51
|
Genome-wide screening reveals a role for subcellular localization of CRBN in the anti-myeloma activity of pomalidomide. Sci Rep 2020; 10:4012. [PMID: 32132601 PMCID: PMC7055313 DOI: 10.1038/s41598-020-61027-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
Pomalidomide, a derivative of thalidomide, is an effective treatment for multiple myeloma. The drug exerts its effects through CRBN, a component of the E3 ubiquitin ligase complex CRL4CRBN. To search for novel factors involved in the anti-cancer activity of pomalidomide, we performed a genome-wide shRNA library screen and identified 445 genes as those affecting pomalidomide sensitivity. Genes encoding components of the ubiquitin-proteasome pathway, such as subunits of the CRL4CRBN complex, the COP9 signalosome, and the 26S proteasome, were among the pomalidomide-affecting genes. Karyopherin beta 1 (KPNB1) was identified as a novel pomalidomide-affecting gene. KPNB1 was required for the nuclear import of CRBN and for the CRBN-directed, pomalidomide-dependent degradation of a clinically relevant substrate, the transcription factor Aiolos. By contrast, the cytoplasmic translation factor GSPT1 was degraded following treatment with the thalidomide derivative CC-885 only when CRBN was present in the cytoplasm, indicating that subcellular distribution of CRBN is critical for the efficacy of thalidomide-based medications.
Collapse
|
52
|
Lipid-Saporin Nanoparticles for the Intracellular Delivery of Cytotoxic Protein to Overcome ABC Transporter-Mediated Multidrug Resistance In Vitro and In Vivo. Cancers (Basel) 2020; 12:cancers12020498. [PMID: 32098067 PMCID: PMC7072609 DOI: 10.3390/cancers12020498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/31/2022] Open
Abstract
Although the judicious use of anticancer drugs that target one or more receptor tyrosine kinases constitutes an effective strategy to attenuate tumor growth, drug resistance is commonly encountered in cancer patients. The ATP-binding cassette transporters are one of the major contributors to the development of multidrug resistance as their overexpression significantly decreases the intracellular concentration and thus, the efficacy of certain anticancer drugs. Therefore, the development of treatment strategies that would not be susceptible to efflux or excretion by specific ABC transporters could overcome resistance to treatment. Here, we investigated the anticancer efficacy of saporin, a ribosome-inactivating protein. Since saporin has poor permeability across the cell membrane, it was encapsulated in a lipid-based nanoparticle system (EC16-1) that effectively delivered the formulation (EC16-1/saporin) intracellularly and produced anti-cancer efficacy. EC16-1/saporin, at nanomolar concentrations, significantly inhibited the cellular proliferation of parental and ABCB1- and ABCG2-overexpressing cancer cells. EC16-1/saporin did not significantly alter the subcellular localization of ABCB1 and ABCG2. In addition, EC16-1/saporin induced apoptosis in parental and ABCB1- and ABCG2-overexpressing cancer cells. In a murine model system, EC16-1/saporin significantly inhibited the tumor growth in mice xenografted with parental and ABCB1- and ABCG2-overexpressing cancer cells. Our findings suggest that the EC16-1/saporin combination could potentially be a novel therapeutic treatment in patients with parental or ABCB1- and ABCG2-positive drug-resistant cancers.
