51
|
Farup J, De Lisio M, Rahbek SK, Bjerre J, Vendelbo MH, Boppart MD, Vissing K. Pericyte response to contraction mode-specific resistance exercise training in human skeletal muscle. J Appl Physiol (1985) 2015; 119:1053-63. [PMID: 26404620 DOI: 10.1152/japplphysiol.01108.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 09/17/2015] [Indexed: 01/08/2023] Open
Abstract
Skeletal muscle satellite cells (SCs) are important for muscle repair and hypertrophy in response mechanical stimuli. Neuron-glial antigen 2-positive (NG2(+)) and alkaline phosphatase-positive (ALP(+)) pericytes may provide an alternative source of myogenic progenitors and/or secrete paracrine factors to induce Pax7(+) SC proliferation and differentiation. The purpose of this study was to investigate NG2(+) and ALP(+) cell quantity, as well as SC content and activation, in human skeletal muscle following prolonged concentric (Conc) or eccentric (Ecc) resistance training. Male subjects engaged in unilateral resistance training utilizing isolated Ecc or Conc contractions. After 12 wk, muscle biopsies were analyzed for NG2(+) and ALP(+) pericytes, total Pax7(+) SCs, activated SCs (Pax7(+)MyoD(+)), and differentiating myogenic cells (Pax7(-) MyoD(+)). NG2(+) cells localized to CD31(+) vessels and the majority coexpressed ALP. NG2(+) pericyte quantity decreased following both Conc and Ecc training (P < 0.05). ALP(+) pericyte quantity declined following Conc (P < 0.05) but not Ecc training. Conversely, total Pax7(+) SC content was elevated following Conc only (P < 0.001), while Pax7(+)MyoD(+) SC content was increased following Conc and Ecc (P < 0.001). Follow up analyses demonstrated that CD90(+) and platelet-derived growth factor receptor-α (PDGFRα)(+) mononuclear cell proliferation was also increased in response to both Conc and Ecc training (P < 0.01). In summary, resistance training results in a decline in pericyte quantity and an increase in mesenchymal progenitor cell proliferation, and these events likely influence SC pool expansion and increased activation observed posttraining.
Collapse
Affiliation(s)
- Jean Farup
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Michael De Lisio
- Department of Kinesiology and Community Health and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois; and
| | - Stine Klejs Rahbek
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Jonas Bjerre
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Mikkel Holm Vendelbo
- Department of Internal Medicine and Endocrinology and Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Marni D Boppart
- Department of Kinesiology and Community Health and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois; and
| | - Kristian Vissing
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark;
| |
Collapse
|
52
|
Vissing K, McGee SL, Farup J, Kjølhede T, Vendelbo MH, Jessen N. AMPK vs mTORC1 signaling: genuine exercise effects of differentiated exercise in humans. Response to letter to editor by Dr A. K. Yamada. Scand J Med Sci Sports 2015; 22:580-1. [PMID: 22816722 DOI: 10.1111/j.1600-0838.2012.01450.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
53
|
Møller AB, Vendelbo MH, Christensen B, Clasen BF, Bak AM, Jørgensen JOL, Møller N, Jessen N. Physical exercise increases autophagic signaling through ULK1 in human skeletal muscle. J Appl Physiol (1985) 2015; 118:971-9. [DOI: 10.1152/japplphysiol.01116.2014] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/10/2015] [Indexed: 12/18/2022] Open
Abstract
Data from transgenic animal models suggest that exercise-induced autophagy is critical for adaptation to physical training, and that Unc-51 like kinase-1 (ULK1) serves as an important regulator of autophagy. Phosphorylation of ULK1 at Ser555 stimulates autophagy, whereas phosphorylation at Ser757 is inhibitory. To determine whether exercise regulates ULK1 phosphorylation in humans in vivo in a nutrient-dependent manner, we examined skeletal muscle biopsies from healthy humans after 1-h cycling exercise at 50% maximal O2 uptake on two occasions: 1) during a 36-h fast, and 2) during continuous glucose infusion at 0.2 kg/h. Physical exercise increased ULK1 phosphorylation at Ser555 and decreased lipidation of light chain 3B. ULK1 phosphorylation at Ser555 correlated positively with AMP-activated protein kinase-α Thr172 phosphorylation and negatively with light chain 3B lipidation. ULK1 phosphorylation at Ser757 was not affected by exercise. Fasting increased ULK1 and p62 protein expression, but did not affect exercise-induced ULK1 phosphorylation. These data demonstrate that autophagy signaling is activated in human skeletal muscle after 60 min of exercise, independently of nutritional status, and suggest that initiation of autophagy constitutes an important physiological response to exercise in humans.
