation defects, and recession-type defects. The most studied biomolecules were rhFGF-2, rhGDF-5, platelet-derived growth factor, bone morphogenetic protein-2, and enamel matrix derivative (EMD). Based on the meta-analysis findings, combined application of biomolecules with regenerative treatments could improve new bone and cementum formation near 1 mm when compared to the control groups in one, two and three-wall intrabony defect models (p < 0.001). In furcation grade II defect, the addition of biomolecules was observed to enhance bone area gain and cementum height regeneration up to almost 2 mm (p < 0.001). Trial Sequential Analysis results confirmed the significant effect in the aforementioned meta-analyses. In cases of the buccal recession model, the application of rhFGF-2 and rhGDF-5 decreased the dimension of epithelial attachments besides regenerative advantages on bone and cementum formation, but EMD deposition exerted no inhibitory effect on epithelial down-growth. Application of biologic modifiers especially FGF-2 and GDF-5, could positively improve the regeneration of periodontal tissues, particularly cementum and bone in animal models. Trial Sequential Analysis confirmed the results but the power of the evidences was high just in some subgroup meta-analyses, like bone and cementum regeneration in furcation grade II model and cementum regeneration in one-wall intrabony defects. The outcomes of this study can potentially endow clinicians with guidelines for the appropriate application of growth factors in periodontal regenerative therapies.
Collapse
Affiliation(s)
- Zeinab Farimani
- Department of Periodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Ahmad Reza Shamshiri
- Department of Community Oral Health, School of Dentistry, Research Center for Caries Prevention, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoori Asl Roosta
- Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Akbari
- Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
81
|
Pham TAV. INTRABONY DEFECT TREATMENT WITH PLATELET-RICH FIBRIN, GUIDED TISSUE REGENERATION AND OPEN-FLAP DEBRIDEMENT: A RANDOMIZED CONTROLLED TRIAL. J Evid Based Dent Pract 2021; 21:101545. [PMID: 34479673 DOI: 10.1016/j.jebdp.2021.101545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To comparatively assess the outcomes of the treatment of periodontal intrabony defects with platelet-rich fibrin (PRF) combined with open-flap debridement (OFD), guided tissue regeneration (GTR) or OFD alone based on clinical, radiographic, and wound healing parameters for 12 months of follow-up. MATERIALS AND METHODS Ninety intrabony defects were randomly divided into 3 different groups and treated as group 1 (PRF + OFD), group 2 (GTR), or group 3 (OFD alone). Clinical parameters, including the plaque index, gingival index, bleeding on probing, probing depth (PD), clinical attachment loss (CAL), and tooth mobility were assessed at 3, 6, and 12 months. Additionally, the wound healing index was assessed at 7 and 14 days postsurgery. Radiographic parameters, including bony defect fill and alveolar crestal resorption, were measured at 6 and 12 months postsurgery and calculated using image analysis software. RESULTS Intragroup comparisons showed consistently significant improvements in all the clinical and radiographic parameters in the 3 groups at 12 months postsurgery. Compared to baseline, in group 1, the PD decreased to 2.37 ± 0.56; 3.30 ± 0.84; 4.80 ± 0.71 mm, and CAL decreased to 2.23 ± 0.90; 3.33 ± 0.71; 5.00 ± 0.46 mm; in group 2, the PD decreased to 2.30 ± 0.60; 3.23 ± 0.86; 4.63 ± 0.67 mm, and CAL decreased to 2.00 ± 0.98; 3.20 ± 0.71; 4.53 ± 0.57 mm); and in group 3, the PD decreased to 1.87 ± 0.68; 2.57 ± 1.36; 3.37 ± 1.00 mm, and CAL decreased to 1.60 ± 0.93; 2.23 ± 1.22; 3.37 ± 1.22 mm at 3, 6, and 12 months postsurgery, respectively. The bone fill percentages in group 1 (26.45 ± 16.47 and 45.25 ± 5.20%), group 2 (22.20 ± 15.76 and 42.15 ± 6.39%) and group 3 (10.21 ± 6.47 and 23.13 ± 6.98%) were observed at 6 and 12 months postsurgery. The alveolar crestal resorption levels were -1.07 ± 0.52 and -1.70 ± 0.60 mm in group 1, -1.03 ± 0.72 and -1.47 ± 0.73 mm in group 2 and 0.37 ± 0.62 and 0.43 ± 0.73 mm in group 3, respectively. The percentages of sites with a WHI score of 1 were 93% and 100% in group 1, 81%, and 94% in group 2 and 45% and 71% in group 3 at 7 and 14 days postsurgery, respectively. CONCLUSIONS Compared to GTR, PRF yielded comparable treatment outcomes and periodontal tissue healing in terms of improvements in clinical and radiographic parameters. Compared to OFD alone, PRF also significantly improved these parameters in the treatment of intrabony defects.