Collapse
|
53
|
Koehn LM. ABC efflux transporters at blood-central nervous system barriers and their implications for treating spinal cord disorders. Neural Regen Res 2020; 15:1235-1242. [PMID: 31960802 PMCID: PMC7047801 DOI: 10.4103/1673-5374.272568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The barriers present in the interfaces between the blood and the central nervous system form a major hurdle for the pharmacological treatment of central nervous system injuries and diseases. The family of ATP-binding cassette (ABC) transporters has been widely studied regarding efflux of medications at blood-central nervous system barriers. These efflux transporters include P-glycoprotein (abcb1), 'breast cancer resistance protein' (abcg2) and the various 'multidrug resistance-associated proteins' (abccs). Understanding which efflux transporters are present at the blood-spinal cord, blood-cerebrospinal fluid and cerebrospinal fluid-spinal cord barriers is necessary to determine their involvement in limiting drug transfer from blood to the spinal cord tissue. Recent developments in the blood-brain barrier field have shown that barrier systems are dynamic and the profile of barrier defenses can alter due to conditions such as age, disease and environmental challenge. This means that a true understanding of ABC efflux transporter expression and localization should not be one static value but instead a range that represents the complex patient subpopulations that exist. In the present review, the blood-central nervous system barrier literature is discussed with a focus on the impact of ABC efflux transporters on: (i) protecting the spinal cord from adverse effects of systemically directed drugs, and (ii) limiting centrally directed drugs from accessing their active sites within the spinal cord.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, the University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
54
|
Sun Y, Chen X, Zhou Y, Qiu S, Wu Y, Xie M, Zhu G, Liang S, Li H, Zhou D, Ju Z, Wang F, Han F, Wang Z, Wang R. Metformin reverses the drug resistance of cisplatin in irradiated CNE-1 human nasopharyngeal carcinoma cells through PECAM-1 mediated MRPs down-regulation. Int J Med Sci 2020; 17:2416-2426. [PMID: 33029084 PMCID: PMC7532475 DOI: 10.7150/ijms.48635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022] Open
Abstract
Objective: To explore a way to reverse the drug resistance for irradiated CNE-1 human nasopharyngeal carcinoma cells and try to develop a new high efficacy with low toxicity therapeutic approach. Methods: 300 Gy irradiated the CNE-1 human nasopharyngeal carcinoma cells, and then treated with single-agent cisplatin or metformin, or combination of both drugs. MTT assay and FCM were applied to detect cell viability and apoptosis. Western blot and RT-PCR were used to characterize the protein and mRNA expression after various drug administrations. Results: The results presented single-agent metformin was capable of arresting the tumor growth and inducing apoptosis in irradiated CNE-1 cells and also demonstrated a synergy effect with cisplatin. Furthermore, metformin down-regulates the PECAM-1 expression, which could regulate Multi-drug Resistance-associate Proteins (MRPs) expression leading to cisplatin resistance of irradiated CNE-1 cells. A pan-MRP inhibitor, probenecid, can resecure cisplatin resistance leading by radiation. Conclusions: Metformin, due to its independent effects on PECAM-1, had a unique anti-proliferative effect on irradiated CNE-1 cells. It would be a new therapeutic option to conquer cisplatin resistance for advanced NPC patients after radiotherapy.
Collapse
Affiliation(s)
- Yingming Sun
- Department of Medical and Radiation Oncology, Sanming First Hospital of Fujian Medical University. Sanming 365001, China.,Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China
| | - Xiaochuan Chen
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350001, China
| | - Yajuan Zhou
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan, 430074, China
| | - Sufang Qiu
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350001, China
| | - Yongyang Wu
- Department of Urology Surgery, Sanming First Hospital of Fujian Medical University. Sanming 365001, China
| | - Min Xie
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China
| | - Guofang Zhu
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China
| | - Shanshan Liang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Heming Li
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Dong Zhou
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Zaishuang Ju
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Fuguang Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Fang Han
- Department of Medical Imaging, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China
| | - Zhe Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Ruoyu Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University. Dalian 116001, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| |
Collapse
|
55
|