Collapse
Affiliation(s)
- Andreas Buch Møller
- Research Laboratory for Biochemical Pathology, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mikkel Holm Vendelbo
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark; and
| | - Britt Christensen
- Research Laboratory for Biochemical Pathology, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Berthil Forrest Clasen
- Research Laboratory for Biochemical Pathology, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ann Mosegaard Bak
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens O. L. Jørgensen
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Møller
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Jessen
- Research Laboratory for Biochemical Pathology, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
54
|
Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med 2014; 44:743-62. [PMID: 24728927 DOI: 10.1007/s40279-014-0162-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Concurrent training is defined as simultaneously incorporating both resistance and endurance exercise within a periodized training regime. Despite the potential additive benefits of combining these divergent exercise modes with regards to disease prevention and athletic performance, current evidence suggests that this approach may attenuate gains in muscle mass, strength, and power compared with undertaking resistance training alone. This has been variously described as the interference effect or concurrent training effect. In recent years, understanding of the molecular mechanisms mediating training adaptation in skeletal muscle has emerged and provided potential mechanistic insight into the concurrent training effect. Although it appears that various molecular signaling responses induced in skeletal muscle by endurance exercise can inhibit pathways regulating protein synthesis and stimulate protein breakdown, human studies to date have not observed such molecular 'interference' following acute concurrent exercise that might explain compromised muscle hypertrophy following concurrent training. However, given the multitude of potential concurrent training variables and the limitations of existing evidence, the potential roles of individual training variables in acute and chronic interference are not fully elucidated. The present review explores current evidence for the molecular basis of the specificity of training adaptation and the concurrent interference phenomenon. Additionally, insights provided by molecular and performance-based concurrent training studies regarding the role of individual training variables (i.e., within-session exercise order, between-mode recovery, endurance training volume, intensity, and modality) in the concurrent interference effect are discussed, along with the limitations of our current understanding of this complex paradigm.
Collapse
|
55
|
Simplified data access on human skeletal muscle transcriptome responses to differentiated exercise. Sci Data 2014; 1:140041. [PMID: 25984345 PMCID: PMC4432635 DOI: 10.1038/sdata.2014.41] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/30/2014] [Indexed: 11/25/2022] Open
Abstract
Few studies have investigated exercise-induced global gene expression responses in human skeletal muscle and these have typically focused at one specific mode of exercise and not implemented non-exercise control models. However, interpretation on effects of differentiated exercise necessitate direct comparison between essentially different modes of exercise and the ability to identify true exercise effect, necessitate implementation of independent non-exercise control subjects. Furthermore, muscle transcriptome data made available through previous exercise studies can be difficult to extract and interpret by individuals that are inexperienced with bioinformatics procedures. In a comparative study, we therefore; (1) investigated the human skeletal muscle transcriptome responses to differentiated exercise and non-exercise control intervention, and; (2) set out to develop a straightforward search tool to allow for easy access and interpretation of our data. We provide a simple-to-use spread sheet containing transcriptome data allowing other investigators to easily see how mRNA of their gene(s) of interest behave in skeletal muscle following exercise, both endurance, resistance and non-exercise, to better aid hypothesis-driven question in this field of research.