Collapse
Affiliation(s)
- Thuy Anh Vu Pham
- Division of Odonto-Stomatology, School of Medicine, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
82
|
Tamburaci S, Tihminlioglu F. Development of Si doped nano hydroxyapatite reinforced bilayer chitosan nanocomposite barrier membranes for guided bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112298. [PMID: 34474849 DOI: 10.1016/j.msec.2021.112298] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023]
Abstract
Guided Bone Regeneration (GBR) is a widely used process for the treatment of periodontal defects to prevent the formation of surrounding soft tissue at the periodontal defect and to provide hard tissue regeneration. Recently GBR designs have focused on the development of resorbable natural polymer-based barrier membranes due to their biodegradability and excellent biocompatibility. The aim of this study is to fabricate a novel bilayer nanocomposite membrane with microporous sublayer composed of chitosan and Si doped nanohydroxyapatite particles (Si-nHap) and chitosan/PEO nanofiber upper layer. Bilayer membrane was designed to prevent epithelial and fibroblastic cell migration and growth impeding bone formation with its upper layer and to support osteogenic cell bioactivity at the defect site with its sublayer. Microporous and nanofiber layers were fabricated by using freeze-drying and electrospinning techniques respectively. The effect of Si-nHap content on the morphological, mechanical and physical properties of the composites were investigated using SEM, AFM, micro-Ct, compression test, water uptake capacity and enzymatic degradation study. Antimicrobial properties of nanocomposite membranes were investigated with tube dilution and disk diffusion methods. In vitro cytotoxicity of bilayer membranes was evaluated. Saos-2 and NIH/3T3 proliferation studies were carried out on each layer. In vitro bioactivity of Saos-2 and NIH/3T3 cells were evaluated with ALP activity and hydroxyproline content respectively. Results showed that Si-nHap incorporation enhanced the mechanical and physical properties as well as controlling biodegradability of the polymer matrix. Besides, Si-nHap loading induced the bioactivity of Saos-2 cells by enhancing cell attachment, spreading and biomineralization on the material surface. Thus, results supported that designed bilayer nanocomposite membranes can be used as a potential biomaterial for guided bone regeneration in periodontal applications.
Collapse
Affiliation(s)
- Sedef Tamburaci
- Izmir Institute of Technology, Graduate Program of Biotechnology and Bioengineering, Gulbahçe Campus, Urla, İzmir, Turkey
| | - Funda Tihminlioglu
- Izmir Institute of Technology, Department of Chemical Engineering, Gulbahçe Campus, Urla, İzmir, Turkey.
| |
Collapse
|
83
|
Jung EH, Jeong SN, Lee JH. Augmentation stability and early wound healing outcomes of guided bone regeneration in peri-implant dehiscence defects with L- and I-shaped soft block bone substitutes: A clinical and radiographic study. Clin Oral Implants Res 2021; 32:1308-1317. [PMID: 34423887 DOI: 10.1111/clr.13830] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To retrospectively evaluate whether guided bone regeneration (GBR) with L- and I-shaped demineralized bovine bone mineral with 10% collagen (DBBM-C) differs from GBR with DBBM in terms of augmentation stability and early wound healing outcomes in peri-implant dehiscence defects. METHODS A total of 91 peri-implant defects were grafted with 24 L- (GBR-L), 22 I (GBR-I)-shaped DBBM-C, and 45 DBBM (GBR-P). Cone-beam computed tomography images were obtained after surgery and at 5 months follow-up. The horizontal thickness (HT0, HT2, HT4), vertical thickness (VT), and VT at 45° angle (45-VT) of the augmented hard tissue were measured. Early postoperative discomfort and wound healing outcomes were assessed 2 weeks after surgery, and periotest values were also measured at 5 months in all groups. RESULTS At 5 months follow-up, the change at HT0 and VT of the GBR-L (HT0: -0.63 ± 0.55 mm, VT: -0.77 ± 0.60 mm) and GBR-I (HT0: -0.68 ± 0.53 mm, VT: -0.91 ± 0.73 mm) groups was significantly more stable than that of the GBR-P (HT0: -1.30 ± 0.77 mm, VT: -1.57 ± 0.67 mm) group (p < .05). The GBR-L group (-0.74 ± 0.54 mm) showed better augmentation stability than the other two groups at the change at 45-VT. Early postoperative discomfort, wound healing outcomes, and periotest values did not differ significantly between the three groups. CONCLUSION Within the limitations of this study, L- and I-shaped DBBM-Cs used for GBR were more beneficial in terms of horizontal augmentation stability than DBBM after a 5-month healing period.
Collapse
Affiliation(s)
- Eun-Hee Jung
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
| | - Seong-Nyum Jeong
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
| | - Jae-Hong Lee
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
| |
Collapse
|
84
|
Effects of Hinokitiol and Dicalcium Phosphate on the Osteoconduction and Antibacterial Activity of Gelatin-Hyaluronic Acid Crosslinked Hydrogel Membrane In Vitro. Pharmaceuticals (Basel) 2021; 14:ph14080802. [PMID: 34451899 PMCID: PMC8401089 DOI: 10.3390/ph14080802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022] Open
Abstract
Many hydrogel-based crosslinking membranes have been designed and tailored to meet the needs of different applications. The aim of this research is to design a bifunctional hydrogel membrane with antibacterial and osteoconducting properties to guide different tissues. The membrane uses gelatin and hyaluronic acid as the main structure, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride as the crosslinker, hinokitiol as the antibacterial agent, and dicalcium phosphate anhydrous (DCPA) micron particles for osteoconduction. Results show that the hydrogel membrane with added DCPA and impregnated hinokitiol has a fixation index higher than 88%. When only a small amount of DCPA is added, the tensile strength does not decrease significantly. The tensile strength decreases considerably when a large amount of modified DCPA is added. The stress–strain curve shows that the presence of a large amount of hinokitiol in hydrogel membranes results in considerably improved deformation and toughness properties. Each group impregnated with hinokitiol exhibits obvious antibacterial capabilities. Furthermore, the addition of DCPA and impregnation with hinokitiol does not exert cytotoxicity on cells in vitro, indicating that the designed amount of DCPA and hinokitiol in this study is appropriate. After a 14-day cell culture, the hydrogel membrane still maintains a good shape because the cells adhere and proliferate well, thus delaying degradation. In addition, the hydrogel containing a small amount of DCPA has the best cell mineralization effect. The developed hydrogel has a certain degree of flexibility, degradability, and bifunctionality and is superficial. It can be used in guided tissue regeneration in clinical surgery.
