51
|
Li Y, Zhang C, Gao Y, Zhang Y, Sui L, Zhang X, Zhang Y. Effect of Epigallocatechin-3-Gallate on theIn VitroDevelopmental Potential of Porcine Oocytes and Embryos Obtained Parthenogenetically and By Somatic Cell Nuclear Transfer. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2014.3116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
52
|
Su J, Wang Y, Xing X, Zhang L, Sun H, Zhang Y. Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos. J Pineal Res 2015; 59:455-68. [PMID: 26331949 DOI: 10.1111/jpi.12275] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/28/2015] [Indexed: 01/08/2023]
Abstract
Somatic cell nuclear transfer (SCNT) is a promising technology, but its application is hampered by its low efficiency. Hence, the majority of SCNT embryos fail to develop to term. In this study, the antioxidant melatonin reduced apoptosis and reactive oxygen species (ROS) in bovine SCNT embryos. It also increased cell number, inner cell mass (ICM) cell numbers, and the ratio of ICM to total cells while improving the development of bovine SCNT embryos in vitro and in vivo. Gene expression analysis showed that melatonin suppressed the expression of the pro-apoptotic genes p53 and Bax and stimulated the expression of the antioxidant genes SOD1 and Gpx4, the anti-apoptotic gene BCL2L1, and the pluripotency-related gene SOX2 in SCNT blastocysts. We also analyzed the epigenetic modifications in bovine in vitro fertilization, melatonin-treated, and untreated SCNT embryos. The global H3K9ac levels of melatonin-treated SCNT embryos at the four-cell stage were higher than those of the untreated SCNT embryos. We conclude that exogenous melatonin affects the expression of genes related to apoptosis, antioxidant function, and development. Moreover, melatonin reduced apoptosis and ROS in bovine SCNT embryos and enhanced blastocyst quality, thereby ultimately improving bovine cloning efficiency.
Collapse
Affiliation(s)
- Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Xupeng Xing
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Lei Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Hongzheng Sun
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| |
Collapse
|
53
|
Mehaisen GMK, Saeed AM, Gad A, Abass AO, Arafa M, El-Sayed A. Antioxidant Capacity of Melatonin on Preimplantation Development of Fresh and Vitrified Rabbit Embryos: Morphological and Molecular Aspects. PLoS One 2015; 10:e0139814. [PMID: 26439391 PMCID: PMC4595475 DOI: 10.1371/journal.pone.0139814] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
Embryo cryopreservation remains an important technique to enhance the reconstitution and distribution of animal populations with high genetic merit. One of the major detrimental factors to this technique is the damage caused by oxidative stress. Melatonin is widely known as an antioxidant with multi-faceted ways to counteract the oxidative stress. In this paper, we investigated the role of melatonin in protecting rabbit embryos during preimplantation development from the potential harmful effects of oxidative stress induced by in vitro culture or vitrification. Rabbit embryos at morula stages were cultured for 2 hr with 0 or 10−3 M melatonin (C or M groups). Embryos of each group were either transferred to fresh culture media (CF and MF groups) or vitrified/devitrified (CV and MV groups), then cultured in vitro for 48 hr until the blastocyst stage. The culture media were used to measure the activity of antioxidant enzymes: glutathione-s-transferase (GST) and superoxide dismutase (SOD), as well as the levels of two oxidative substrates: lipid peroxidation (LPO) and nitric oxide (NO). The blastocysts from each group were used to measure the expression of developmental-related genes (GJA1, POU5F1 and Nanog) and oxidative-stress-response-related genes (NFE2L2, SOD1 and GPX1). The data showed that melatonin promoted significantly (P<0.05) the blastocyst rate by 17% and 12% in MF and MV groups compared to their controls (CF and CV groups). The GST and SOD activity significantly increased by the treatment of melatonin in fresh or vitrified embryos, while the levels of LPO and NO decreased (P<0.05). Additionally, melatonin considerably stimulated the relative expression of GJA1, NFE2L2 and SOD1 genes in MF and MV embryos compared to CF group. Furthermore, melatonin significantly ameliorated the reduction of POU5F1 and GPX1 expression induced by vitrification. The results obtained from the current investigation provide new and clear molecular aspects regarding the mechanisms by which melatonin promotes development of both fresh and vitrified rabbit embryos.
Collapse
Affiliation(s)
- Gamal M. K. Mehaisen
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- * E-mail:
| | - Ayman M. Saeed
- Department of Animal Biotechnology, Animal Production Research Institute, Dokki, Giza, Egypt
| | - Ahmed Gad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed O. Abass
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mahmoud Arafa
- Animal Health Research Institute, Dokki, Giza, Egypt
| | - Ashraf El-Sayed
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
54
|
Cebrián-Pérez JA, Casao A, González-Arto M, dos Santos Hamilton TR, Pérez-Pé R, Muiño-Blanco T. Melatonin in sperm biology: breaking paradigms. Reprod Domest Anim 2015; 49 Suppl 4:11-21. [PMID: 25277428 DOI: 10.1111/rda.12378] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/19/2014] [Indexed: 12/15/2022]
Abstract
Melatonin is a ubiquitous molecule, present in a wide range of organisms, and involved in multiple functions. Melatonin relays the information about the photoperiod to the tissues that express melatonin-binding sites in both central and peripheral nervous systems. This hormone has a complex mechanism of action. It can cross the cell plasma membrane and exert its actions in all cells of the body. Certain melatonin actions are mediated by receptors that belong to the superfamily of G-protein-coupled receptors (GPCRs), the MT1 and MT2 membrane. Melatonin can also bind to calmodulin as well as to nuclear receptors of the retinoic acid receptor family, RORα1, RORα2 and RZRβ. The purpose of this review is to report on recent developments in the physiological role of melatonin and its receptors. Specific issues concerning the biological function of melatonin in mammalian seasonal reproduction and spermatozoa are considered. The significance of the continuous presence of melatonin in seminal plasma with a fairly constant concentration is also discussed.
Collapse
Affiliation(s)
- J A Cebrián-Pérez
- Departamento de Bioquímica y Biología Molecular y Celular, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
55
|
Ganji R, Nabiuni M, Faraji R. Development of mouse preantral follicle after in vitro culture in a medium containing melatonin. CELL JOURNAL 2015; 16:546-53. [PMID: 25685745 PMCID: PMC4297493 DOI: 10.22074/cellj.2015.499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 12/01/2013] [Indexed: 12/15/2022]
Abstract
Objective Improvements in cancer treatment have allowed more young women to survive. However, many cancer patients suffer from ovarian failure. Cryopreservation is one
of the solutions for fertility restoration in these patients. The cryopreservation of isolated
follicles is a more attractive approach in the long term. Many endocrine and paracrine
factors can stimulate the granulosa cells of preantral follicles to proliferate. Melatonin acts
as direct free radical scavenger and indirect antioxidant. In this study, we investigated the
direct effects of melatonin on follicle development and oocyte maturation by exposing in
vitro cultured mouse vitrified-warmed ovarian follicles to melatonin.
Materials and Methods In an experimental study, preantral follicles with diameter of
150-180 µm were isolated from prepubertal mouse ovaries. Follicles were vitrified and
thawed using cryolock method. They were then cultured individually for 7 days in droplets
supplemented with 0, 10 and 100 pM melatonin, while ovulation was induced using epidermal growth factor (EGF) and human chorionic gonadotropin (hCG). The survival rate of
follicles and nuclear maturation of ovulated oocytes were determined.
Results At the end of culture, significant increases in follicle survival (p<0.001) and in diameter (p<0.05) were noticed in 10 pM melatonin group compared to control group. In the 100
pM group, survival rate was not affected by melatonin. It was revealed that after induction of
ovulation, total number of metaphase II oocytes in treatment groups were not influenced by
melatonin (p>0.05).
Conclusion Culture of mouse vitrified-warmed preantral follicles in a medium supplemented with 10 pM melatonin increased the number of surviving follicles.