Collapse
|
56
|
Nellemann B, Christensen B, Vissing K, Thams L, Sieljacks P, Larsen MS, Jørgensen JOL, Nielsen S. Ten weeks of aerobic training does not result in persistent changes in VLDL triglyceride turnover or oxidation in healthy men. Eur J Endocrinol 2014; 171:603-13. [PMID: 25117466 DOI: 10.1530/eje-14-0333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Very low density lipoprotein triglyceride (VLDL-TG) and free fatty acids (FFA) constitute a substantial proportion of human energy supply both at rest and during exercise. Exercise acutely decreases VLDL-TG concentration, and VLDL-TG clearance is increased after an exercise bout. However, the effects of long-term training are not clear. DESIGN The aim was to investigate long-term effects of training by direct assessments of VLDL-TG and palmitate kinetics and oxidation in healthy lean men (n=9) at rest, before and after a 10-week training program, compared with a non-training control group (n=9). METHODS VLDL-TG kinetics were assessed by a primed constant infusion of [1-14C]VLDL-TG, and VLDL-TG oxidation by specific activity (14CO2) in expired air. The metabolic study days were placed 60-72 h after the last exercise bout. RESULTS Palmitate kinetics and oxidation were assessed by a 2 h constant infusion of [9,10-(3)H]palmitate. In the training group (n=9), maximal oxygen uptake increased significantly by ≈20% (P<0.05), and the insulin sensitivity (assessed by the hyperinsulinemic-euglycemic clamp) improved significantly (P<0.05). Despite these metabolic improvements, no changes were observed in VLDL-TG secretion, clearance, or oxidation or in palmitate kinetics. CONCLUSION We conclude that 10 weeks of exercise training did not induce changes in VLDL-TG and palmitate kinetics in healthy lean men.
Collapse
Affiliation(s)
- Birgitte Nellemann
- Department of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, DenmarkSection of Sports ScienceDepartment of Public Health, Aarhus University, Aarhus, Denmark
| | - Britt Christensen
- Department of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, DenmarkSection of Sports ScienceDepartment of Public Health, Aarhus University, Aarhus, Denmark
| | - Kristian Vissing
- Department of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, DenmarkSection of Sports ScienceDepartment of Public Health, Aarhus University, Aarhus, Denmark
| | - Line Thams
- Department of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, DenmarkSection of Sports ScienceDepartment of Public Health, Aarhus University, Aarhus, Denmark
| | - Peter Sieljacks
- Department of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, DenmarkSection of Sports ScienceDepartment of Public Health, Aarhus University, Aarhus, Denmark
| | - Mads Sørensen Larsen
- Department of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, DenmarkSection of Sports ScienceDepartment of Public Health, Aarhus University, Aarhus, Denmark
| | - Jens Otto Lunde Jørgensen
- Department of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, DenmarkSection of Sports ScienceDepartment of Public Health, Aarhus University, Aarhus, Denmark
| | - Søren Nielsen
- Department of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, DenmarkSection of Sports ScienceDepartment of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
57
|
Larsen MS, Vissing K, Thams L, Sieljacks P, Dalgas U, Nellemann B, Christensen B. Erythropoietin administration alone or in combination with endurance training affects neither skeletal muscle morphology nor angiogenesis in healthy young men. Exp Physiol 2014; 99:1409-20. [PMID: 25128327 DOI: 10.1113/expphysiol.2014.080606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim was to investigate the ability of an erythropoiesis-stimulating agent (ESA), alone or in combination with endurance training, to induce changes in human skeletal muscle fibre and vascular morphology. In a comparative study, 36 healthy untrained men were randomly dispersed into the following four groups: sedentary-placebo (SP, n = 9); sedentary-ESA (SE, n = 9); training-placebo (TP, n = 10); or training-ESA (TE, n = 8). The ESA or placebo was injected once weekly. Training consisted of progressive bicycling three times per week for 10 weeks. Before and after the intervention period, muscle biopsies and magnetic resonance images were collected from the thigh muscles, blood was collected, body composition measured and endurance exercise performance evaluated. The ESA treatment (SE and TE) led to elevated haematocrit, and both ESA treatment and training (SE, TP and TE) increased maximal O2 uptake. With regard to skeletal muscle morphology, TP alone exhibited increases in whole-muscle cross-sectional area and fibre diameter of all fibre types. Also exclusively for TP was an increase in type IIa fibres and a corresponding decrease in type IIx fibres. Furthermore, an overall training effect (TP and TE) was statistically demonstrated in whole-muscle cross-sectional area, muscle fibre diameter and type IIa and type IIx fibre distribution. With regard to muscle vascular morphology, TP and TE both promoted a rise in capillary to muscle fibre ratio, with no differences between the two groups. There were no effects of ESA treatment on any of the muscle morphological parameters. Despite the haematopoietic effects of ESA, we provide novel evidence that endurance training rather than ESA treatment induces adaptational changes in angiogenesis and muscle morphology.