Collapse
|
85
|
Abdulbaqi HR, Shaikh MS, Abdulkareem AA, Zafar MS, Gul SS, Sha AM. Efficacy of erythritol powder air-polishing in active and supportive periodontal therapy: A systematic review and meta-analysis. Int J Dent Hyg 2021; 20:62-74. [PMID: 34318577 DOI: 10.1111/idh.12539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This systematic review aimed to analyse available evidence to answer two focused questions about the efficacy of erythritol powder air-polishing (EPAP) (i) as an adjunctive during active periodontal therapy (APT) and (ii) as an alternative to hand/ultrasonic instrumentation during supportive periodontal therapy (SPT). Additionally, microbiological outcomes and patient's comfort/perceptions were assessed as secondary outcomes. METHODS PubMed, Cochrane and Medline were searched for relevant articles published before February 2021 following PRISMA guidelines. The search was conducted by three independent reviewers, and the agreement was measured by Cohen's kappa score. Out of 1043 articles, eight randomized clinical trials were selected for systematic review and quantitative synthesis. Only periodontal parameters, such as clinical attachment level (CAL), probing pocket depth (PPD) and bleeding on probing (BoP), showed homogeneity and, thus, were selected for meta-analysis. RESULTS The improvement in PPD and BoP scores after using EPAP was comparable with hand/ultrasonic instrumentation during both APT and SPT. Significant CAL gain was achieved with EPAP during APT (0.16 mm, p < 0.02) compared with hand/ultrasonic instrumentation at the end point, whereas non-significant CAL gain was achieved during SPT. No differences were observed regarding microbiological outcomes between the two treatment modalities. However, EPAP inflicted less pain and was better perceived by the patients. CONCLUSION Erythritol powder air-polishing can substitute hand/ultrasonic instrumentation for SPT, and CAL gain is significantly improved when EPAP is used as an adjunct during APT. For microbiological outcomes, no significant differences were observed between the two approaches; however, EPAP was better tolerated by the patients than hand/ultrasonic instrumentation. CLINICAL RELEVANCE Erythritol powder air-polishing can be used as an adjunct during APT and as an alternative to conventional mechanical debridement during SPT.
Collapse
Affiliation(s)
- Hayder R Abdulbaqi
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Muhammad Saad Shaikh
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Ali A Abdulkareem
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Muhammad S Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Medina, Saudi Arabia.,Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Sarhang S Gul
- Department of Periodontics, College of Dentistry, University of Sulaimani, Sulaymaniyah, Iraq
| | - Aram M Sha
- Department of Periodontics, College of Dentistry, University of Sulaimani, Sulaymaniyah, Iraq.,Smart Health Tower, Sulaimani, Iraq
| |
Collapse
|
86
|
Grigorie MM, Suciu I, Zaharia D, Ionescu E, Chirila M, Voiculeanu M. Hopeless tooth? Prognosis and comprehensive treatment. A case report. J Med Life 2021; 14:287-294. [PMID: 34104255 PMCID: PMC8169135 DOI: 10.25122/jml-2021-0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A hopeless tooth from a periodontal point of view, with severe bone resorption, mobility and abnormal tooth migration, is often extracted. In advanced cases, function and esthetics are impaired, and an interdisciplinary treatment is requested. Retaining or not these teeth is based on clinician judgment. A growing body of evidence claims that prognosis has great potential to be improved in a motivated patient with good oral hygiene and regular maintenance. This case report aims to present a periodontal regenerative technique combining enamel matrix protein derivatives and a particulated xenograft to treat intraosseous defects caused by periodontitis. The patient healed uneventfully, and no complications were recorded after the surgical procedure. To correct abnormal tooth migration and improve function and esthetics, orthodontic treatment was instituted. Tooth prognosis improved from hopeless to questionable. This approach extended the life span of a compromised tooth, improving periodontal support and decreasing tooth mobility. This could be an alternative to extraction and implant.