Collapse
Affiliation(s)
- Roya Ganji
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Roya Faraji
- Reproductive Health Research Center, Guilan University of Medical Sciences, Guilan, Iran
| |
Collapse
|
56
|
Fernando S, Rombauts L. Melatonin: shedding light on infertility?--A review of the recent literature. J Ovarian Res 2014; 7:98. [PMID: 25330986 PMCID: PMC4209073 DOI: 10.1186/s13048-014-0098-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/11/2014] [Indexed: 12/31/2022] Open
Abstract
In recent years, the negative impact of oxidative stress on fertility has become widely recognised. Several studies have demonstrated its negative effect on the number and quality of retrieved oocytes and embryos following in-vitro fertilisation (IVF). Melatonin, a pineal hormone that regulates circadian rhythms, has also been shown to exhibit unique oxygen scavenging abilities. Some studies have suggested a role for melatonin in gamete biology. Clinical studies also suggest that melatonin supplementation in IVF may lead to better pregnancy rates. Here we present a critical review and summary of the current literature and provide suggestions for future well designed clinical trials.
Collapse
Affiliation(s)
- Shavi Fernando
- MIMR-PHI Institute of Medical Research, 246 Clayton Rd, Clayton, 3168, , Victoria, Australia. .,Monash University, Department of Obstetrics and Gynaecology, Level 5 Monash Medical Centre, 246 Clayton Rd, Clayton, 3168, , Victoria, Australia.
| | - Luk Rombauts
- MIMR-PHI Institute of Medical Research, 246 Clayton Rd, Clayton, 3168, , Victoria, Australia. .,Monash IVF, 252 Clayton rd, Clayton, 3168, , Victoria, Australia.
| |
Collapse
|
57
|
Tian X, Wang F, He C, Zhang L, Tan D, Reiter RJ, Xu J, Ji P, Liu G. Beneficial effects of melatonin on bovine oocytes maturation: a mechanistic approach. J Pineal Res 2014; 57:239-47. [PMID: 25070516 DOI: 10.1111/jpi.12163] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022]
Abstract
This study was performed to investigate the effect of melatonin on bovine oocyte maturation and subsequent embryonic development in vitro. The endogenous melatonin concentration in bovine follicular fluid is approximately 10(-11) M. To examine the potential beneficial effects of melatonin on bovine oocyte maturation in vitro, germinal vesicle (GV) oocytes were incubated with different concentrations of melatonin (10(-11), 10(-9), 10(-7), 10(-5), 10(-3) M). Melatonin supplementation at suitable concentrations significantly promoted oocyte maturation. The development of embryos and the mean cell number/blastocyst produced after in vitro fertilization were remarkably improved. The most effective melatonin concentrations obtained from the studies ranged from 10(-9) to 10(-7) M. The expression of melatonin receptor MT1 and MT2 genes was identified in cumulus cells, granulosa cells, and oocytes using reverse transcription PCR, immunofluorescence, and Western blot. The mechanistic studies show that the beneficial effects of melatonin on bovine oocyte maturation are mediated via melatonin membrane receptors as the melatonin receptor agonist (IIK7) promotes this effect while the melatonin receptor antagonist (luzindole) blocks this action. Mechanistic explorations revealed that melatonin supplementation during bovine oocyte maturation significantly up-regulated the expressions of oocyte maturation-associated genes (GDF9, MARF1, and DNMT1a) and cumulus cells expansion-related gene (PTX3, HAS1/2) and that LHR1/2, EGFR are involved in signal transduction and epigenetic reprogramming. The results obtained from the studies provide new information regarding the mechanisms by which melatonin promotes bovine oocyte maturation in vitro and provide an important reference for in vitro embryo production of bovine and the human-assisted reproductive technology.
Collapse
Affiliation(s)
- XiuZhi Tian
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Cheuquemán C, Arias ME, Risopatrón J, Felmer R, Álvarez J, Mogas T, Sánchez R. Supplementation of IVF medium with melatonin: effect on sperm functionality andin vitroproduced bovine embryos. Andrologia 2014; 47:604-15. [DOI: 10.1111/and.12308] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2014] [Indexed: 12/15/2022] Open
Affiliation(s)
- C. Cheuquemán
- Centro de Biotecnología de la Reproducción (BIOREN-CEBIOR); Facultad de Medicina; Universidad de La Frontera; Temuco Chile
| | - M. E. Arias
- Centro de Biotecnología de la Reproducción (BIOREN-CEBIOR); Facultad de Medicina; Universidad de La Frontera; Temuco Chile
| | - J. Risopatrón
- Centro de Biotecnología de la Reproducción (BIOREN-CEBIOR); Facultad de Medicina; Universidad de La Frontera; Temuco Chile
- Departamento de Ciencias Básicas; Universidad de La Frontera; Temuco Chile
| | - R. Felmer
- Centro de Biotecnología de la Reproducción (BIOREN-CEBIOR); Facultad de Medicina; Universidad de La Frontera; Temuco Chile
- Departamento de Ciencias Básicas; Universidad de La Frontera; Temuco Chile
- Departamento de Ciencias Agronómicas y Recursos Naturales; Facultad de Ciencias Agropecuarias y Forestales; Universidad de La Frontera; Temuco Chile
| | | | - T. Mogas
- Departamento de Medicina i Cirurgia Animals; Universitat Autònoma de Barcelona; Bellaterra Spain
| | - R. Sánchez
- Centro de Biotecnología de la Reproducción (BIOREN-CEBIOR); Facultad de Medicina; Universidad de La Frontera; Temuco Chile
- Departamento de Ciencias Preclínicas; Facultad de Medicina; Universidad de La Frontera; Temuco Chile
| |
Collapse
|
59
|
Yang WC, Tang KQ, Fu CZ, Riaz H, Zhang Q, Zan LS. Melatonin regulates the development and function of bovine Sertoli cells via its receptors MT1 and MT2. Anim Reprod Sci 2014; 147:10-6. [DOI: 10.1016/j.anireprosci.2014.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022]
|
60
|
Melatonin enhances the in vitro maturation and developmental potential of bovine oocytes denuded of the cumulus oophorus. ZYGOTE 2014; 23:525-36. [PMID: 24869483 DOI: 10.1017/s0967199414000161] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study was designed to determine the effect of melatonin on the in vitro maturation (IVM) and developmental potential of bovine oocytes denuded of the cumulus oophorus (DOs). DOs were cultured alone (DOs) or with 10-9 M melatonin (DOs + MT), cumulus-oocyte complexes (COCs) were cultured without melatonin as the control. After IVM, meiosis II (MII) rates of DOs, and reactive oxygen species (ROS) levels, apoptotic rates and parthenogenetic blastocyst rates of MII oocytes were determined. The relative expression of ATP synthase F0 Subunit 6 and 8 (ATP6 and ATP8), bone morphogenetic protein 15 (BMP-15) and growth differentiation factor 9 (GDF-9) mRNA in MII oocytes and IFN-tau (IFN-τ), Na+/K+-ATPase, catenin-beta like 1 (CTNNBL1) and AQP3 mRNA in parthenogenetic blastocysts were quantified using real-time polymerase chain reaction (PCR). The results showed that: (1) melatonin significantly increased the MII rate of DOs (65.67 ± 3.59 % vs. 82.29 ± 3.92%; P < 0.05), decreased the ROS level (4.83 ± 0.42 counts per second (c.p.s) vs. 3.78 ± 0.29 c.p.s; P < 0.05) and apoptotic rate (36.99 ± 3.62 % vs. 21.88 ± 2.08 %; P < 0.05) and moderated the reduction of relative mRNA levels of ATP6, ATP8, BMP-15 and GDF-9 caused by oocyte denudation; (2) melatonin significantly increased the developmental rate (24.17 ± 3.54 % vs. 35.26 ± 4.87%; P < 0.05), and expression levels of IFN-τ, Na+/K+-ATPase, CTNNBL1 and AQP3 mRNA of blastocyst. These results indicated that melatonin significantly improved the IVM quality of DOs, leading to an increased parthenogenetic blastocyst formation rate and quality.
