51
|
Dynactin regulates bidirectional transport of dense-core vesicles in the axon and dendrites of cultured hippocampal neurons. Neuroscience 2009; 162:1001-10. [DOI: 10.1016/j.neuroscience.2009.05.038] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/07/2009] [Accepted: 05/07/2009] [Indexed: 12/26/2022]
|
52
|
Kollins KM, Bell RL, Butts M, Withers GS. Dendrites differ from axons in patterns of microtubule stability and polymerization during development. Neural Dev 2009; 4:26. [PMID: 19602271 PMCID: PMC2717962 DOI: 10.1186/1749-8104-4-26] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 07/14/2009] [Indexed: 11/10/2022] Open
Abstract
Background Dendrites differ from axons in patterns of growth and development, as well as in morphology. Given that microtubules are key structural elements in cells, we assessed patterns of microtubule stability and polymerization during hippocampal neuron development in vitro to determine if these aspects of microtubule organization could distinguish axons from dendrites. Results Quantitative ratiometric immunocytochemistry identified significant differences in microtubule stability between axons and dendrites. Most notably, regardless of developmental stage, there were high levels of dynamic microtubules throughout the dendritic arbor, whereas dynamic microtubules were predominantly concentrated in the distal end of axons. Analysis of microtubule polymerization using green fluorescent protein-tagged EB1 showed both developmental and regional differences in microtubule polymerization between axons and dendrites. Early in development (for example, 1 to 2 days in vitro), polymerization events were distributed equally in both the anterograde and retrograde directions throughout the length of both axons and dendrites. As development progressed, however, polymerization became biased, with a greater number of polymerization events in distal than in proximal and middle regions. While polymerization occurred almost exclusively in the anterograde direction for axons, both anterograde and retrograde polymerization was observed in dendrites. This is in agreement with predicted differences in microtubule polarity within these compartments, although fewer retrograde events were observed in dendrites than expected. Conclusion Both immunocytochemical and live imaging analyses showed that newly formed microtubules predominated at the distal end of axons and dendrites, suggesting a common mechanism that incorporates increased microtubule polymerization at growing process tips. Dendrites had more immature, dynamic microtubules throughout the entire arbor than did axons, however. Identifying these differences in microtubule stability and polymerization is a necessary first step toward understanding how they are developmentally regulated, and may reveal novel mechanisms underlying neuron maturation and dendritic plasticity that extend beyond the initial specification of polarity.
Collapse
|
53
|
Vallee RB, Seale GE, Tsai JW. Emerging roles for myosin II and cytoplasmic dynein in migrating neurons and growth cones. Trends Cell Biol 2009; 19:347-55. [PMID: 19524440 DOI: 10.1016/j.tcb.2009.03.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/25/2009] [Accepted: 03/31/2009] [Indexed: 11/18/2022]
Abstract
Motor proteins are involved in a wide range of cellular and subcellular movements. Recent studies have implicated two motor proteins in particular, myosin II and cytoplasmic dynein, in diverse aspects of cell migration. This review focuses on emerging roles for these proteins in the nervous system, with particular emphasis on migrating neurons and neuronal growth cones. The former cells exhibit unusual features of centrosome and nuclear movement, whereas growth cones offer an opportunity to evaluate motor protein function in a region of cytoplasm free of these organelles.
Collapse
Affiliation(s)
- Richard B Vallee
- Department of Pathology and Cell Biology, Program in Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | |
Collapse
|
54
|
Riano E, Martignoni M, Mancuso G, Cartelli D, Crippa F, Toldo I, Siciliano G, Di Bella D, Taroni F, Bassi MT, Cappelletti G, Rugarli EI. Pleiotropic effects of spastin on neurite growth depending on expression levels. J Neurochem 2009; 108:1277-88. [PMID: 19141076 DOI: 10.1111/j.1471-4159.2009.05875.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hereditary spastic paraplegia (HSP) is characterized by weakness and spasticity of the lower limbs, owing to degeneration of corticospinal axons. The most common form is due to heterozygous mutations in the SPG4 gene, encoding spastin, a microtubule (MT)-severing protein. Here, we show that neurite growth in immortalized and primary neurons responds in pleiotropic ways to changes in spastin levels. Spastin depletion alters the development of primary hippocampal neurons leading to abnormal neuron morphology, dystrophic neurites, and axonal growth defects. By live imaging with End-Binding Protein 3-Fluorescent Green Protein (EB3-GFP), a MT plus-end tracking protein, we ascertained that the assembly rate of MTs is reduced when spastin is down-regulated. Spastin over-expression at high levels strongly suppresses neurite maintenance, while slight spastin up-regulation using an endogenous promoter enhances neurite branching and elongation. Spastin severing activity is exerted preferentially on stable acetylated and detyrosinated MTs. We further show that SPG4 nonsense or splice site mutations found in hereditary spastic paraplegia patients result in reduced spastin levels, supporting haploinsufficiency as the molecular cause of the disease. Our study reveals that SPG4 is a dosage-sensitive gene, and broadens the understanding of the role of spastin in neurite growth and MT dynamics.