Collapse
Affiliation(s)
- Mihaela Maria Grigorie
- Department of Endodontics, University of Medicine and Pharmacy Carol Davila, Faculty of Dental Medicine, Bucharest, Romania
| | - Ioana Suciu
- Department of Endodontics, University of Medicine and Pharmacy Carol Davila, Faculty of Dental Medicine, Bucharest, Romania
| | | | - Ecaterina Ionescu
- Department of Endodontics, University of Medicine and Pharmacy Carol Davila, Faculty of Dental Medicine, Bucharest, Romania
| | - Mihaela Chirila
- Department of Endodontics, University of Medicine and Pharmacy Carol Davila, Faculty of Dental Medicine, Bucharest, Romania
| | - Monica Voiculeanu
- Department of Endodontics, University of Medicine and Pharmacy Carol Davila, Faculty of Dental Medicine, Bucharest, Romania
| |
Collapse
|
87
|
The Effect of Controlled Diabetes and Hyperglycemia on Implant Placement with Simultaneous Horizontal Guided Bone Regeneration: A Clinical Retrospective Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9931505. [PMID: 34222488 PMCID: PMC8219425 DOI: 10.1155/2021/9931505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 01/21/2023]
Abstract
Diabetes represents a challenge in implant therapy because hyperglycemia may negatively affect bone regeneration, directly compromising clinical outcomes and increasing clinical failures. The aim of this retrospective study is to analyse the prognostic significance of HbA1c levels in patients undergoing implant placement associated with horizontal guided bone regeneration. Thirty-four patients were divided into 3 groups according to their HbA1c levels: nondiabetic normoglycemic patients (HbA1c < 5.7%), nondiabetic hyperglycemic patients (HbA1c < 6.5%), and controlled diabetic patients (HbA1c < 7%). Primary outcomes were dimensional changes in height (VDH) and width (DW) of the peri-implant defect. Secondary outcomes were evaluations of periodontal parameters of adjacent tooth sites, wound healing, marginal bone loss (MBL), and survival and success rates. At T1 (6 months), mean VDH values in groups 1, 2, and 3 were, respectively, 0.07, 0.5, and 0.25 mm. Mean DW values in those same groups were, respectively, 0.07, 0.38, and 0.33 mm. HbA1c levels were not statistically related to VDH and DW values at T1. No statistically significant differences were observed in MBL between groups (p = 0.230). Implant survival and success rates were, respectively, 98% and 96%. Simultaneous guided bone regeneration is a feasible procedure for the treatment of horizontal bone deficiencies in controlled diabetic patients.
Collapse
|
88
|
Chen Y, Huang Y, Deng X. External cervical resorption-a review of pathogenesis and potential predisposing factors. Int J Oral Sci 2021; 13:19. [PMID: 34112752 PMCID: PMC8192751 DOI: 10.1038/s41368-021-00121-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
External cervical resorption (ECR) refers to a pathological state in which resorption tissues penetrate into the dentin at the cervical aspect of the root. Despite being latent in its initial phase, ECR could cause severe damage to mineralized dental tissue and even involve the pulp if not given timely diagnosis and treatment. Nevertheless, the etiology of ECR is still poorly understood, which adds to the difficulty in early diagnosis. ECR has received growing attention in recent years due to the increasing number of clinical cases. Several potential predisposing factors have been recognized in cross-sectional studies as well as case reports. In the meantime, studies on histopathology and pathogenesis have shed light on possible mechanisms of ECR. This review aims to summarize the latest findings in the pathogenesis and potential predisposing factors of ECR, so as to provide pragmatic reference for clinical practice.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
89
|
Apatzidou DA, Bakopoulou AA, Kouzi-Koliakou K, Karagiannis V, Konstantinidis A. A tissue-engineered biocomplex for periodontal reconstruction. A proof-of-principle randomized clinical study. J Clin Periodontol 2021; 48:1111-1125. [PMID: 33899259 DOI: 10.1111/jcpe.13474] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/14/2022]
Abstract
AIM To assess the safety/efficacy of a tissue-engineered biocomplex in periodontal reconstruction. METHODS Twenty-seven intrabony defects were block-randomized across three treatment groups: Group-A (NA = 9) received autologous clinical-grade alveolar bone marrow mesenchymal stem cells (a-BMMSCs), seeded into collagen scaffolds, enriched with autologous fibrin/platelet lysate (aFPL). In Group-B (NB = 10), the collagen scaffold/aFPL devoid of a-BMMSCs filled the osseous defect. Group-C (NC = 8) received Minimal Access Flap surgery retaining the soft tissue wall of defects identically with Groups-A/-B. Subjects were clinically/radiographically assessed before anaesthesia (baseline) and repeatedly over 12 months. RESULTS Quality controls were satisfied before biocomplex transplantation. There were no adverse healing events. All approaches led to significant clinical improvements (p < .001) with no inter-group differences. At 12 months, the estimated marginal means for all groups were as follows: 3.0 (95% CI: 1.9-4.1) mm for attachment gain; 3.7 (2.7-4.8) mm for probing pocket depth reduction; 0.7 (0.2-1.3) mm increase in recession. An overall greater mean reduction in the radiographic Cemento-Enamel Junction to Bottom Defect (CEJ-BD) distance was found for Groups-A/-C over Group-B (p < .023). CONCLUSION Radiographic evidence of bone fill was less pronounced in Group-B, although clinical improvements were similar across groups. All approaches aimed to trigger the innate healing potential of tissues. Cell-based therapy is justified for periodontal reconstruction and remains promising in selected cases.