Collapse
|
61
|
Nishihara T, Hashimoto S, Ito K, Nakaoka Y, Matsumoto K, Hosoi Y, Morimoto Y. Oral melatonin supplementation improves oocyte and embryo quality in women undergoing in vitro fertilization-embryo transfer. Gynecol Endocrinol 2014; 30:359-62. [PMID: 24628045 DOI: 10.3109/09513590.2013.879856] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to evaluate the efficacy of oral melatonin supplementation on oocyte and embryo quality in patients in an assisted reproductive technologies program. All patients were treated for at least 2 weeks with melatonin (3 mg/day). To evaluate the cumulative effect of melatonin supplementation, we compared cycle outcomes between the first (no supplementation) and second cycles (melatonin supplementation) of patients who completed two treatment cycles. There were no significant differences in maturation rates (p = 0.50), blastocyst rates (p = 0.75), and the rate of good quality blastocysts (p = 0.59) between the first and second cycles. The fertilization rate of ICSI was higher in the second cycle than that in the first cycle (69.3 versus 77.5%). Being limited to patients with a low fertilization rate in the first cycle (<60%), the fertilization rate dramatically increased after melatonin treatment (35.1 versus 68.2%). The rate of good quality embryos also increased (48.0 versus 65.6%). An important finding in our study was that oral melatonin supplementation can have a beneficial effect on the improvement of fertilization and embryo quality and this may have occurred due to a reduction in oxidative damage.
Collapse
|
62
|
Wang F, Tian X, Zhou Y, Tan D, Zhu S, Dai Y, Liu G. Melatonin improves the quality of in vitro produced (IVP) bovine embryos: implications for blastocyst development, cryotolerance, and modifications of relevant gene expression. PLoS One 2014; 9:e93641. [PMID: 24695534 PMCID: PMC3973586 DOI: 10.1371/journal.pone.0093641] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/05/2014] [Indexed: 11/23/2022] Open
Abstract
To evaluate the potential effects of melatonin on the kinetics of embryo development and quality of blastocyst during the process of in vitro bovine embryo culture. Bovine cumulus–oocyte complexes (COCs) were fertilized after in vitro maturation. The presumed zygotes were cultured in in vitro culture medium supplemented with or without 10−7 M melatonin. The cleavage rate, 8-cell rate and blastocyst rate were examined to identify the kinetics of embryo development. The hatched blastocyst rate, mortality rate after thawing and the relevant transcript abundance were measured to evaluate the quality of blastocyst. The results showed that melatonin significantly promoted the cleavage rate and 8-cell embryo yield of in vitro produced bovine embryo. In addition, significantly more blastocysts were observed by Day 7 of embryo culture at the presence of melatonin. These results indicated that melatonin accelerated the development of in vitro produced bovine embryos. Following vitrification at Day 7 of embryo culture, melatonin (10−7 M) significantly increased the hatched blastocyst rate from 24 h to 72 h and decreased the mortality rate from 48 h to 72 h after thawing. The presence of melatonin during the embryo culture resulted in a significant increase in the gene expressions of DNMT3A, OCC, CDH1 and decrease in that of AQP3 after thawing. In conclusion, melatonin not only promoted blastocyst yield and accelerated in vitro bovine embryo development, but also improved the quality of blastocysts which was indexed by an elevated cryotolerance and the up-regulated expressions of developmentally important genes.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - XiuZhi Tian
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - YanHua Zhou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - DunXian Tan
- Department of Cellular & Structural Biology, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - ShiEn Zhu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - YunPing Dai
- State Key Laboratories of Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - GuoShi Liu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
63
|
Wang F, Tian X, Zhang L, Gao C, He C, Fu Y, Ji P, Li Y, Li N, Liu G. Beneficial effects of melatonin on in vitro bovine embryonic development are mediated by melatonin receptor 1. J Pineal Res 2014; 56:333-42. [PMID: 24666110 DOI: 10.1111/jpi.12126] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/10/2014] [Indexed: 01/12/2023]
Abstract
In the current study, a fundamental question, that is, the mechanisms related to the beneficial effects of melatonin on mammalian embryonic development, was addressed. To examine the potential beneficial effects of melatonin on bovine embryonic development, different concentrations of melatonin (10(-11), 10(-9), 10(-7), 10(-5), 10(-3) M) were incubated with fertilized embryos. Melatonin in the range of 10(-11) to 10(-5) M significantly promoted embryonic development both in early culture medium (CR1aa +3 mg/mL BSA) and in later culture medium (CR1aa + 6%FBS). The most effective concentrations applied in the current studies were 10(-9) and 10(-7) M. Using quantitative real-time PCR with immunofluorescence and Western blot assays, the expression of melatonin receptor MT1 and MT2 genes was identified in bovine embryos. Further studies indicate that the beneficial effects of melatonin on bovine embryo development were mediated by the MT1 receptor. This is based on the facts that luzindole, a nonselective MT1 and MT2 antagonist, blocked the effect on melatonin-induced embryo development, while 4-P-PDOT, a selective MT2 antagonist, had little effect. Mechanistic explorations uncovered that melatonin application during bovine embryonic development significantly up-regulated the expression of antioxidative (Gpx4, SOD1, bcl-2) and developmentally important genes (SLC2A1, DNMT1A, and DSC2) while down-regulating expression of pro-apoptotic genes (P53, BAX, and Caspase-3). The results obtained from the current studies provide new information regarding the mechanisms by which melatonin promotes bovine embryonic development under both in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetic Improvement in Beijing, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Cruz MHC, Leal CLV, da Cruz JF, Tan DX, Reiter RJ. Role of melatonin on production and preservation of gametes and embryos: a brief review. Anim Reprod Sci 2014; 145:150-60. [PMID: 24559971 DOI: 10.1016/j.anireprosci.2014.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 12/16/2022]
Abstract
The aim of this brief review is to clarify the role of melatonin in the production and preservation of mammalian gametes and embryos. Melatonin is an indoleamine synthesized from tryptophan in the pineal gland and other organs that operates as a hypothalamic-pituitary-gonadal axis modulator and regulates the waxing and waning of seasonal reproductive competence in photoperiodic mammals. A major function of the melatonin rhythm is to transmit information about the length of the daily photoperiod to the circadian and circannual systems in order to provide time-of-day and time-of-year information, respectively, to the organism. Melatonin is also a powerful antioxidant and anti-apoptotic agent, which is due to its direct scavenging of toxic oxygen derivatives and its ability to reduce the formation of reactive species. Mammalian gametes and embryos are highly vulnerable to oxidative stress due to the presence of high lipid levels; during artificial breeding procedures, these structures are exposed to dramatic changes in the microenvironment, which have a direct bearing on their function and viability. Free radicals influence the balance between oxidation-reduction reactions, disturb the transbilayer-phospholipid asymmetry of the plasma membrane and enhance lipid peroxidation. Melatonin, due to its amphiphilic nature, is undoubtedly useful in tissues by protecting them from free radical-mediated oxidative damage and cellular death. The supplementation of melatonin to semen extender or culture medium significantly improves sperm viability, oocyte competence and blastocyst development in vitro.
Collapse
Affiliation(s)
- Maria Helena Coelho Cruz
- Department of Cellular and Structural Biology, UT Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, USP, 13635-900 Pirassununga SP, Brazil.