Mao X, He Z, Zhou F, Huang Y, Zhu G. Prognostic significance and molecular mechanisms of adenosine triphosphate-binding cassette subfamily C members in gastric cancer. Medicine (Baltimore) 2019; 98:e18347. [PMID: 31852133 PMCID: PMC6922578 DOI: 10.1097/md.0000000000018347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the major leading causes of tumor-related deaths worldwide. Adenosine triphosphate-binding cassette subfamily C (ABCC) consists of 13 members, ABCC1 to 13, which were examined for their associations with GC.The online Kaplan-Meier Plotter database was used to determine the prognostic significance of ABCC subfamily members in GC. Stratified analyses were performed using gender, disease stage, degree of tumor differentiation, expression of human epidermal growth factor receptor 2 (HER2), and Lauren classification. Molecular mechanisms were examined using the database for annotation, visualization, and integrated discovery database.ABCC1, ABCC3, ABCC7, ABCC8, ABCC9, and ABCC10 expression showed prognostic significance in the whole population and in male and female subpopulations (all P ≤ .05). Furthermore, high expression of most ABCC family members always suggested a poor prognosis, except for ABCC7 (P > .05). Stratified analyses revealed that ABCC1, ABCC3, ABCC7, ABCC8, ABCC9, and ABCC10 expression showed prognostic significance for the whole population, as well as male and female populations. ABCC2 and ABCC9 were significantly correlated with all disease stages, while ABCC2 and ABCC6 were significantly correlated with all Lauren classifications. Expression of ABCC1, ABCC3, ABCC5, ABCC7, ABCC8, ABCC9, and ABCC10 was significantly correlated with either negative or positive of HER2 status (all P ≤ .05). Enrichment analysis indicated that these genes were involved in ATPase activity, transmembrane transport, or were ABC transporters (all P ≤ .05).ABCC1, ABCC3, ABCC7, ABCC8, ABCC9, and ABCC10 may be potential prognosis biomarkers for GC, acting as ABC transporters and via ATPase activity.
Collapse
Affiliation(s)
- Xianshuang Mao
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Hezhou City, Hezhou
| | - Zhenhua He
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Hezhou City, Hezhou
| | - Fengsheng Zhou
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Hezhou City, Hezhou
| | - Yongchu Huang
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Hezhou City, Hezhou
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| |
Collapse
|
56
|
Cho CJ, Yang CW, Wu CL, Ho JY, Yu CP, Wu ST, Yu DS. The modulation study of multiple drug resistance in bladder cancer by curcumin and resveratrol. Oncol Lett 2019; 18:6869-6876. [PMID: 31807190 DOI: 10.3892/ol.2019.11023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/10/2019] [Indexed: 01/16/2023] Open
Abstract
Gemcitabine (GCB), which functions via the inhibition of DNA synthesis, is commonly used in the treatment of bladder cancer; however, its response rate is not satisfactory due to the development of drug resistance. The potential for phytochemicals to reverse drug resistance in bladder cancer tumor cells was evaluated. A human bladder cancer cell line, T24, was cultured, and GCB-resistant cells (T24-GCB) were also established. The acquired resistance of T24-GCB to GCB was measured using an MTT assay. The gene expression of ATP-binding cassette (ABC) transporter protein family members was analyzed using reverse transcription-quantitative PCR analysis, and western blotting was performed to verify ABC family protein, cytoplasmic thymidine kinase (TK) and poly (ADP-ribose) polymerase (PARP) expression on whole cell lysates. Subsequently, resveratrol and curcumin were used to evaluate their modulation potential in decreasing the drug resistance of T24-GCB cells to GCB using MTT and migration assays. T24-GCB cells have increased drug resistance ability, with an 18.75-fold higher ID50 value compared with native T24 cells (105 vs. 5.6 nM). T24-GCB cells also exhibit increased cross resistance to mitomycin C and paclitaxel. The mRNA expression of ABCC2 in T24-GCB cells increased compared with that in native T24 cells. Via western blot analysis, it was determined that the expression of ABCC2 protein was also increased in T24-GCB cells. Conversely, the expression of ABCB1, ABCG2, deoxycytidine kinase (DCK), TK1 and TK2 decreased. Following curcumin and resveratrol treatment alone or combined with GCB, additive cytotoxic enhancement was observed, and the migratory abilities of T24-GCB cells were significantly decreased. Western blot analysis revealed that ABCC2 protein expression increased, and DCK, TK1 and TK2 expression decreased following co-treatment of T24-GCB cells with GCB + curcumin or resveratrol compared with GCB alone. Of note, there was a marked increase in cleaved-PARP expression in T24-GCB cells treated with a combination of GCB + curcumin or resveratrol. Both curcumin and resveratrol could reverse the drug resistance of T24-GCB cells in an additive pattern though PARP enhancement without changes in ABCC2 and DCK, TK1 and TK2 expression.