Collapse
Affiliation(s)
- Danae A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences (FHS), Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | - Athina A Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences (FHS), Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | | | - Vassilis Karagiannis
- School of Mathematics, Aristotle University of Thessaloniki, AUTh, Thessaloniki, Greece
| | - Antonis Konstantinidis
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences (FHS), Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| |
Collapse
|
90
|
Periodontal Wound Healing and Tissue Regeneration: A Narrative Review. Pharmaceuticals (Basel) 2021; 14:ph14050456. [PMID: 34065862 PMCID: PMC8151433 DOI: 10.3390/ph14050456] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Periodontal disease is a major public health issue, and various periodontal therapies have been performed to regenerate periodontal tissues. The periodontium is a complex structure composed of specialized tissues that support the teeth, and most periodontal surgeries are invasive procedures, including a resection of the gingiva or the alveolar bone. The periodontal wound healing process is slightly different from cutaneous wound healing and is similar to fetal healing, being almost scar-free. The aim of this review article is to provide an overview of periodontal wound healing and discuss various surgical and pharmaceutical approaches to achieve stable wound healing and improve the treatment outcomes. In addition, detrimental and limiting factors that induce a compromised prognosis are discussed, along with the perspective and future direction for successful periodontal tissue regeneration.
Collapse
|
91
|
Urban IA, Saleh MHA, Ravidà A, Forster A, Wang HL, Barath Z. Vertical bone augmentation utilizing a titanium-reinforced PTFE mesh: A multi-variate analysis of influencing factors. Clin Oral Implants Res 2021; 32:828-839. [PMID: 33786888 DOI: 10.1111/clr.13755] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/16/2021] [Accepted: 03/23/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To clinically evaluate the use of a titanium-reinforced PTFE mesh for vertical bone augmentation (VBA) of deficient alveolar ridges. MATERIALS AND METHODS This case series documented consecutive patients treated for VBA with a newly developed PTFE mesh. VBA was performed in anterior and posterior, maxillary and mandibular arches using anorganic bovine bone combined with autogenous graft in a 1:1 ratio. Healing time from initial surgery to re-opening was recorded. Baseline vertical deficiency, absolute bone gain (gross height gained), and relative gain (percentage of defect fill with respect to the baseline deficiency) were registered. RESULTS Fifty-seven patients (65 defects) were included in the analysis. The mean baseline vertical deficiency was 5.5 ± 2.6 mm. The mean absolute bone gain was 5.2 ± 2.4 mm. A relative gain of 96.5 ± 13.9% was achieved. Overall, 89.2% of cases showed complete regeneration, which occurred in all sites with baseline deficiencies of <5 mm, in 95.6% of sites with 5-8 mm deficiencies, and in 89.4% of sites with >8 mm deficiencies. Each 1-mm addition to the baseline height deficiency increased the likelihood of incomplete bone regeneration by 2.5 times. Defect location had a statistically significant but a limited clinical impact on the bone height gained (<0.5 mm). Complications were observed in three cases (3%). CONCLUSIONS Vertical bone augmentation with titanium-reinforced PTFE mesh and a mixture of autologous bone and xenograft is a safe and predictable procedure. The extent of the baseline vertical deficiency influences the percentage of bone gained.
Collapse
Affiliation(s)
- Istvan A Urban
- Graduate Implant Dentistry, Loma Linda University, Loma Linda, CA, USA.,Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Departement of Periodontics, University of Szeged, Szeged, Hungary.,Urban Regeneration Institute, Budapest, Hungary
| | - Muhammad H A Saleh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Periodontics, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Andrea Ravidà
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Zoltan Barath
- Department of Prosthetic Dentistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
92
|
Autologous Platelet-Rich Fibrin (PRF) as an Adjunct in the Management of Osteoradionecrosis and Medication-Related Osteonecrosis of Jaws. Case Series in A Single Centre. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Osteoradionecrosis (ORN) of the jaws and medication-related osteonecrosis of the jaws (MRONJ) are uncommon but serious diseases affecting the oral and maxillofacial region with clinically similar appearance but distinct pathophysiology. Management of ORN and MRONJ is inherently challenging and the treatment outcomes are unpredictable. The use of autologous platelet concentrates (APCs) to promote hard and soft tissue healing is well described in the literature, and the efficacy of leucocyte and platelet-rich fibrin (L-PRF) has been well documented in a number of clinical studies. The aim of this study was to present our treatment strategy and the outcomes of incorporating L-PRF as a surgical adjunct in management of ORN and MRONJ in our centre. Methods: eight cases of ORN and MRONJ were treated with a combination of sequestrectomy and L-PRF as a surgical adjunct. Results: the overall success was 87.5%. Using L-PRF as an adjunct, we were able to predictably manage ORN and MRONJ without causing significant morbidity. Conclusion: our experience shows that L-PRF may be used as a valuable and cost-effective adjunct to surgical management of ORN and MRONJ. However, due to a limited number of patients, and a short period of review, the true effectiveness of the method is yet to be demonstrated in a longer follow-up study including a greater number of patients, besides the inclusion of a control group.
Collapse
|
93
|
The Roles of FOXO1 in Periodontal Homeostasis and Disease. J Immunol Res 2021; 2021:5557095. [PMID: 33860060 PMCID: PMC8026307 DOI: 10.1155/2021/5557095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/07/2021] [Accepted: 03/13/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is an oral chronic inflammatory disease that is initiated by periodontal microbial communities and requires disruption of the homeostatic responses. The prevalence of periodontal disease increases with age; more than 70% of adults 65 years and older have periodontal disease. A pathogenic microbial community is required for initiating periodontal disease. Dysbiotic immune-inflammatory response and bone remodeling are characteristics of periodontitis. The transcription factor forkhead box protein O1 (FOXO1) is a key regulator of a number of cellular processes, including cell survival and differentiation, immune status, reactive oxygen species (ROS) scavenging, and apoptosis. Although accumulating evidence indicates that FOXO1 activity can be induced by periodontal pathogens, the roles of FOXO1 in periodontal homeostasis and disease have not been well documented. The present review summarizes how the FOXO1 signaling axis can regulate periodontal bacteria-epithelial interactions, immune-inflammatory response, bone remodeling, and wound healing.