| | - Claudia Lima Verde Leal
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, USP, 13635-900 Pirassununga SP, Brazil
| | - Jurandir Ferreira da Cruz
- Department of Plant Science and Animal Science, Southwest Bahia State University, UESB, 45083-900 Vitória da Conquista BA, Brazil
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, UT Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
65
|
Reiter RJ, Tan DX, Tamura H, Cruz MHC, Fuentes-Broto L. Clinical relevance of melatonin in ovarian and placental physiology: a review. Gynecol Endocrinol 2014; 30:83-9. [PMID: 24319996 DOI: 10.3109/09513590.2013.849238] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Within the last decade, the synthesis of melatonin in and its functions at the level of the peripheral reproductive organs has come into better focus. Melatonin is produced at several reproductive organ sites, e.g., the oocyte, ovarian follicular cells and the placental cytotrophoblasts. Moreover, these cells also contain membrane receptors for this indoleamine. In addition, via the free radical scavenging activity of melatonin and its metabolites, oxidative stress is reduced in all reproductive organ cells ensuring their optimal function. Enhancement of oocyte maturation and preservation of oocyte quality may be major functions of melatonin. Oocyte damage reduces successful fertilization and the development of a healthy fetus. The findings that melatonin protects the oocyte from toxic oxygen species have implications for improving the outcome of in vitro fertilization-embryo transfer procedures, as already shown in two published reports. Some actions of melatonin in the placenta may be context specific. Thus, melatonin is believed to function in the maintenance of optimal placental homeostasis by deferring apoptosis of villous cytotrophoblasts, while protecting syncytiotrophoblasts from oxidative damage. Melatonin reduces oxidative damage in the placenta and may improve hemodynamics and nutrient transfer at the placental-uterine interface. The use of melatonin to treat preeclampsia should also be considered.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center , San Antonio, TX , USA
| | | | | | | | | |
Collapse
|
66
|
Dose-dependent effect of melatonin on postwarming development of vitrified ovine embryos. Theriogenology 2014; 81:1058-66. [PMID: 24612696 DOI: 10.1016/j.theriogenology.2014.01.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/14/2014] [Accepted: 01/20/2014] [Indexed: 11/23/2022]
Abstract
After cryopreservation, embryos become sensitive to the oxidative stress, resulting in lipid peroxidation, membrane injury, and structural destruction. The present study aimed to assess the effect of increasing concentration of melatonin during postwarming culture on embryo's ability to restore its functions after cryopreservation. In vitro-produced blastocysts were vitrified, warmed, and cultured in vitro in TCM 199 with 5 different supplementations: control (CTR): 10% fetal calf serum; bovine serum albumin (BSA): 0.04% (wt/vol) BSA; and MEL(-3), MEL(-6), MEL(-9): BSA plus melatonin 10(-3), 10(-6), and 10(-9) M. The medium with the highest melatonin concentration had the highest trolox equivalent antioxidant capacity, whose values were comparable with those determined in plasma sampled from adult ewes (8.7 ± 2.4 mM). The other media had lower trolox equivalent antioxidant capacity values (P < 0.01), below the range of the plasma. At the same time, embryos cultured with the highest melatonin concentration reported a lower in vitro viability, as evaluated by lower re-expansion and hatching rates, and lower total cell number compared with the other groups (P < 0.05). Their metabolic status was also affected, as evidenced by higher oxidative and apoptotic index and lower ATP concentration. The beneficial effects of melatonin on embryo development during postwarming culture were observed only at low concentration (10(-9) M). These results suggest that melatonin at high concentration may exert some degree of toxic activity on pre-implantation embryos. Thus, the dose at which the embryos are exposed is pivotal to obtain the desiderate effect.
Collapse
|
67
|
Melatonin modulates the expression of BCL-xl and improve the development of vitrified embryos obtained by IVF in mice. J Assist Reprod Genet 2014; 31:453-61. [PMID: 24419931 DOI: 10.1007/s10815-014-0172-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 01/02/2014] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Antioxidant and anti-apoptotic effects of melatonin on development of in vitro fertilization (IVF)/vitrified two-cell mouse embryos were evaluated in this study. METHODS The IVF two-cell embryos were vitrified by cryotop, and were cultured in KSOM medium in different concentrations of melatonin (10(-6), 10(-9), 10(-12) M) and without melatonin. The blastocyst cell number, apoptotic cells and glutathione (GSH) level were evaluated by differential, TUNEL and cell tracker blue staining, respectively. The expression of Bax and Bcl-xl genes was evaluated by qPCR. The expression of melatonin receptors (Mtnr1a and Mtnr1b) in mouse 2-cell embryos and blastocysts was evaluated by RT-PCR. RESULTS Melatonin increased the rate of cleavage and blastulation at 10(-12) M concentration (p < 0.05). The number of trophectoderm and inner cell mass showed a significant increase (p < 0.05) in 10(-9) M melatonin. The 10(-9) M and 10(-12) M melatonin treatments significantly reduced (p < 0.05) the apoptotic index. The significant increase in the expression of Bcl-xl observed at 10(-9) M concentration however, reduced expression of Bax was not statistically significant. The levels of GSH in 10(-9) and 10(-12) M groups were significantly improved relative to the control group (p < 0.05). The Mtnr1a was expressed in 2-cell embryos and blastocysts in all groups, but the expression of Mntr1b was not detected. CONCLUSION Melatonin may have a special role against oxidative stress in protection of IVF/vitrified embryos.
Collapse
|
68
|
Wang F, Tian X, Zhang L, Tan D, Reiter RJ, Liu G. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J Pineal Res 2013; 55:267-74. [PMID: 23772689 DOI: 10.1111/jpi.12069] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 01/10/2023]
Abstract
When a defect occurs in the in vitro development of a pronuclear embryo, the interruption of the subsequent implantation limits the success of assisted conception. This common problem remains to be solved. In this study, we observed that melatonin at its physiological concentration (10(-7) m) significantly promoted the in vitro development of murine pronuclear embryos. This was indicated by the increased blastocyst rate, hatching blastocyst rate, and blastocyst cell number with melatonin treatment. In addition, when these blastocysts were implanted into female recipient mice, the pregnancy rates (95.0% versus control 67.8%), litter sizes (4.1 pups/litter versus control 2.7 pups/litter), and postnatal survival rates of offspring (96.84% versus control 81.24%) were significantly improved compared with their non-melatonin-treated counterparts. Mechanistic studies revealed that melatonin treatment upregulates gene expression of the antioxidant enzyme, superoxide dismutase (SOD), and the anti-apoptotic factor bcl-2 while downregulating the expression of pro-apoptotic genes p53 and caspase-3. Due to these changes, melatonin treatment reduces ROS production and cellular apoptosis during in vitro embryo development and improves the quality of blastocysts. The implantation of blastocysts with higher quality leads to more healthy offspring and increased pup survival.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | | | | | |
Collapse
|
69
|
Effect of melatonin treatment on developmental potential of somatic cell nuclear-transferred mouse oocytes in vitro. ZYGOTE 2013; 22:213-7. [DOI: 10.1017/s0967199413000336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryThe beneficial effect of supplementing culture medium with melatonin has been reported during in vitro embryo development of species such as mouse, bovine and porcine. However, the effect of melatonin on mouse somatic cell nuclear transfer remains unknown. In this study, we assessed the effects of various concentrations of melatonin (10−6 to 10−12 M) on the in vitro development of mouse somatic cell nuclear transfer embryos for 96 h. Embryos cultured without melatonin were used as control. There was no significant difference in cleavage rates between the groups supplemented with melatonin, dimethyl sulphoxide (DMSO) and the control. The rate of development to blastocyst stage was significantly higher in the group supplemented with 10−12 M melatonin compared with the control group (P < 0.05). Thus, our data demonstrated that adding melatonin to pre-implantation mouse nuclear-transferred embryos can accelerate blastocyst formation.
Collapse
|
70
|
In vitro development rate of preimplantation rabbit embryos cultured with different levels of melatonin. ZYGOTE 2013; 23:111-5. [PMID: 23985360 DOI: 10.1017/s0967199413000415] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate the effect of melatonin supplementation at different levels in culture medium on embryo development in rabbits. Embryos of 2-4 cells, 8-16 cells and morula stages were recovered from nulliparous Red Baladi rabbit does by laparotomy technique 24, 48 and 72 h post-insemination, respectively. Normal embryos from each stage were cultured to hatched blastocyst stages in either control culture medium (TCM-199 + 20% fetal bovine serum) or control supplemented with melatonin at 10(-3) M, 10(-6) M or 10(-9) M. No effect of melatonin was found on development of embryos recovered at 24 h post-insemination. The high level of melatonin at 10(-3) M adversely affected the in vitro development rates of embryos recovered at 48 h post-insemination (52 versus 86, 87 and 80% blastocyst rate; 28 versus 66, 78 and 59% hatchability rate for 10(-3) M versus 10(-9) M, 10(-6) M and control, respectively, P< 0.05). At the morula stage, melatonin at 10-3 M significantly increased the in vitro development of embryos (92% for 10(-3) M versus 76% for control, P < 0.05), while the hatchability rate of these embryos was not improved by melatonin (16-30% versus 52% for melatonin groups versus control, P < 0.05). Results show that a moderate level of melatonin (10(-6) M) may improve the development and hatchability rates of preimplantation rabbit embryos. The addition of melatonin at a 10-3 M concentration enhances the development of rabbit morulae but may negatively affect the development of earlier embryos. More studies are needed to optimize the use of melatonin in in vitro embryo culture in rabbits.