Collapse
Affiliation(s)
- Elena Riano
- Division of Biochemistry and Genetics, Istituto Neurologico "C. Besta", Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Sasoglu FM, Bohl AJ, Allen KB, Layton BE. Parallel force measurement with a polymeric microbeam array using an optical microscope and micromanipulator. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2009; 93:1-8. [PMID: 18774621 DOI: 10.1016/j.cmpb.2008.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 06/25/2008] [Accepted: 07/14/2008] [Indexed: 05/26/2023]
Abstract
An image analysis method and its validation are presented for tracking the displacements of parallel mechanical force sensors. Force is measured using a combination of beam theory, optical microscopy, and image analysis. The primary instrument is a calibrated polymeric microbeam array mounted on a micromanipulator with the intended purpose of measuring traction forces on cell cultures or cell arrays. One application is the testing of hypotheses involving cellular mechanotransduction mechanisms. An Otsu-based image analysis code calculates displacement and force on cellular or other soft structures by using edge detection and image subtraction on digitally captured optical microscopy images. Forces as small as 250+/-50 nN and as great as 25+/-2.5 microN may be applied and measured upon as few as one or as many as hundreds of structures in parallel. A validation of the method is provided by comparing results from a rigid glass surface and a compliant polymeric surface.
Collapse
Affiliation(s)
- F Mert Sasoglu
- Drexel University, Department of Mechanical Engineering and Mechanics, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
56
|
Nadar VC, Ketschek A, Myers KA, Gallo G, Baas PW. Kinesin-5 is essential for growth-cone turning. Curr Biol 2008; 18:1972-7. [PMID: 19084405 DOI: 10.1016/j.cub.2008.11.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 11/05/2008] [Accepted: 11/10/2008] [Indexed: 11/15/2022]
Abstract
Inhibition of kinesin-5, a mitotic motor protein also expressed in neurons, causes axons to grow faster as a result of alterations in the forces on microtubules (MTs) in the axonal shaft. Here, we investigate whether kinesin-5 plays a role in growth-cone guidance. Growth-cone turning requires that MTs in the central (C-) domain enter the peripheral (P-) domain in the direction of the turn. We found that inhibition of kinesin-5 in cultured neurons prevents MTs from polarizing within growth cones and causes them to grow past cues that would normally cause them to turn. We found that kinesin-5 is enriched in the transition (T-) zone of the growth cone and that kinesin-5 is preferentially phosphorylated on the side opposite the invasion of MTs. Moreover, when a growth cone encounters a turning cue, phospho-kinesin-5 polarizes even before the growth cone turns. Additional studies indicate that kinesin-5 works in part by antagonizing cytoplasmic dynein and that these motor-driven forces function together with the dynamic properties of the MTs to determine whether MTs can enter the P-domain. We propose that kinesin-5 permits MTs to selectively invade one side of the growth cone by opposing their entry into the other side.
Collapse
Affiliation(s)
- Vidya C Nadar
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
57
|
Abstract
Regeneration was once thought to be exclusive to young neurons. Now, a new study shows that functional and interconnected hippocampal neurons have the potential to quickly recover from losing an axon. They do so by signaling a dendrite to change its specification and replace the missing axon by rearranging the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Eric S Sweet
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, 604 Allison Road, Piscataway, New Jersey 08854-8082, USA
| | | |
Collapse
|
58
|
De Vos KJ, Grierson AJ, Ackerley S, Miller CCJ. Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 2008; 31:151-73. [PMID: 18558852 DOI: 10.1146/annurev.neuro.31.061307.090711] [Citation(s) in RCA: 533] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many major human neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS), display axonal pathologies including abnormal accumulations of proteins and organelles. Such pathologies highlight damage to the axon as part of the pathogenic process and, in particular, damage to transport of cargoes through axons. Indeed, we now know that disruption of axonal transport is an early and perhaps causative event in many of these diseases. Here, we review the role of axonal transport in neurodegenerative disease.