Collapse
|
94
|
Güler Ş, Cetinkaya BO, Kurt Bayrakdar S, Ayas B, Keles GC. Comparison of the effectiveness of Ankaferd Blood Stopper ® and Emdogain in periodontal regeneration. Oral Dis 2021; 28:1947-1957. [PMID: 33740823 DOI: 10.1111/odi.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/07/2021] [Accepted: 03/14/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The present study was performed to compare the effectiveness of Ankaferd Blood Stopper® (ABS) with enamel matrix derivatives (EMD) for treating fenestration defects in rats. MATERIALS AND METHODS Forty-eight male Wistar rats were randomly divided into six groups (each n = 8). Fenestration defects were created in all rats, to which ABS, EMD, or saline (S) was then applied. The rats were grouped and sacrificed at one of two different time points, as follows: ABS-10-group, ABS-treatment/sacrifice on day 10; EMD-10-group, EMD-treatment/sacrifice on day 10; S-10-group, S-treatment/sacrifice on day 10; ABS-38-group, ABS-treatment/sacrifice on day 38; EMD-38-group, EMD-treatment/sacrifice on day 38; and S-38-group, S-treatment/sacrifice on day 38. Then, histomorphometric analysis including measurements of new bone area (NBA) and new bone ratio (NBR), and immunohistochemical analysis including the determination of osteopontin (OPN) and type-III-collagen (C-III) expression were performed. RESULTS The NBA and NBR were significantly higher in the ABS-10-group and EMD-10-group compared to the S-10-group (p < .05), and in the EMD-38-group compared to the S-38-group (p < .05). The levels of C-III and OPN immunoreactivity were significantly higher in the ABS-10-group compared to the S-10-group (p < .017). CONCLUSIONS The results of this study suggested that ABS can promote early periodontal regeneration, although its efficacy seems to decrease over time.
Collapse
Affiliation(s)
- Şevki Güler
- Department of Periodontology, Faculty of Dentistry, Abant İzzet Baysal University, Bolu, Turkey
| | - Burcu Ozkan Cetinkaya
- Department of Periodontology, Faculty of Dentistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Sevda Kurt Bayrakdar
- Department of Periodontology, Faculty of Dentistry, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Bülent Ayas
- Department of Histology and Embriology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Gonca Cayir Keles
- Department of Periodontology, Faculty of Dentistry, İstanbul Okan University, İstanbul, Turkey
| |
Collapse
|
95
|
Ding C, Fu S, Chen X, Chen C, Wang H, Zhong L. Epigallocatechin gallate affects the proliferation of human alveolar osteoblasts and periodontal ligament cells, as well as promoting cell differentiation by regulating PI3K/Akt signaling pathway. Odontology 2021; 109:729-740. [PMID: 33674907 DOI: 10.1007/s10266-021-00597-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/08/2021] [Indexed: 01/09/2023]
Abstract
Human periodontal ligament cells (hPDLCs) and human alveolar osteoblasts (hAOBs) play pivotal roles in periodontium. The regulatory effects of epigallocatechin gallate (EGCG) on hPDLCs and hAOBs remained unclear. This study probed into the functions of EGCG treating periodontal diseases. Cultured hAOBs and hPDLCs were passaged and observed by microscopic examination, and alkaline phosphatase (ALP) and immumohistochemical staining were performed for verification. hAOBs and hPDLCs were treated with EGCG and LY294002 + EGCG, then the proliferation of the two cells was assayed by MTT. Mineralization of the treated hAOBs and hPDLCs was detected by ALP activity experiment and Alizarin Red S staining kit. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were performed for the detection of the expressions of differentiation-related mRNAs and PI3K/Akt signaling pathway-related proteins in the two cells. The third passage of hAOBs mainly showed triangle shape and were positive by ALP staining. hPDLCs in passage 3 adhered to the wall in spiral or radial pattern with positively stained vimentin and negatively stained keratin. Cell proliferation and ALP activity of the hAOBs and hPDLCs were increased by EGCG treatment. The mineralized nodules and expressions of differentiation-related mRNAs, the phosphorylation of PI3K and Akt of the hAOBs and hPDLCs were promoted by EGCG treatment, while the effects of LY294002 treatment were opposite to EGCG treatment. Epigallocatechin gallate affected the proliferation and differentiation of hAOBs and hPDLCs through regulating PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Cheng Ding
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shulei Fu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xing Chen
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Chongchong Chen
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Huiming Wang
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Liangjun Zhong
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
96
|
Shaikh MS, Zafar MS, Pisani F, Lone MA, Malik YR. Critical features of periodontal flaps with regard to blood clot stability: A review. J Oral Biosci 2021; 63:111-119. [PMID: 33684521 DOI: 10.1016/j.job.2021.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Wound healing is a multifactorial procedure involving different cell types and biological mediators. The principles of wound healing are also applicable to periodontal tissues. The formation and stability of blood clots play a vital role in successful healing of wounds in periodontal tissues. The aim of the present review was to highlight the vital factors of periodontal flaps associated with blood clot stability. HIGHLIGHT The data on periodontal regeneration and wound healing have evolved greatly in light of several factors, including space for blood clots and blood clot stabilization. In periodontal osseous defects, the stability of blood clots seems critical to wound healing. If mechanical forces can be managed by wound stabilization, the gingival flap-tooth root interface may show connective tissue repair. However, compromised adhesion is susceptible to mechanical forces and can cause wound breakage and epithelialization. CONCLUSION The presence of a thick blood clot may hinder the plasmatic circulation between the recipient bed and graft during the initial stage of healing, which is critical in cases of mucogingival surgery. Root conditioning can also determine the healing consequence by enhancing blood clot adhesion.