Collapse
|
71
|
Supplementation with low concentrations of melatonin improves nuclear maturation of human oocytes in vitro. J Assist Reprod Genet 2013; 30:933-8. [PMID: 23737216 DOI: 10.1007/s10815-013-0021-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/24/2013] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Studies in bovine and porcine have indicated that melatonin (MT) could induce meiotic maturation of immature oocytes in vitro. The object of the current study was to investigate if MT could ameliorate human oocytes maturation during rescue in vitro maturation (IVM). METHODS Two hundred seventy eight germinal vesicle (GV) oocytes and 451 (MI) metaphase I oocytes were vitrified, thawed and then matured in vitro. All the oocytes were randomly allocated into six groups in which the oocytes were cultured in medium supplemented with different concentrations of MT (0, 10(-2), 1, 10(2), 10(4), 10(6) nM) and nuclear maturation was evaluated at 6 h, 12 h, 18 h, 24 h and 48 h of culture. RESULTS The optimal MT concentration for both GV and MI oocytes was 1 nM. At 24 h of culture, nuclear maturation rate of MI oocytes cultured in 1 nM MT medium was significantly higher than other groups (P < 0.05); Nuclear maturation rate of GV oocytes cultured in 1 nM MT medium was also significantly higher than the control group (P < 0.05). On the other hand, decreased nuclear maturation rate was observed in the high MT concentration group (10(6) nM). CONCLUSIONS The current study demonstrated that low concentration of exogenous MT could ameliorate nuclear maturation of human oocyte during rescue IVM, while high concentration of MT presented negative effects.
Collapse
|
72
|
Pang YW, An L, Wang P, Yu Y, Yin QD, Wang XH, Xin-Zhang, Qian-Zhang, Yang ML, Min-Guo, Wu ZH, Tian JH. Treatment of porcine donor cells and reconstructed embryos with the antioxidant melatonin enhances cloning efficiency. J Pineal Res 2013; 54:389-97. [PMID: 24325731 DOI: 10.1111/jpi.12024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 09/28/2012] [Indexed: 12/14/2022]
Abstract
This study was conducted to investigate the effect of melatonin during the culture of donor cells and cloned embryos on the in vitro developmental competence and quality of cloned porcine embryos. At concentrations of 10(-6 )M or 10(-8) M, melatonin significantly enhanced the proliferation of porcine fetal fibroblasts (PFFs), and the blastocyst rate was significantly increased in the 10(-10) M melatonin-treated donor cell group. Cloned embryo development was also improved in embryo culture medium that was supplemented with 10(-9) M or 10(-12) M melatonin. When both donor cells and cloned embryos were treated with melatonin, the cleavage rate and total cell number of blastocysts were not significantly affected; however, the blastocyst rate was increased significantly (20.0% versus 11.7%). TUNEL assays showed that combined melatonin treatment reduced the rate of apoptotic nuclei (3.6% versus 6.1%). Gene expression analysis of the apoptosis-related genes BAX, BCL2L1, and p53 showed that the expression of BCL2L1 was significantly elevated 2.7-fold relative to the control group, while the expression of BAX and p53 was significantly decreased by 3.7-fold and 23.2-fold, respectively. In addition, we detected the expression of two melatonin receptors (MT1 and MT2) in PFFs but not in porcine cloned embryos. We conclude that exogenous melatonin enhances the development of porcine cloned embryos and improves embryo quality by inhibiting p53-mediated apoptotic pathway. The proliferation of PFFs may be mediated by receptor binding, but the beneficial effects of melatonin on embryonic development may be receptor-independent, possibly through melatonin's ability to directly scavenge free radicals.
Collapse
Affiliation(s)
- Yun-Wei Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Cebrian-Serrano A, Salvador I, Raga E, Dinnyes A, Silvestre MA. Beneficial Effect of Melatonin on BlastocystIn VitroProduction from Heat-Stressed Bovine Oocytes. Reprod Domest Anim 2013; 48:738-46. [DOI: 10.1111/rda.12154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | - I Salvador
- Centro de Tecnología Animal; Instituto Valenciano de Investigaciones Agrarias; Segorbe; Spain
| | - E Raga
- Centro de Tecnología Animal; Instituto Valenciano de Investigaciones Agrarias; Segorbe; Spain
| | | | | |
Collapse
|
74
|
Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee L, Tamura I, Maekawa R, Asada H, Yamagata Y, Sugino N. Melatonin as a free radical scavenger in the ovarian follicle. Endocr J 2013; 60:1-13. [PMID: 23171705 DOI: 10.1507/endocrj.ej12-0263] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This review summarizes new findings related to beneficial effects of melatonin (N-acetyl-5-methoxytryptamine) on reproductive physiology. Recently many researchers have begun to study the local role of melatonin as an antioxidant. We focused on intra-follicular role of melatonin in the ovary. Melatonin, secreted by the pineal gland, is taken up into the follicular fluid from the blood. Reactive oxygen species (ROS) are produced within the follicles, during the ovulatory process. Melatonin reduces oxidative stress as an antioxidant, and contribute to oocyte maturation, embryo development and luteinization of granulosa cells. Our clinical study demonstrated that melatonin treatment for infertile women increases intra-follicular melatonin concentrations, reduces intra-follicular oxidative damage, and elevates fertilization and pregnancy rates. Melatonin treatment also improves progesterone production by corpus luteum in infertile women with luteal phase defect. Melatonin treatment could become a new cure for improving oocyte quality and luteal function in infertile women.
Collapse
Affiliation(s)
- Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Sampaio RV, Conceição DSB, Miranda MS, Sampaio LDFS, Ohashi OM. MT3 melatonin binding site, MT1 and MT2 melatonin receptors are present in oocyte, but only MT1 is present in bovine blastocyst produced in vitro. Reprod Biol Endocrinol 2012. [PMID: 23207065 PMCID: PMC3599635 DOI: 10.1186/1477-7827-10-103] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Melatonin inclusion into in vitro oocyte maturation (IVM) protocols has been suggested because it possesses a powerful free radical scavenger capability that improves the quality of the oocyte used in in vitro embryo production (IVP). The aim of our study was to investigate the presence of melatonin membrane receptors (MT1and MT2) and MT3, which is the melatonin binding site of NQO2 enzyme, in both oocytes and hatched blastocysts to consider an additional subcellular mechanism responsible for the effects of melatonin on IVP. METHODS The presence of the high affinity melatonin receptors was investigated through an autoradiographic binding assay, using the non-permeable ligand [125I]-iodomelatonin (17 pM) in embryos. The kind of melatonin site was investigated in oocytes and embryos by immunocytochemistry. In vitro fertilized bovine embryos produced from in vitro maturated oocytes supplemented with melatonin (0.0001 to 1000 nM) were analysed to determine their cleavage and blastocyst formation rates. RESULTS The [125I]-iodomelatonin (17 pM) binding in blastocysts was blocked by pre-incubation with melatonin (30000 nM), showing the presence of the high affinity melatonin receptors. MT1, MT2 and NQO2 immunoreactivity was observed in oocytes. MT1 immunoreactivity was observed in hatched blastocysts, however MT2 and NQO2 were not observed in this embryonic stage. Melatonin (pM) triggered significant difference in both cleavage and blastocysts formation rates. CONCLUSIONS The high affinity MT1 melatonin receptor must be taking part in IVM events; furthermore it is the first melatonin receptor to appear during bovine embryo development in vitro.