Collapse
Affiliation(s)
- Kurt J De Vos
- MRC Center for Neurodegeneration Research, Institute of Psychiatry, King's College, London SE5 8AF, United Kingdom.
| | | | | | | |
Collapse
|
59
|
Abe TK, Honda T, Takei K, Mikoshiba K, Hoffman-Kim D, Jay DG, Kuwano R. Dynactin is essential for growth cone advance. Biochem Biophys Res Commun 2008; 372:418-22. [PMID: 18477476 DOI: 10.1016/j.bbrc.2008.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Accepted: 05/02/2008] [Indexed: 01/04/2023]
Abstract
Dynactin is a multi-subunit complex that serves as a critical cofactor of the microtubule motor cytoplasmic dynein. We previously identified dynactin in the nerve growth cone. However, the function of dynactin in the growth cone is still unclear. Here we show that dynactin in the growth cone is required for constant forward movement of the growth cone. Chromophore-assisted laser inactivation (CALI) of dynamitin, a dynactin subunit, within the growth cone markedly decreases the rate of growth cone advance. CALI of dynamitin in vitro dissociates another dynactin subunit, p150(Glued), from dynamitin. These results indicate that dynactin, especially the interaction between dynamitin and p150(Glued), plays an essential role in growth cone advance.
Collapse
Affiliation(s)
- Takako K Abe
- Center of Bioresource-based Researches, Brain Research Institute, Niigata University, 1 Asahimachi, Chuo-ku, Niigata 951-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
60
|
Quantitative and functional analyses of spastin in the nervous system: implications for hereditary spastic paraplegia. J Neurosci 2008; 28:2147-57. [PMID: 18305248 DOI: 10.1523/jneurosci.3159-07.2008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Spastin and P60-katanin are two distinct microtubule-severing proteins. Autosomal dominant mutations in the SPG4 locus corresponding to spastin are the most common cause of hereditary spastic paraplegia (HSP), a neurodegenerative disease that afflicts the adult corticospinal tracts. Here we sought to evaluate whether SPG4-based HSP is best understood as a "loss-of-function" disease. Using various rat tissues, we found that P60-katanin levels are much higher than spastin levels during development. In the adult, P60-katanin levels plunge dramatically but spastin levels decline only slightly. Quantitative data of spastin expression in specific regions of the nervous system failed to reveal any obvious explanation for the selective sensitivity of adult corticospinal tracts to loss of spastin activity. An alternative explanation relates to the fact that the mammalian spastin gene has two start codons, resulting in a 616 amino acid protein called M1 and a slightly shorter protein called M85. We found that M1 is almost absent from developing neurons and most adult neurons but comprises 20-25% of the spastin in the adult spinal cord, the location of the axons that degenerate during HSP. Experimental expression in cultured neurons of a short dysfunctional M1 polypeptide (but not a short dysfunctional M85 peptide) is deleterious to normal axonal growth. In squid axoplasm, the M1 peptide dramatically inhibits fast axonal transport, whereas the M85 peptide does not. These results are consistent with a "gain-of-function" mechanism underlying HSP wherein spastin mutations produce a cytotoxic protein in the case of M1 but not M85.
Collapse
|
61
|
Shemesh OA, Erez H, Ginzburg I, Spira ME. Tau-Induced Traffic Jams Reflect Organelles Accumulation at Points of Microtubule Polar Mismatching. Traffic 2008; 9:458-71. [DOI: 10.1111/j.1600-0854.2007.00695.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
62
|
Erez H, Spira ME. Local self-assembly mechanisms underlie the differential transformation of the proximal and distal cut axonal ends into functional and aberrant growth cones. J Comp Neurol 2008; 507:1019-30. [DOI: 10.1002/cne.21522] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
63
|
Myers KA, Baas PW. Kinesin-5 regulates the growth of the axon by acting as a brake on its microtubule array. ACTA ACUST UNITED AC 2007; 178:1081-91. [PMID: 17846176 PMCID: PMC2064629 DOI: 10.1083/jcb.200702074] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Kinesin-5 is a homotetrameric motor protein that interacts with adjacent microtubules in the mitotic spindle. Kinesin-5 is also highly expressed in developing postmitotic neurons. Axons of cultured neurons experimentally depleted of kinesin-5 grow up to five times longer than controls and display more branches. The faster growth rates are accompanied by a doubling of the frequency of transport of short microtubules, suggesting a major role for kinesin-5 in the balance of motor-driven forces on the axonal microtubule array. Live-cell imaging reveals that the effects on axonal length of kinesin-5 depletion are caused partly by a lower propensity of the axon and newly forming branches to undergo bouts of retraction. Overexpression of wild-type kinesin-5, but not a rigor mutant of kinesin-5, has the inverse effect on axonal length. These results indicate that kinesin-5 imposes restrictions on the growth of the axon and does so at least in part by generating forces on the axonal microtubule array.