Collapse
Affiliation(s)
- Muhammad Saad Shaikh
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi, 75510, Pakistan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Madina Munawwarra, 41311, Saudi Arabia; Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, 44000, Pakistan.
| | - Flavio Pisani
- College of Medicine and Dentistry, MClinDent in Periodontology, Birmingham, B4 6BN, UK
| | - Mohid Abrar Lone
- Department of Oral Pathology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi, 75510, Pakistan
| | - Yasser Riaz Malik
- Department of Community Dentistry, Sir Syed College of Medical Sciences for Girls, Karachi, 74200, Pakistan; Department of Preventive Dentistry (Dental Public Health), College of Dentistry, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
97
|
Chu EY, Deeb JG, Foster BL, Hajishengallis E, Somerman MJ, Thumbigere-Math V. Multiple Idiopathic Cervical Root Resorption: A Challenge for a Transdisciplinary Medical-Dental Team. FRONTIERS IN DENTAL MEDICINE 2021; 2:652605. [PMID: 34368800 PMCID: PMC8340576 DOI: 10.3389/fdmed.2021.652605] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The goal of this perspective article is to use multiple idiopathic cervical root resorption (MICRR) as a model to demonstrate the need for transdisciplinary collaborations, from basic science to treatment planning, to improve the quality of health care for all. This is not a review of the literature on the current state of MICRR. Tooth root resorption is a normal physiological process required for resorption and exfoliation of primary teeth; however, root resorption of adult teeth is largely pathological. MICRR is an aggressive form of external root resorption, which occurs near the cemento-enamel junction (CEJ). The cause of MICRR remains elusive, however, it is mediated primarily by osteoclasts/odontoclasts. Accumulating case studies and experiments in animal models have provided insights into defining the etiologies and pathophysiological mechanisms for MICRR, which include: systemic conditions and syndromes, inherited genetic variants affecting osteoclast/odontoclast activity, altered periodontal structures, drug-induced root resorption and rebound effects after cessation of anti-resorptive treatment, chemotherapy, exposure to pets or viral infections, and other factors such as inflammatory conditions or trauma. To determine the causative factors for MICRR, as well as other oral-dental conditions, at minimum, a comprehensive health history should be collected for all patients by dental care providers, discussed with other health care providers and appropriate collaborations established. The examples highlighted in this perspective emphasize the need for transdisciplinary research collaborations coupled with integrated management strategies between medicine and dentistry in order to identify cause(s) early and improve clinical outcomes.
Collapse
Affiliation(s)
- Emily Y. Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Janina Golob Deeb
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Brian L. Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Evlambia Hajishengallis
- Divisions of Pediatric Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Martha J. Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Vivek Thumbigere-Math
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
- Division of Periodontics, University of Maryland School of Dentistry, Baltimore, MD, United States
| |
Collapse
|
98
|
Use of Platelet-Rich Fibrin in the Treatment of Periodontal Intrabony Defects: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6669168. [PMID: 33614786 PMCID: PMC7878074 DOI: 10.1155/2021/6669168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 02/05/2023]
Abstract
Background Platelet-rich fibrin (PRF) is a kind of autologous platelet concentrate which is easy to obtain and cheap. In recent years, it has been studied to improve the effect of periodontal regeneration. However, few studies have systematically evaluated the complementary effect of PRF in the treatment of intrabony defects. The present review is aimed at systematically assessing the effects of PRF on clinical and radiological outcomes of the surgical treatment of periodontal intrabony defects. Methods The protocol was registered at PROSPERO (International Prospective Register of Systematic Reviews) as CRD42020206056. An electronic search was conducted in MEDLINE, Cochrane, and EMBASE databases. Only randomized clinical trials were selected. Systematically healthy patients with two or three walls of intrabony defects were considered. Intrabony defect (IBD) depth reduction and bone fill (BF) % were set as primary outcomes while probing depth (PD) reduction, clinical attachment level (CAL) gain, and gingival margin level (GML) gain were considered as the secondary outcome. When possible, a meta-analysis was performed. Results Eighteen articles fulfilled the inclusion criteria, and seventeen studies were quantitatively analyzed. Of 17 studies, four were rated as high risk of bias and thirteen as the moderate risk of bias. Two comparisons were set: (1) open flap debridement (OFD) combined with PRF and OFD alone and (2) bone grafting (BG) combined with PRF and BG alone. Compared to OFD alone, OFD+PRF showed significantly greater in all primary and secondary outcomes. Compared to BG alone, BG+PRF showed significantly greater in IBD depth reduction, PD reduction, CAL gain, and GML gain. Conclusions The use of PRF was significantly effective in the treatment of periodontal intrabony defects. The benefit of OFD+PRF may be greater than BG+PRF. PRF can promote early wound healing in periodontal surgery. As all included studies were not at low risk of bias, well-designed RCTs having a high methodological quality are needed to clarify the additional effectiveness of PRF in the treatment of intrabony defects in the future.