Collapse
Affiliation(s)
- Chun-Jung Cho
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan, R.O.C.,Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Ching-Wei Yang
- Department of Urology, Cheng-Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - Chia-Lun Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Jar-Yi Ho
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan, R.O.C.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Cheng-Ping Yu
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Dah-Shyong Yu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| |
Collapse
|
57
|
Bai H, Wu T, Jiao L, Wu Q, Zhao Z, Song J, Liu T, Lv Y, Lu X, Ying B. Association of
ABCC
Gene Polymorphism With Susceptibility to Antituberculosis Drug–Induced Hepatotoxicity in Western Han Patients With Tuberculosis. J Clin Pharmacol 2019; 60:361-368. [PMID: 31648372 DOI: 10.1002/jcph.1533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/24/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Hao Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanghua Lv
- Department of Laboratory Medicine, Panzhihua Municipal Central Hospital, Sichuan Province, Panzhihua, China
| | - Xiaojun Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
58
|
Amawi H, Sim HM, Tiwari AK, Ambudkar SV, Shukla S. ABC Transporter-Mediated Multidrug-Resistant Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:549-580. [PMID: 31571174 DOI: 10.1007/978-981-13-7647-4_12] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) transporters are involved in active pumping of many diverse substrates through the cellular membrane. The transport mediated by these proteins modulates the pharmacokinetics of many drugs and xenobiotics. These transporters are involved in the pathogenesis of several human diseases. The overexpression of certain transporters by cancer cells has been identified as a key factor in the development of resistance to chemotherapeutic agents. In this chapter, the localization of ABC transporters in the human body, their physiological roles, and their roles in the development of multidrug resistance (MDR) are reviewed. Specifically, P-glycoprotein (P-GP), multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein (BCRP/ABCG2) are described in more detail. The potential of ABC transporters as therapeutic targets to overcome MDR and strategies for this purpose are discussed as well as various explanations for the lack of efficacy of ABC drug transporter inhibitors to increase the efficiency of chemotherapy.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Hong-May Sim
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
59
|
Kramer B, Haan LD, Vermeer M, Olivier T, Hankemeier T, Vulto P, Joore J, Lanz HL. Interstitial Flow Recapitulates Gemcitabine Chemoresistance in A 3D Microfluidic Pancreatic Ductal Adenocarcinoma Model by Induction of Multidrug Resistance Proteins. Int J Mol Sci 2019; 20:ijms20184647. [PMID: 31546820 PMCID: PMC6770899 DOI: 10.3390/ijms20184647] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most lethal cancers due to a high chemoresistance and poor vascularization, which results in an ineffective systemic therapy. PDAC is characterized by a high intratumoral pressure, which is not captured by current 2D and 3D in vitro models. Here, we demonstrated a 3D microfluidic interstitial flow model to mimic the intratumoral pressure in PDAC. We found that subjecting the S2-028 PDAC cell line to interstitial flow inhibits the proliferation, while maintaining a high viability. We observed increased gemcitabine chemoresistance, with an almost nine-fold higher EC50 as compared to a monolayer culture (31 nM versus 277 nM), and an alleviated expression and function of the multidrug resistance protein (MRP) family. In conclusion, we developed a 3D cell culture modality for studying intratissue pressure and flow that exhibits more predictive capabilities than conventional 2D cell culture and is less time-consuming, and more scalable and accessible than animal models. This increase in microphysiological relevance might support improved efficiency in the drug development pipeline.
Collapse
Affiliation(s)
- Bart Kramer
- Mimetas BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands.
| | - Luuk de Haan
- Mimetas BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | | | - Thomas Olivier
- Mimetas BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands.