Collapse
Affiliation(s)
- Rafael V Sampaio
- Lab. Fertilização in vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Federal do Pará, Brazil
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Dhúllia Stefanne B Conceição
- Lab. Fertilização in vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Federal do Pará, Brazil
| | - Moysés S Miranda
- Lab. Fertilização in vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Federal do Pará, Brazil
| | - Lucia de Fatima S Sampaio
- Lab. Bioquímica do Desenvolvimento do Sistema Nervoso, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa 1. CEP: 66075-900, Belém, PA, Brazil
| | - Otávio Mitio Ohashi
- Lab. Fertilização in vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Federal do Pará, Brazil
| |
Collapse
|
76
|
Garcia-Ispierto I, Abdelfatah A, López-Gatius F. Melatonin Treatment at Dry-off Improves Reproductive Performance Postpartum in High-producing Dairy Cows under Heat Stress Conditions. Reprod Domest Anim 2012; 48:577-83. [DOI: 10.1111/rda.12128] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/27/2012] [Indexed: 12/01/2022]
Affiliation(s)
- I Garcia-Ispierto
- Center for Research into Animal Production (CIPA); University of Lleida; Lleida; Spain
| | | | - F López-Gatius
- Center for Research into Animal Production (CIPA); University of Lleida; Lleida; Spain
| |
Collapse
|
77
|
Wang SJ, Liu WJ, Wu CJ, Ma FH, Ahmad S, Liu BR, Han L, Jiang XP, Zhang SJ, Yang LG. Melatonin suppresses apoptosis and stimulates progesterone production by bovine granulosa cells via its receptors (MT1 and MT2). Theriogenology 2012; 78:1517-26. [DOI: 10.1016/j.theriogenology.2012.06.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 06/07/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022]
|
78
|
Takahashi M. Oxidative stress and redox regulation on in vitro development of mammalian embryos. J Reprod Dev 2012; 58:1-9. [PMID: 22450278 DOI: 10.1262/jrd.11-138n] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many factors affect development of mammalian preimplantation embryos in vitro. It is well known that in vitro development of bovine embryos is highly affected by culture condition including energy source, growth factors, pH or gas environment. Many efforts have been made towards the suitable environments which can successfully support embryo development in vitro. For a rapid growth and differentiation, embryo requires energy by utilizing ATP, NADPH with oxygen molecules. These energy substrates are produced from the electron transport chain in the mitochondria. In addition to energy production, reactive oxygen species (ROS) are also generated as by-product of such energy production system. ROS production is sensitively controlled by the balance of oxidizing and reducing status and affected by several antioxidant enzymes such as superoxide dismutase (SOD), Catalase, glutathione peroxidase (GPx) or low molecular weight thiols such as glutathione (GSH). Imbalance of oxidation and reduction causes production of excess ROS, which causes the developmental arrest, physical DNA damage, apoptosis induction or lipid peroxidation. Environmental oxygen condition during embryo culture also highly affects embryo development as well as intracellular redox balance. Several studies have revealed that regulation of intra- and extra- cellular reducing environment by reducing excess ROS by using antioxidants, reducing oxygen concentration are effective for improving embryo development. Also, recent studies have demonstrated the difference in gene expression affected by oxidative stress. This review briefly summarizes the effects of ROS and the role of redox balance on preimplantation embryos for improving the efficiency of in vitro production of mammalian embryos.
Collapse
Affiliation(s)
- Masashi Takahashi
- Livestock and Grassland Research Division, Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Kumamoto 861-1192, Japan.
| |
Collapse
|
79
|
Gao C, Han HB, Tian XZ, Tan DX, Wang L, Zhou GB, Zhu SE, Liu GS. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J Pineal Res 2012; 52:305-11. [PMID: 22225541 DOI: 10.1111/j.1600-079x.2011.00944.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two-cell embryos of mouse were vitrified by the open-pulled straw (OPS) method. The vitrified embryos were warmed and introduced into M16 medium for culture that contains melatonin at different concentrations (10(-3), 10(-5), 10(-7), 10(-9), 10(-11) m). This process caused reactive oxygen species (ROS) formation and jeopardized the development of the embryos. Melatonin, at different concentrations, significantly suppresses ROS production and promotes embryonic development in vitrified embryos compared with untreated ones. The mechanistic studies indicated that the beneficial effects of melatonin on vitrified 2-cell embryos of mouse were melatonin receptor (MT1 and MT2) independent. The direct free radical scavenging activity, the enhancement of endogenous glutathione levels, and the anti-apoptotic capacity of melatonin may account for its protective effects on vitrified embryonic development.
Collapse
Affiliation(s)
- Chao Gao
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Effect of melatonin on DNA damage of bovine cumulus cells during in vitro maturation (IVM) and on in vitro embryo development. Res Vet Sci 2012; 92:124-7. [DOI: 10.1016/j.rvsc.2010.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 11/01/2010] [Accepted: 11/17/2010] [Indexed: 11/23/2022]
|
81
|
Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee L, Tamura I, Maekawa R, Aasada H, Yamagata Y, Sugino N. The role of melatonin as an antioxidant in the follicle. J Ovarian Res 2012; 5:5. [PMID: 22277103 PMCID: PMC3296634 DOI: 10.1186/1757-2215-5-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/26/2012] [Indexed: 12/12/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is secreted during the dark hours at night by pineal gland, and it regulates a variety of important central and peripheral actions related to circadian rhythms and reproduction. It has been believed that melatonin regulates ovarian function by the regulation of gonadotropin release in the hypothalamus-pituitary gland axis via its specific receptors. In addition to the receptor mediated action, the discovery of melatonin as a direct free radical scavenger has greatly broadened the understanding of melatonin's mechanisms which benefit reproductive physiology. Higher concentrations of melatonin have been found in human preovulatory follicular fluid compared to serum, and there is growing evidence of the direct effects of melatonin on ovarian function especially oocyte maturation and embryo development. Many scientists have focused on the direct role of melatonin on oocyte maturation and embryo development as an anti-oxidant to reduce oxidative stress induced by reactive oxygen species, which are produced during ovulation process. The beneficial effects of melatonin administration on oocyte maturation and embryo development have been confirmed by in vitro and in vivo experiments in animals. This review also discusses the first application of melatonin to the clinical treatment of infertile women and confirms that melatonin administration reduces intrafollicular oxidative damage and increase fertilization rates. This review summarizes our recent works and new findings related to the reported beneficial effects of melatonin on reproductive physiology in its role as a reducer of oxidative stress, especially on oocyte maturation and embryo development.
Collapse
Affiliation(s)
- Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505 Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Effect of melatonin treatment on the developmental potential of parthenogenetic and somatic cell nuclear-transferred porcine oocytes in vitro. ZYGOTE 2011; 20:199-207. [DOI: 10.1017/s0967199411000190] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryMelatonin secreted from the mammalian pineal gland is a free-radical scavenger that protects tissues from cell damage. The present study examined the effects of addition of melatonin to the culture medium on the developmental potential of parthenogenetic and somatic cell nuclear-transferred (SCNT) porcine oocytes. Supplementation of the maturation medium with melatonin did not increase the maturation rate, the proportion of oocytes that cleaved and developed into blastocysts after parthenogenetic activation, or the blastocyst cell number compared to controls. When 10−7 M melatonin was added to the culture medium, the proportion of parthenogenetic oocytes that developed to the 2-cell and 4-cell stages was significantly higher than that of controls. The potential of melatonin-treated oocytes to develop into blastocysts was high but not significantly different from that of controls. The addition of 10−7 M melatonin to the culture medium did not increase the preimplantation development of SCNT oocytes. Melatonin treatment significantly reduced the levels of reactive oxygen species in 4-cell parthenogenetic and SCNT embryos, but did not reduce the proportion of apoptotic cells in parthenogenetic and SCNT blastocysts. Although the results indicated that parthenogenetic and SCNT melatonin -treated embryos had significantly lower levels of reactive oxygen species than controls, the potential of melatonin-treated embryos to develop into blastocysts was not significantly higher than that of controls, in contrast to previous reports. The beneficial effects of melatonin on the developmental potential of oocytes might depend on the culture conditions.