Collapse
Affiliation(s)
- Kenneth A Myers
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
64
|
Jaworski J, Hoogenraad CC, Akhmanova A. Microtubule plus-end tracking proteins in differentiated mammalian cells. Int J Biochem Cell Biol 2007; 40:619-37. [PMID: 18023603 DOI: 10.1016/j.biocel.2007.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 09/16/2007] [Accepted: 10/11/2007] [Indexed: 11/16/2022]
Abstract
Differentiated mammalian cells are often characterized by highly specialized and polarized structure. Its formation and maintenance depends on cytoskeletal components, among which microtubules play an important role. The shape and dynamic properties of microtubule networks are controlled by multiple microtubule-associated factors. These include molecular motors and non-motor proteins, some of which accumulate specifically at the growing microtubule plus-ends (the so-called microtubule plus-end tracking proteins). Plus-end tracking proteins can contribute to the regulation of microtubule dynamics, mediate the cross-talk between microtubule ends, the actin cytoskeleton and the cell cortex, and participate in transport and positioning of structural and regulatory factors and membrane organelles. Malfunction of these proteins results in various human diseases including some forms of cancer, neurodevelopmental disorders and mental retardation. In this article we discuss recent data on microtubule dynamics and activities of microtubule plus-end binding proteins important for the physiology and pathology of differentiated mammalian cells such as neurons, polarized epithelia, muscle and sperm cells.
Collapse
Affiliation(s)
- Jacek Jaworski
- International Institute of Molecular and Cell Biology , Warsaw, Poland.
| | | | | |
Collapse
|
65
|
Erez H, Malkinson G, Prager-Khoutorsky M, De Zeeuw CI, Hoogenraad CC, Spira ME. Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy. ACTA ACUST UNITED AC 2007; 176:497-507. [PMID: 17283182 PMCID: PMC2063984 DOI: 10.1083/jcb.200607098] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transformation of a transected axonal tip into a growth cone (GC) is a critical step in the cascade leading to neuronal regeneration. Critical to the regrowth is the supply and concentration of vesicles at restricted sites along the cut axon. The mechanisms underlying these processes are largely unknown. Using online confocal imaging of transected, cultured Aplysia californica neurons, we report that axotomy leads to reorientation of the microtubule (MT) polarities and formation of two distinct MT-based vesicle traps at the cut axonal end. Approximately 100 microm proximal to the cut end, a selective trap for anterogradely transported vesicles is formed, which is the plus end trap. Distally, a minus end trap is formed that exclusively captures retrogradely transported vesicles. The concentration of anterogradely transported vesicles in the former trap optimizes the formation of a GC after axotomy.
Collapse
Affiliation(s)
- Hadas Erez
- Department of Neurobiology, Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
66
|
Myers KA, Tint I, Nadar CV, He Y, Black MM, Baas PW. Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction. Traffic 2006; 7:1333-51. [PMID: 16911591 DOI: 10.1111/j.1600-0854.2006.00476.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytoplasmic dynein transports short microtubules down the axon in part by pushing against the actin cytoskeleton. Recent studies have suggested that comparable dynein-driven forces may impinge upon the longer microtubules within the axon. Here, we examined a potential role for these forces on axonal retraction and growth cone turning in neurons partially depleted of dynein heavy chain (DHC) by small interfering RNA. While DHC-depleted axons grew at normal rates, they retracted far more robustly in response to donors of nitric oxide than control axons, and their growth cones failed to efficiently turn in response to substrate borders. Live cell imaging of dynamic microtubule tips showed that microtubules in DHC-depleted growth cones were largely confined to the central zone, with very few extending into filopodia. Even under conditions of suppressed microtubule dynamics, DHC depletion impaired the capacity of microtubules to advance into the peripheral zone of the growth cone, indicating a direct role for dynein-driven forces on the distribution of the microtubules. These effects were all reversed by inhibition of myosin-II forces, which are known to underlie the retrograde flow of actin in the growth cone and the contractility of the cortical actin during axonal retraction. Our results are consistent with a model whereby dynein-driven forces enable microtubules to overcome myosin-II-driven forces, both in the axonal shaft and within the growth cone. These dynein-driven forces oppose the tendency of the axon to retract and permit microtubules to advance into the peripheral zone of the growth cone so that they can invade filopodia.
Collapse
Affiliation(s)
- Kenneth A Myers
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | |
Collapse
|