Collapse
Affiliation(s)
- Mads S Larsen
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Kristian Vissing
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Line Thams
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Peter Sieljacks
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Ulrik Dalgas
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Birgitte Nellemann
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Britt Christensen
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
58
|
Sanchez AMJ, Bernardi H, Py G, Candau RB. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am J Physiol Regul Integr Comp Physiol 2014; 307:R956-69. [PMID: 25121614 DOI: 10.1152/ajpregu.00187.2014] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physical exercise is a stress that can substantially modulate cellular signaling mechanisms to promote morphological and metabolic adaptations. Skeletal muscle protein and organelle turnover is dependent on two major cellular pathways: Forkhead box class O proteins (FOXO) transcription factors that regulate two main proteolytic systems, the ubiquitin-proteasome, and the autophagy-lysosome systems, including mitochondrial autophagy, and the MTORC1 signaling associated with protein translation and autophagy inhibition. In recent years, it has been well documented that both acute and chronic endurance exercise can affect the autophagy pathway. Importantly, substantial efforts have been made to better understand discrepancies in the literature on its modulation during exercise. A single bout of endurance exercise increases autophagic flux when the duration is long enough, and this response is dependent on nutritional status, since autophagic flux markers and mRNA coding for actors involved in mitophagy are more abundant in the fasted state. In contrast, strength and resistance exercises preferentially raise ubiquitin-proteasome system activity and involve several protein synthesis factors, such as the recently characterized DAGK for mechanistic target of rapamycin activation. In this review, we discuss recent progress on the impact of acute and chronic exercise on cell component turnover systems, with particular focus on autophagy, which until now has been relatively overlooked in skeletal muscle. We especially highlight the most recent studies on the factors that can impact its modulation, including the mode of exercise and the nutritional status, and also discuss the current limitations in the literature to encourage further works on this topic.
Collapse
Affiliation(s)
- Anthony M J Sanchez
- Department of Critical Care, McGill University Health Centre and Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada; University of Perpignan Via Domitia, Laboratoire Performance Santé Altitude, EA 4604, Font-Romeu, France;
| | - Henri Bernardi
- Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier, France; and
| | - Guillaume Py
- Faculty of Sport Sciences, University of Montpellier 1, Montpellier, France
| | - Robin B Candau
- Faculty of Sport Sciences, University of Montpellier 1, Montpellier, France
| |
Collapse
|
59
|
Farup J, Rahbek SK, Riis S, Vendelbo MH, Paoli FD, Vissing K. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth. J Appl Physiol (1985) 2014; 117:898-909. [PMID: 25103976 DOI: 10.1152/japplphysiol.00261.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type-specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P < 0.01) and exhibited a group difference from Ecc (P < 0.05), which did not increase. Myonuclei content in type I fibers increased in all groups (P < 0.01), while a specific accretion of myonuclei in type II fibers was observed in the Whey-Conc (P < 0.01) and Placebo-Ecc (P < 0.01) groups. Similarly, whereas type I fiber CSA increased independently of intervention (P < 0.001), type II fiber CSA increased exclusively with Whey-Conc (P < 0.01) and type II fiber hypertrophy correlated with whole muscle hypertrophy exclusively following Conc training (P < 0.01). In conclusion, isolated concentric knee extensor resistance training appears to constitute a stronger driver of SC content than eccentric resistance training while type II fiber hypertrophy was accentuated when combining concentric resistance training with whey protein supplementation.
Collapse
Affiliation(s)
- Jean Farup
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Stine Klejs Rahbek
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Simon Riis
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Mikkel Holm Vendelbo
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark; and
| | - Frank de Paoli
- Department of Biomedicine, Aarhus University, and Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Kristian Vissing
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark;
| |
Collapse
|
60
|
Farup J, Rahbek SK, Knudsen IS, de Paoli F, Mackey AL, Vissing K. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise. Amino Acids 2014; 46:2503-16. [DOI: 10.1007/s00726-014-1810-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/08/2014] [Indexed: 12/18/2022]
|
61
|
Vendelbo MH, Møller AB, Christensen B, Nellemann B, Clasen BFF, Nair KS, Jørgensen JOL, Jessen N, Møller N. Fasting increases human skeletal muscle net phenylalanine release and this is associated with decreased mTOR signaling. PLoS One 2014; 9:e102031. [PMID: 25020061 PMCID: PMC4096723 DOI: 10.1371/journal.pone.0102031] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 06/13/2014] [Indexed: 12/12/2022] Open
Abstract
Aim Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR), a key regulator of cell growth. Methods Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days. Results Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation. Conclusions Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth.