Collapse
|
83
|
Choe C, Shin YW, Kim EJ, Cho SR, Kim HJ, Choi SH, Han MH, Han J, Son DS, Kang D. Synergistic effects of glutathione and β-mercaptoethanol treatment during in vitro maturation of porcine oocytes on early embryonic development in a culture system supplemented with L-cysteine. J Reprod Dev 2010; 56:575-82. [PMID: 20657156 DOI: 10.1262/jrd.09-214h] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Various methods have been used to remove reactive oxygen species (ROS) generated from in vitro culture (IVC) conditions that can cause cell injury or death, including the application of low oxygen (O(2)) tension and the addition of antioxidants. The beneficial effects of antioxidants and O(2) tension on IVC of porcine embryos, however, are controversial among researchers. In this study, we sought to determine the effects and optimal concentrations of antioxidants for the development of porcine embryos in an IVC system. Specifically, we examined the synergistic effects of antioxidants on development to the blastocyst stage in a culture system supplemented with L-cysteine during IVM. Of the antioxidants tested (melatonin, glutathione (GSH), β-mercaptoethanol (β-ME), N-acetylcysteine (NAC) and dithiothreitol (DTT)), addition of GSH (1 mM) or β-ME (25 µM) significantly increased development to the blastocyst stage compared with the controls without antioxidant treatment (22.2 ± 4.2% for 1 mM GSH, 25.9 ± 2.2% for 25 µM β-ME and 12-13% for the control, P<0.05). In addition, the mean cell number per blastocyst was increased by approximately 1.7-fold in the presence of GSH or β -ME. These GSH- and β-ME-induced increases in development to the blastocyst stage and total cell number, however, were not mimicked by melatonin, NAC or DTT, all of which are ROS scavengers. The combination of GSH or β-ME with L-cysteine significantly reduced high O(2) tension-induced ROS production (P<0.05). These results suggest that a combination of 1 mM GSH or 25 µM β-ME with 1 mM L-cysteine could be used for production of high quality porcine blastocysts in IVC systems.
Collapse
Affiliation(s)
- Changyong Choe
- Republic of Korea Animal Genetic Resources Station, National Institute of Animal Science, RDA, Namwon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Namekawa T, Ikeda S, Sugimoto M, Kume S. Effects of Astaxanthin-containing Oil on Development and Stress-related Gene Expression of Bovine Embryos Exposed to Heat Stress. Reprod Domest Anim 2010; 45:e387-91. [DOI: 10.1111/j.1439-0531.2010.01584.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
85
|
Tian XZ, Wen Q, Shi JM, Zeng SM, Tian JH, Zhou GB, Zhu SE, Liu GS. Effects of melatonin on in vitro development of mouse two-cell embryos cultured in HTF medium. Endocr Res 2010; 35:17-23. [PMID: 20136515 DOI: 10.3109/07435800903539607] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Melatonin is capable of improving the developmental capacity of ovine, porcine and bovine embryos in vitro. However, whether melatonin possesses similar benefits to the in vitro mouse embryonic development has yet to be determined. In this study, we assessed the effects of various concentrations of melatonin (10-13 to 10-3 M) on the in-vitro development of mouse embryos cultured in HTF medium for 96 hr; embryos cultured without melatonin were used as control. The in vitro development of mouse two-cell embryos significantly benefited from treatment with melatonin in a concentration-dependent manner. The effects of melatonin on the rates of blastocyst formation, hatching/hatched blastocysts and cell number per blastocyst were bi-phasic; all significantly increased by melatonin at 10-13 to 10-5 M and decreased by melatonin at 10-3 M. Maximal benefit of melatonin on in vitro mouse 2-cell embryo development was achieved at a concentration of 10-9 M. In comparison to control, 10-9 M melatonin increased blastocyst formation rate from 48.08 +/- 5.25% to 82.08 +/- 2.34% (p < 0.05), hatched blastocyst rate from 25.65 +/- 11.79% to 66.47 +/- 4.94% (p < 0.05), and cell number per blastocyst 62.71 +/- 5.97 to 77.91 +/- 10.63 (p < 0.05). Thus, our datas demonstrated firstly that melatonin has beneficial effects on the in vitro development of 2-cell mouse embryos cultured in HTF medium.
Collapse
Affiliation(s)
- Xiu-Zhi Tian
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Tan DX, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Sainz RM, Mayo JC, Fuentes-Broto L, Reiter RJ. The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev Camb Philos Soc 2009; 85:607-23. [PMID: 20039865 DOI: 10.1111/j.1469-185x.2009.00118.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Melatonin is a molecule present in a multitude of taxa and may be ubiquitous in organisms. It has been found in bacteria, unicellular eukaryotes, macroalgae, fungi, plants and animals. A primary biological function of melatonin in primitive unicellular organisms is in antioxidant defence to protect against toxic free radical damage. During evolution, melatonin has been adopted by multicellular organisms to perform many other biological functions. These functions likely include the chemical expression of darkness in vertebrates, environmental tolerance in fungi and plants, sexual signaling in birds and fish, seasonal reproductive regulation in photoperiodic mammals, and immunomodulation and anti-inflammatory activity in all vertebrates tested. Moreover, its waning production during aging may indicate senescence in terms of a bio-clock in many organisms. Conversely, high melatonin levels can serve as a signal of vitality and health. The multiple biological functions of melatonin can partially be attributed to its unconventional metabolism which is comprised of multi-enzymatic, pseudo-enzymatic and non-enzymatic pathways. As a result, several bioactive metabolites of melatonin are formed during its metabolism and some of the presumed biological functions of melatonin reported to date may, in fact, be mediated by these metabolites. The changing biological roles of melatonin seem to have evolved from its primary function as an antioxidant.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Shi JM, Tian XZ, Zhou GB, Wang L, Gao C, Zhu SE, Zeng SM, Tian JH, Liu GS. Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes. J Pineal Res 2009; 47:318-23. [PMID: 19817971 DOI: 10.1111/j.1600-079x.2009.00717.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study focused on the effect of melatonin on in vitro maturation of porcine oocytes and their parthenogenetic embryonic development. Melatonin was measured in porcine follicular fluid of follicles of different sizes in the same ovary. Melatonin exists in follicular fluid, and the concentration is approximately 10(-11) m. Its concentration decreased as the diameter of follicle increased, which suggests an effect of melatonin on oocyte maturation. Therefore, immature oocytes were cultured in vitro in maturation medium supplemented with melatonin (10(-11), 10(-9), 10(-7), 10(-5) and 10(-3) m) or without melatonin. The oocytes at maturation stage were collected and activated. The parthenogenetic embryos were cultured and observed in medium supplemented with or without melatonin. Fresh immature oocytes without melatonin treatment were used as control. When only maturation medium was supplemented with 10(-9) m melatonin, the cleavage rate, blastocyst rate and the cell number of blastocyst (70 +/- 4.5%, 28 +/- 2.4% and 50 +/- 6.5%) were significantly higher (P < 0.05) than that of controls; when only culture medium was supplemented with melatonin, the highest cleavage rate, blastocyst rate and the cell number of blastocyst was observed at 10(-7) m melatonin, which were significantly higher than that of controls (P < 0.05). The best results (cleavage rates 79 +/- 8.4%, blastocyst rates 35 +/- 6.7%) were obtained when both the maturation and culture medium were supplemented with 10(-9) m melatonin respectively (P < 0.05). In conclusion, exogenous melatonin at the proper concentration may improve the in vitro maturation of porcine oocytes and their parthenogenetic embryonic development. Further research is needed to identify the effect of melatonin on in vitro and in vivo oocyte maturation and embryo development in porcine.
Collapse
Affiliation(s)
- Jian-Min Shi
- Key Laboratory of Animal Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
The effect of interaction between macromolecule supplement and oxygen tension on bovine oocytes and embryos culturedin vitro. ZYGOTE 2009; 17:321-8. [DOI: 10.1017/s0967199409005450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryAiming to improvein vitroproduction of bovine embryos and to obtain supplements to replace serum forin vitromaturation (IVM), this study evaluated the effects of macromolecular supplementation of IMV medium (bovine serum albumin – BSA, polyvinyl alcohol – PVA, polyvinyl pyrrolidone – PVP, Ficoll, KnockoutSR, or fetal calf serum – FCS) and oxygen tension [5% CO2in air (20% O2) or 5% CO2, 5% O2and 90% N2(5% O2)] on oocyte maturation and embryo development. Nuclear progression to germinal vesicle breakdown, metaphase I and metaphase II stages were evaluated and overall results revealed that undefined (FCS) and semi-defined (BSA) media gave better results at 20% O2and defined media (PVA, PVP and Ficoll) at 5% O2. Independent of macromolecule supplement, IVM at 20% O2was considered optimal for nuclear maturation. To evaluate embryo development, oocytes matured in the previously described conditions were fertilized and cultured at the same oxygen tension used for IVM and assessed for cleavage (43.0 to 74.8%) and development to morulae (16.4 to 33.8%), blastocyst (7.7 to 52.9%) and hatched blastocyst (9.6 to 48.1%). Apart from oxygen tension, all treatments, except Knockout (22.7%), gave similar results for blastocyst development (26.5 to 38.7%). Independently of macromolecule supplement, higher development rates were obtained in an oxygen tension of 20% O2(67.4% cleavage, 29.2% morulae, 40.8% blastocyst and 34.0% hatched blastocyst) when compared with 5% O2(52.5, 21.8, 18.2 and 15.6%, respectively). This study indicates that BSA, PVA, PVP and Ficoll can replace serum during IVM and that the optimal atmospheric condition forin vitroproduction of bovine embryos is 5% CO2and 20% O2.