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Paul Vulto
- Mimetas BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands.
| | - Jos Joore
- Mimetas BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands.
| | | |
Collapse
|
60
|
Kumar A, Jaitak V. Natural products as multidrug resistance modulators in cancer. Eur J Med Chem 2019; 176:268-291. [PMID: 31103904 DOI: 10.1016/j.ejmech.2019.05.027] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 01/21/2023]
Abstract
Cancer is a prominent cause of death globally. Currently, many drugs that are in clinical practice are having a high prevalence of side effect and multidrug resistance. Risk of tumors acquiring resistance to chemotherapy (multidrug resistance) remains a significant hurdle to the successful treatment of various types of cancer. Membrane-embedded drug transporters, generally overexpressed in cancer, are the leading cause among multiple mechanisms of multidrug resistance (MDR). P-glycoprotein (P-gp) also MDR1/ABCB1, multidrug resistance associated protein 1 (MRP1/ABCC1), MRP2 and breast cancer resistance protein (BCRP/ABCG2) are considered to be a prime factor for induction of MDR. To date, several chemical substances have been tested in a number of clinical trials for their MDR modulatory activity which are not having devoid of any side effects that necessitates to find newer and safer way to tackle the current problem of multidrug resistance in cancer. The present study systematically discusses the various classes of natural products i.e flavonoids, alkaloids, terpenoids, coumarins (from plants, marine, and microorganisms) as potential MDR modulators and/or as a source of promising lead compounds. Recently a bisbenzyl isoquinoline alkaloid namely tetrandrine, isolated from Chinese herb Stephania tetrandra (Han-Fang-Chi) is in clinical trials for its MDR reversal activity.
Collapse
Affiliation(s)
- Amit Kumar
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Mansa Road, Bathinda, 151001, India
| | - Vikas Jaitak
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Mansa Road, Bathinda, 151001, India.
| |
Collapse
|
61
|
Suspension State Promotes Drug Resistance of Breast Tumor Cells by Inducing ABCC3 Overexpression. Appl Biochem Biotechnol 2019; 190:410-422. [PMID: 31367898 DOI: 10.1007/s12010-019-03084-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
Abstract
Mechanical microenvironment plays a critical role in cancer drug resistance and this study supposed that suspension state might be involved in drug resistance of breast tumor cells. The viability of cell was detected by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Cell cycle and apoptosis were detected by flow cytometry. Gene and protein were tested by RT-qPCR and Western blot, respectively. Drug resistance of MDA-MB-231 cells cultured for 72 h under suspension state was significantly increased. Suspension state was found to induce the overexpression of adenosine triphosphate-binding cassette subfamily C member 3 (ABCC3) in MDA-MB-231 cells. Silencing of ABCC3 significantly decreased drug resistance of suspension MDA-MB-231 cells. Moreover, suspension state was able to increase lamin A/C accumulation in MDA-MB-231 cells and lamin A/C regulated the expression of ABCC3. Moreover, lamin A/C knockdown also decreased drug resistance of suspension MDA-MB-231 cells, but the effect on drug resistance was less than that of ABCC3 knockdown. Suspension state plays a vital role in promoting drug resistance of MDA-MB-231 cells by inducing ABCC3 overexpression, and lamin A/C accumulation is associated with this process.
Collapse
|
62
|
Aghamiri S, Mehrjardi KF, Shabani S, Keshavarz-Fathi M, Kargar S, Rezaei N. Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy? Nanomedicine (Lond) 2019; 14:2083-2100. [PMID: 31368405 DOI: 10.2217/nnm-2018-0379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is one of the most common causes of mortality throughout the world. Unfortunately, chemotherapy has failed to cure advanced cancers developing multidrug resistance (MDR). Moreover, it has critical side effects because of nonspecific toxicity. Thanks to specific silencing of oncogenes and MDR-associated genes, nano-siRNA drugs can be a great help address the limitations of chemotherapy. Here, we review the current advances in nanoparticle-mediated siRNA delivery strategies such as polymeric- and lipid-based systems, rigid nanoparticles and nanoparticles coupled to specific ligand systems. Nanoparticle-based codelivery of anticancer drugs and siRNA targeting various mechanisms of MDR is a cutting-edge strategy for ovarian cancer therapy, which is completely discussed in this review.