Collapse
Affiliation(s)
- Mikkel Holm Vendelbo
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- * E-mail:
| | - Andreas Buch Møller
- Research Laboratory for Biochemical Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Britt Christensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte Nellemann
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Berthil Frederik Forrest Clasen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Research Laboratory for Biochemical Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - K. Sreekumaran Nair
- Division of Endocrinology, Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | | | - Niels Jessen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Research Laboratory for Biochemical Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Møller
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
62
|
Jessen N, Sundelin EI, Møller AB. AMP kinase in exercise adaptation of skeletal muscle. Drug Discov Today 2014; 19:999-1002. [DOI: 10.1016/j.drudis.2014.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/07/2014] [Indexed: 11/25/2022]
|
63
|
Qi Z, Zhai X, Ding S. How to explain exercise-induced phenotype from molecular data: rethink and reconstruction based on AMPK and mTOR signaling. SPRINGERPLUS 2013; 2:693. [PMID: 24404437 PMCID: PMC3879393 DOI: 10.1186/2193-1801-2-693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/17/2013] [Indexed: 12/25/2022]
Abstract
During endurance and resistance exercise training, AMPK and mTOR signaling were known as selective pathways implicating the differentiation of exercise-induced phenotype in skeletal muscle. Among the previous studies, however, the differences in exercise protocol, the individuality and the genetic heterogeneity within species make it difficult to reach a consistent conclusion in the roles of AMPK and mTOR signaling. In this review, we aim not to reanalyze the previous articles and present the research progress of AMPK and mTOR signaling in exercise, but to propose an abstract general hypothesis for exercise-induced phenotype. Generally, exercise- induced skeletal muscle phenotype is independent of one and a few genes, proteins and signaling pathways. Convergent adaptation will better summarize the specificity of skeletal muscle phenotype in response to a single mode of exercise. Backward adaptation will open a new concept to illustrate the process of exercise-induced adaptation, such as mitochondrial quality control and muscle mass homeostasis.
Collapse
Affiliation(s)
- Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, 200241 China ; College of Physical Education and Health, East China Normal University, Shanghai, 200241 China
| | - Xiaofeng Zhai
- Department of Traditional Chinese Medicine, Changhai Hospital, Shanghai, 200438 China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, 200241 China ; College of Physical Education and Health, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
64
|
Fernandez-Gonzalo R, Lundberg TR, Tesch PA. Acute molecular responses in untrained and trained muscle subjected to aerobic and resistance exercise training versus resistance training alone. Acta Physiol (Oxf) 2013; 209:283-94. [PMID: 24112827 DOI: 10.1111/apha.12174] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 08/22/2013] [Accepted: 09/23/2013] [Indexed: 12/11/2022]
Abstract
AIM This study assessed and compared acute muscle molecular responses before and after 5-week training, employing either aerobic (AE) and resistance exercise (RE) or RE only. METHODS Ten men performed one-legged RE, while the contralateral limb performed AE followed by RE 6 h later (AE+RE). Before (untrained) and after (trained) the intervention, acute bouts of RE were performed with or without preceding AE. Biopsies were obtained from m. vastus lateralis of each leg pre- and 3 h post-RE to determine mRNA levels of VEGF, PGC-1α, MuRF-1, atrogin-1, myostatin and phosphorylation of mTOR, p70S6K, rpS6 and eEF2. RESULTS PGC-1α and VEGF expression increased (P < 0.05) after acute RE in the untrained, but not the trained state. These markers showed greater response after AE+RE than RE in either condition. Myostatin was lower after AE+RE than RE, both before and after training. AE+RE showed higher MuRF-1 and atrogin-1 expression than RE in the untrained, not the trained state. Exercise increased (P < 0.05) p70S6K phosphorylation both before and after training, yet this increase tended to be more prominent for AE+RE than RE before training. Phosphorylation of p70S6K was greater in trained muscle. Changes in these markers did not correlate with exercise-induced alterations in strength or muscle size. CONCLUSION Concurrent exercise in untrained skeletal muscle prompts global molecular responses consistent with resulting whole muscle adaptations. Yet, training blunts the more robust anabolic response shown after AE+RE compared with RE. This study challenges the concept that single molecular markers could predict training-induced changes in muscle size or strength.