Collapse
|
89
|
Jang HY, Kim YH, Kim BW, Park IC, Cheong HT, Kim JT, Park CK, Kong HS, Lee HK, Yang BK. Ameliorative Effects of Melatonin against Hydrogen Peroxide-Induced Oxidative Stress on Boar Sperm Characteristics and SubsequentIn VitroEmbryo Development. Reprod Domest Anim 2009; 45:943-50. [DOI: 10.1111/j.1439-0531.2009.01466.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
90
|
Reiter RJ, Tan DX, Manchester LC, Paredes SD, Mayo JC, Sainz RM. Melatonin and reproduction revisited. Biol Reprod 2009; 81:445-56. [PMID: 19439728 DOI: 10.1095/biolreprod.108.075655] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This brief review summarizes new findings related to the reported beneficial effects of melatonin on reproductive physiology beyond its now well-known role in determining the sexual status in both long-day and short-day seasonally breeding mammals. Of particular note are those reproductive processes that have been shown to benefit from the ability of melatonin to function in the reduction of oxidative stress. In the few species that have been tested, brightly colored secondary sexual characteristics that serve as a sexual attractant reportedly are enhanced by melatonin administration. This is of potential importance inasmuch as the brightness of ornamental pigmentation is also associated with animals that are of the highest genetic quality. Free radical damage is commonplace during pregnancy and has negative effects on the mother, placenta, and fetus. Because of its ability to readily pass through the placenta, melatonin easily protects the fetus from oxidative damage, as well as the maternal tissues and placenta. Examples of conditions in which oxidative and nitrosative stress can be extensive during pregnancy include preeclampsia and damage resulting from anoxia or hypoxia that is followed by reflow of oxygenated blood into the tissue. Given the uncommonly low toxicity of melatonin, clinical trials are warranted to document the protection by melatonin against pathophysiological states of the reproductive system in which free radical damage is known to occur. Finally, the beneficial effects of melatonin in improving the outcomes of in vitro fertilization and embryo transfer should be further tested and exploited. The information in this article has applicability to human and veterinary medicine.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | | | | | | | |
Collapse
|
91
|
Berlinguer F, Leoni GG, Succu S, Spezzigu A, Madeddu M, Satta V, Bebbere D, Contreras-Solis I, Gonzalez-Bulnes A, Naitana S. Exogenous melatonin positively influences follicular dynamics, oocyte developmental competence and blastocyst output in a goat model. J Pineal Res 2009; 46:383-91. [PMID: 19552761 DOI: 10.1111/j.1600-079x.2009.00674.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of melatonin in modulating mammalian reproduction is of particular interest; however, its effects on ovarian follicles and their oocytes still remain to be characterized. This study determined the influence of melatonin treatment on follicular growth patterns and on in vitro oocyte developmental competence. In a first experiment, the effects of melatonin supplementation on follicular dynamics were evaluated using daily transrectal ultrasonographies for 21 days, in 7 multiparous Sarda goats receiving a subcutaneous implant of 18 mg of melatonin and in 5 control untreated does. Melatonin caused more follicular waves (5.2 +/- 0.2 versus 4 +/- 0.3; P < 0.05) as the waves were shortened at around 2 days when compared with the non-melatonin treated control goats (P < 0.001). Oocyte developmental competence was evaluated in a second experiment by applying procedures for in vitro embryo production. There were no significant differences in the total number of oocytes obtained from 6 control (n = 192) and 7 melatonin-treated (n = 265) goats given follicle stimulating hormone to induce follicular development. Differences in oocyte developmental competence between the two groups became evident after in vitro fertilization and culture; melatonin increased the rate of cleaved oocytes in comparison with control animals (82.5 versus 63.4%; P < 0.001), advanced timing of embryo development and enhanced blastocyst output (31.5 versus 16.3%; P < 0.01). However, blastocyst quality, as evaluated by cryotolerance and gene expression analysis, was not found to be different between the groups. In conclusion, in vivo melatonin treatment is beneficial for increasing ovarian follicle turnover and improving oocyte developmental competence and kinetics of the blastocyst.
Collapse
|
92
|
Effect of melatonin on the blood oxygen transport during hypothermia and rewarming in rats. Adv Med Sci 2009; 53:234-9. [PMID: 18930873 DOI: 10.2478/v10039-008-0035-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE We aimed to study effect of melatonin on the blood oxygen transport during hypothermia and rewarming in rats. MATERIAL/METHODS Cold exposure was performed on male rats (body weight 220-270 g, n=48) for 120 minutes under the box water temperature of 19 degrees C; rewarming took the next 120 min, with a mean rate of 0.06 degrees C/min. Melatonin was administered intraperitoneally 30 min before the cold exposure (bolus doses of 0.1, 1 or 10 mg/kg, or 1 mg/kg*day for 4 days). Haemoglobin-oxygen affinity was evaluated by p50 (blood pO2 at its 50% O2 saturation) determined by the "mixing" method at 37 degrees C, pH 7.4 and pCO2 40 mm Hg (p50stand) and at actual pH, pCO2 and temperature (p50act). RESULTS After hypothermia and rewarming, the values of p50stand and p50act were 31.5+/-0.28 and 30.2+/-0.61 mm Hg, respectively. The 0.1 mg/kg of melatonin virtually did not change these values, whereas the larger doses increased them. This effect was maximal after the prolonged (4 days) melatonin administration: p50stand rose by 5.4% (p<0.05) and p50act--by 12.9 (p<0.05) compared with rats without the melatonin treatment. Melatonin affected the mechanisms of O2 transport by decreasing the haemoglobin-oxygen affinity (shifting the oxygen dissociation curve of haemoglobin rightwards) and promoting the tissue oxygenation, thereby enhancing the body's resistance to cold. CONCLUSIONS The melatonin effect mediated by haemoglobin-oxygen affinity change may be used for the correction of metabolic disorders and the improvement of the body's resistance to low environmental temperature.
Collapse
|
93
|
Kang JT, Koo OJ, Kwon DK, Park HJ, Jang G, Kang SK, Lee BC. Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J Pineal Res 2009; 46:22-8. [PMID: 18494781 DOI: 10.1111/j.1600-079x.2008.00602.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Melatonin is a multifunctional molecule that mediates several circadian and seasonal processes in animal reproduction. Melatonin and its metabolites are antioxidants and free radical scavengers. We investigated the effects of melatonin on porcine oocyte maturation and embryo development. We then investigated the local expression of the melatonin receptor 1 (MT1) gene in cumulus cells, granulosa cells, and the oocytes with the reverse transcription-polymerase chain reaction (RT-PCR) method. We further evaluated the antioxidant effects [reactive oxygen species (ROS) levels in cumulus-oocytes complexes] of melatonin supplementation during in vitro maturation (IVM). Compared with control, melatonin supplementation (10 ng/mL) during IVM resulted in a greater proportion of oocytes extruding the polar body (75.6% versus 84.6%). Significantly greater proportion of parthenogenetically activated oocytes developed to blastocysts when the in vitro medium was supplemented with melatonin; however, cleavage frequency and blastocyst cell number were not affected by the treatment. RT-PCR analysis revealed the expression of MT1 gene in cumulus and granulosa cells but not in oocytes. Melatonin-treated oocytes had significantly lower levels of ROS than did control (untreated) oocytes. We conclude that exogenous melatonin has beneficial effects on nuclear and cytoplasmic maturation during porcine IVM. Some of the observed effects may be mediated by receptor binding and while others may have been receptor independent, e.g., direct free radical scavenging.
Collapse
Affiliation(s)
- Jung-Taek Kang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|