Collapse
Affiliation(s)
- Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19839-63113, Iran
| | - Keyvan Fallah Mehrjardi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran
| | - Sasan Shabani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran.,Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Saeed Kargar
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1417466191, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 1419733151, Iran
| |
Collapse
|
63
|
Moradi Marjaneh R, Khazaei M, Ferns GA, Avan A, Aghaee-Bakhtiari SH. MicroRNAs as potential therapeutic targets to predict responses to oxaliplatin in colorectal cancer: From basic evidence to therapeutic implication. IUBMB Life 2019; 71:1428-1441. [PMID: 31322820 DOI: 10.1002/iub.2108] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies with poor prognosis. Oxaliplatin-based chemotherapy is an important treatment for CRC; however, the cells develop resistance to therapy. The mechanisms underlying oxaliplatin resistance are complex and unclear. There is increasing evidence that microRNAs (miRNAs) (i.e., miR-34a, miR-143, miR-153, miR-27a, miR-218, and miR-520) play an essential role in tumorigenesis and chemotherapy resistance, by targeting various cellular and molecular pathways (i.e., PI3K/Akt/Wnt, EMT, p53, p21, and ATM) that are involved in the pathogenesis of CRC. Identifying the miRNAs that are involved in chemo-resistance, and their function, may help as a potential therapeutic option for treatment of CRC or as potential prognostic biomarker. Here, we summarized the clinical impact of miRNAs that have critical roles in the development of resistance to oxaliplatin in CRC.
Collapse
Affiliation(s)
- Reyhaneh Moradi Marjaneh
- Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Department of Medical Education, Brighton and Sussex Medical School, Perso Falmer, Brighton, United Kingdom
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
64
|
Trojani A, Pungolino E, Dal Molin A, Lodola M, Rossi G, D’Adda M, Perego A, Elena C, Turrini M, Borin L, Bucelli C, Malato S, Carraro MC, Spina F, Latargia ML, Artale S, Spedini P, Anghilieri M, Di Camillo B, Baruzzo G, De Canal G, Iurlo A, Morra E, Cairoli R. Nilotinib interferes with cell cycle, ABC transporters and JAK-STAT signaling pathway in CD34+/lin- cells of patients with chronic phase chronic myeloid leukemia after 12 months of treatment. PLoS One 2019; 14:e0218444. [PMID: 31318870 PMCID: PMC6638825 DOI: 10.1371/journal.pone.0218444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/03/2019] [Indexed: 01/05/2023] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by the constitutive tyrosine kinase activity of the oncoprotein BCR-ABL1 in myeloid progenitor cells that activates multiple signal transduction pathways leading to the leukemic phenotype. The tyrosine-kinase inhibitor (TKI) nilotinib inhibits the tyrosine kinase activity of BCR-ABL1 in CML patients. Despite the success of nilotinib treatment in patients with chronic-phase (CP) CML, a population of Philadelphia-positive (Ph+) quiescent stem cells escapes the drug activity and can lead to drug resistance. The molecular mechanism by which these quiescent cells remain insensitive is poorly understood. The aim of this study was to compare the gene expression profiling (GEP) of bone marrow (BM) CD34+/lin- cells from CP-CML patients at diagnosis and after 12 months of nilotinib treatment by microarray, in order to identify gene expression changes and the dysregulation of pathways due to nilotinib action. We selected BM CD34+/lin- cells from 78 CP-CML patients at diagnosis and after 12 months of first-line nilotinib therapy and microarray analysis was performed. GEP bioinformatic analyses identified 2,959 differently expressed probes and functional clustering determined some significantly enriched pathways between diagnosis and 12 months of nilotinib treatment. Among these pathways, we observed the under expression of 26 genes encoding proteins belonging to the cell cycle after 12 months of nilotinib treatment which led to the up-regulation of chromosome replication, cell proliferation, DNA replication, and DNA damage checkpoint at diagnosis. We demonstrated the under expression of the ATP-binding cassette (ABC) transporters ABCC4, ABCC5, and ABCD3 encoding proteins which pumped drugs out of the cells after 12 months of nilotinib. Moreover, GEP data demonstrated the deregulation of genes involved in the JAK-STAT signaling pathway. The down-regulation of JAK2, IL7, STAM, PIK3CA, PTPN11, RAF1, and SOS1 key genes after 12 months of nilotinib could demonstrate the up-regulation of cell cycle, proliferation and differentiation via MAPK and PI3K-AKT signaling pathways at diagnosis.