Collapse
Affiliation(s)
- R. Fernandez-Gonzalo
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
- Department of Laboratory Medicine; Division of Clinical Physiology; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
| | - T. R. Lundberg
- Department of Health Sciences; Mid Sweden University; Östersund Sweden
| | - P. A. Tesch
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
- Department of Health Sciences; Mid Sweden University; Östersund Sweden
| |
Collapse
|
65
|
Resistance exercise, but not endurance exercise, induces IKKβ phosphorylation in human skeletal muscle of training-accustomed individuals. Pflugers Arch 2013; 465:1785-95. [PMID: 23838844 DOI: 10.1007/s00424-013-1318-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022]
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is considered an important role in the muscular adaptations to exercise. It has been proposed that exercise-induced signaling to mTORC1 do not require classic growth factor PI3K/Akt signaling. Activation of IKKβ and the mitogen-activated protein kinases (MAPKs) Erk1/2 and p38 has been suggested to link inflammation and cellular stress to activation of mTORC1 through the tuberous sclerosis 1 (TSC1)/tuberous sclerosis 2 (TSC2) complex. Consequently, activation of these proteins constitutes potential alternative mechanisms of mTORC1 activation following exercise. Previously, we demonstrated that mTOR is preferentially activated in response to resistance exercise compared to endurance exercise in trained individuals without concomitant activation of Akt. In the present study, we extended this investigation by examining IκB kinase complex (IKK), TSC1, MAPK, and upstream Akt activators, along with gene expression of selected cytokines, in skeletal muscles from these subjects. Biopsies were sampled prior to, immediately after, and in the recovery period following resistance exercise, endurance exercise, and control interventions. The major finding was that IKKβ phosphorylation increased exclusively after resistance exercise. No changes in TSC1, Erk1/2, insulin receptor, or insulin receptor substrate 1 phosphorylation were observed in any of the groups, while p38 phosphorylation was higher in the resistance exercise group compared to both other groups immediately after the intervention. Resistance and endurance exercise increased IL6, IL8, and TNFα gene expression immediately after exercise. The non-exercise control group demonstrated that cytokine gene expression is also sensitive to repeated biopsy sampling, whereas no effect of repeated biopsy sampling on protein expression and phosphorylation was observed. In conclusion, resistance exercise, but not endurance exercise, increases IKKβ phosphorylation in trained human subjects, which support the idea that IKKβ can influence the activation of mTORC1 in human skeletal muscle.
Collapse
|
66
|
Vissing K, Rahbek SK, Lamon S, Farup J, Stefanetti RJ, Wallace MA, Vendelbo MH, Russell A. Effect of resistance exercise contraction mode and protein supplementation on members of the STARS signalling pathway. J Physiol 2013; 591:3749-63. [PMID: 23753523 DOI: 10.1113/jphysiol.2012.249755] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The striated muscle activator of Rho signalling (STARS) pathway is suggested to provide a link between external stress responses and transcriptional regulation in muscle. However, the sensitivity of STARS signalling to different mechanical stresses has not been investigated. In a comparative study, we examined the regulation of the STARS signalling pathway in response to unilateral resistance exercise performed as either eccentric (ECC) or concentric (CONC) contractions as well as prolonged training; with and without whey protein supplementation. Skeletal muscle STARS, myocardian-related transcription factor-A (MRTF-A) and serum response factor (SRF) mRNA and protein, as well as muscle cross-sectional area and maximal voluntary contraction, were measured. A single-bout of exercise produced increases in STARS and SRF mRNA and decreases in MRTF-A mRNA with both ECC and CONC exercise, but with an enhanced response occurring following ECC exercise. A 31% increase in STARS protein was observed exclusively after CONC exercise (P < 0.001), while pSRF protein levels increased similarly by 48% with both CONC and ECC exercise (P < 0.001). Prolonged ECC and CONC training equally stimulated muscle hypertrophy and produced increases in MRTF-A protein of 125% and 99%, respectively (P < 0.001). No changes occurred for total SRF protein. There was no effect of whey protein supplementation. These results show that resistance exercise provides an acute stimulation of the STARS pathway that is contraction mode dependent. The responses to acute exercise were more pronounced than responses to accumulated training, suggesting that STARS signalling is primarily involved in the initial phase of exercise-induced muscle adaptations.