Collapse
|
99
|
Özcan E, Saygun I, Kantarcı A, Özarslantürk S, Serdar MA, Özgürtaş T. The effects of a novel non-invasive application of platelet-rich fibrin on periodontal clinical parameters and gingival crevicular fluid transforming growth factor-β and collagen-1 levels: A randomized, controlled, clinical study. J Periodontol 2021; 92:1252-1261. [PMID: 33382101 DOI: 10.1002/jper.20-0713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Several potential benefits have been attributed to the platelet-rich fibrin (PRF), including enhanced tissue healing properties. In this study, we hypothesized that the application of PRF as an adjunct to conventional scaling and root planing (ScRp) would enhance the outcomes of non-surgical periodontal therapy. METHODS The present study was a split-mouth randomized controlled clinical trial design in 24 deep periodontal pockets in 12 patients with periodontitis. The pockets were randomly assigned as test or control. The test group received PRF as an adjunct to ScRp, whereas the control group received ScRp only. We measured periodontal clinical parameters at baseline, 3, and 6 months after the treatments. To study the initial healing in response to treatment, transforming growth factor-β (TGF-β) and collagen-1 (Col-1) in gingival crevicular fluid (GCF) were measured using enzyme-linked immunosorbent assay at baseline, third, seventh, and 14th days. RESULTS The test group showed a significantly greater pocket reduction, higher clinical attachment gain, and less gingival recession than the control group at 3 and 6 months. The test Col-1 levels (1.27 ± 1.05, 1.35 ± 0.76, 0.97 ± 0.53 ng/site) and TGF-β levels (11.93 ± 2.68, 12.54 ± 3.66, 17.19 ± 11.66 pg/site) were higher than the control Col-1 levels (0.76 ± 0.20, 0.84 ± 0.24, 0.57 ± 0.19 ng/site) and TGF-β levels (6.34 ± 1.67, 6.35 ± 3.44, 7.51 ± 2.85 pg/site) at all measurement days respectively. CONCLUSIONS Non-surgical application of the PRF as an adjunct to conventional ScRp may effectively improve the periodontal clinical parameters via increasing expression of the GCF TGF-β and Col-1 levels.
Collapse
Affiliation(s)
- Erkan Özcan
- Gulhane Dentistry Faculty, Department of Periodontology, University of Health Sciences, Ankara, Turkey
| | - Işıl Saygun
- Gulhane Dentistry Faculty, Department of Periodontology, University of Health Sciences, Ankara, Turkey
| | | | - Savaş Özarslantürk
- Gulhane Dentistry Faculty, Department of Oral and Maxillofacial Radiology, University of Health Sciences, Ankara, Turkey
| | | | - Taner Özgürtaş
- Gulhane Medical Faculty, Department of Biochemistry, Health Sciences University, Ankara, Turkey
| |
Collapse
|
100
|
Kim JY, Kim HN. Changes in Inflammatory Cytokines in Saliva after Non-Surgical Periodontal Therapy: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010194. [PMID: 33383828 PMCID: PMC7795738 DOI: 10.3390/ijerph18010194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/31/2022]
Abstract
To determine the diagnostic value of inflammatory cytokines in periodontal disease, we performed a systematic review of the changes in inflammatory cytokines after non-surgical periodontal therapy and a meta-analysis of the utility of interleukin (IL)-1β and matrix metalloproteinase (MMP)-8 as salivary biomarkers. All available papers published in English until 20 August 2020, were searched in the MEDLINE and EMBASE databases. Population, intervention, comparison, and outcome data were extracted from the selected studies, and the roles of IL-1β and MMP-8 were assessed in a meta-analysis. Eleven studies, including two meta-analyses, were assessed in the systematic review. Biomarkers showing high levels in periodontal disease were salivary IL-1β, IL-4, IL-6, MMP-8, and tissue inhibitor of matrix metalloproteinases (TIMP)-2, and those in the controls were tumor necrosis factor (TNF)-α, IL-10, IL-17, and IL-32. Biomarkers that decreased after scaling and root planning (SRP) and oral hygiene instruction (OHI) in periodontitis patients were IL-1β, MMP-8, MMP-9, prostaglandin E2 (PGE2), and TIMP-2. The pooled standardized mean difference of IL-1β and MMP-8 was −1.04 and 35.90, respectively, but the differences between periodontitis patients and healthy controls were not significant. Although the changes in salivary IL-1β and MMP-8 levels after non-surgical periodontal therapy were not significant, salivary cytokines could be used to confirm the effect of periodontal therapy or diagnose periodontal disease.
Collapse
Affiliation(s)
- Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon 21936, Korea;
| | - Han-Na Kim
- Department of Dental Hygiene, College of Health and Medical Sciences, Cheongju University, Cheongju 28503, Korea
- Correspondence: ; Tel.: +82-43-229-8373
| |
Collapse
|