Collapse
Affiliation(s)
- Kristian Vissing
- Section of Sport Science, Department of Public Health, Aarhus University, Dalgas Avenue 4, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Lamon S, Wallace MA, Stefanetti RJ, Rahbek SK, Vendelbo MH, Russell AP, Vissing K. Regulation of the STARS signaling pathway in response to endurance and resistance exercise and training. Pflugers Arch 2013; 465:1317-25. [DOI: 10.1007/s00424-013-1265-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 11/27/2022]
|
68
|
Reduced AMPK-ACC and mTOR signaling in muscle from older men, and effect of resistance exercise. Mech Ageing Dev 2012; 133:655-64. [PMID: 23000302 DOI: 10.1016/j.mad.2012.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/20/2012] [Accepted: 09/07/2012] [Indexed: 11/20/2022]
Abstract
AMP-activated protein kinase (AMPK) is a key energy-sensitive enzyme that controls numerous metabolic and cellular processes. Mammalian target of rapamycin (mTOR) is another energy/nutrient-sensitive kinase that controls protein synthesis and cell growth. In this study we determined whether older versus younger men have alterations in the AMPK and mTOR pathways in skeletal muscle, and examined the effect of a long term resistance type exercise training program on these signaling intermediaries. Older men had decreased AMPKα2 activity and lower phosphorylation of AMPK and its downstream signaling substrate acetyl-CoA carboxylase (ACC). mTOR phosphylation also was reduced in muscle from older men. Exercise training increased AMPKα1 activity in older men, however, AMPKα2 activity, and the phosphorylation of AMPK, ACC and mTOR, were not affected. In conclusion, older men have alterations in the AMPK-ACC and mTOR pathways in muscle. In addition, prolonged resistance type exercise training induces an isoform-selective up regulation of AMPK activity.
Collapse
|
69
|
Yamada AK. Boosting mitochondrial biogenesis or protein synthesis in human skeletal muscle: Novel insights. Scand J Med Sci Sports 2012; 22:451-2. [PMID: 22612363 DOI: 10.1111/j.1600-0838.2011.01443.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
70
|
Abstract
Muscle protein synthesis (MPS) is the driving force behind adaptive responses to exercise and represents a widely adopted proxy for gauging chronic efficacy of acute interventions, (i.e. exercise/nutrition). Recent findings in this arena have been progressive. Nutrient-driven increases in MPS are of finite duration (∼1.5 h), switching off thereafter despite sustained amino acid availability and intramuscular anabolic signalling. Intriguingly, this 'muscle-full set-point' is delayed by resistance exercise (RE) (i.e. the feeding × exercise combination is 'more anabolic' than nutrition alone) even 24 h beyond a single exercise bout, casting doubt on the importance of nutrient timing vs. sufficiency per se. Studies manipulating exercise intensity/workload have shown that increases in MPS are negligible with RE at 20-40% but maximal at 70-90% of one-repetition maximum when workload is matched (according to load × repetition number). However, low-intensity exercise performed to failure equalises this response. Analysing distinct subcellular fractions (e.g. myofibrillar, sarcoplasmic, mitochondrial) may provide a readout of chronic exercise efficacy in addition to effect size in MPS per se, i.e. while 'mixed' MPS increases similarly with endurance and RE, increases in myofibrillar MPS are specific to RE, prophetic of adaptation (i.e. hypertrophy). Finally, the molecular regulation of MPS by exercise and its regulation via 'anabolic' hormones (e.g. IGF-1) has been questioned, leading to discovery of alternative mechanosensing-signalling to MPS.
Collapse
Affiliation(s)
- P J Atherton
- School of Graduate Entry Medicine and Health, Division of Metabolic Physiology, University of Nottingham, Derby Royal Hospital, Uttoxeter Road, Derby DE22 3DT, UK.
| | | |
Collapse
|