Collapse
Affiliation(s)
- Alessandra Trojani
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
- * E-mail:
| | - Ester Pungolino
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | | | - Milena Lodola
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Giuseppe Rossi
- Department of Hematology, ASST Spedali Civili, Brescia, Italy
| | - Mariella D’Adda
- Department of Hematology, ASST Spedali Civili, Brescia, Italy
| | | | - Chiara Elena
- Hematology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mauro Turrini
- Division of Hematology, Department of Internal Medicine, Valduce Hospital, Como, Italy
| | - Lorenza Borin
- Hematology Division, San Gerardo Hospital, Monza, Italy
| | - Cristina Bucelli
- Hematology Division, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Simona Malato
- Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milano, Italy
| | | | - Francesco Spina
- Division of Hematology–Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | | | | | | | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giacomo Baruzzo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Gabriella De Canal
- Pathology Department, Cytogenetics, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Enrica Morra
- Executive Committee, Rete Ematologia Lombarda, Italy
| | - Roberto Cairoli
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| |
Collapse
|
65
|
Capelôa T, Benyahia Z, Zampieri LX, Blackman MCNM, Sonveaux P. Metabolic and non-metabolic pathways that control cancer resistance to anthracyclines. Semin Cell Dev Biol 2019; 98:181-191. [PMID: 31112797 DOI: 10.1016/j.semcdb.2019.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Anthracyclines Doxorubicin, Epirubicin, Daunorubicin and Idarubicin are used to treat a variety of tumor types in the clinics, either alone or, most often, in combination therapies. While their cardiotoxicity is well known, the emergence of chemoresistance is also a major issue accounting for treatment discontinuation. Resistance to anthracyclines is associated to the acquisition of multidrug resistance conferred by overexpression of permeability glycoprotein-1 or other efflux pumps, by altered DNA repair, changes in topoisomerase II activity, cancer stemness and metabolic adaptations. This review further details the metabolic aspects of resistance to anthracyclines, emphasizing the contributions of glycolysis, the pentose phosphate pathway and nucleotide biosynthesis, glutathione, lipid metabolism and autophagy to the chemoresistant phenotype.
Collapse
Affiliation(s)
- Tânia Capelôa
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Zohra Benyahia
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Luca X Zampieri
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Marine C N M Blackman
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
66
|
Wang H, Chi CH, Zhang Y, Shi B, Jia R, Wang BJ. Effects of histone deacetylase inhibitors on ATP-binding cassette transporters in lung cancer A549 and colorectal cancer HCT116 cells. Oncol Lett 2019; 18:63-71. [PMID: 31289473 PMCID: PMC6540461 DOI: 10.3892/ol.2019.10319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors and DNA alkylators are effective components used in combination chemotherapy. In the present study, the effects of HDAC inhibitors on the expression of ATP-binding cassette (ABC) transporters were investigated. It was observed that HDAC inhibitors induced the expression of multidrug-resistant ABC transporters differently in lung cancer A549 cells than in colorectal cancer HCT116 cells. In these two cell lines, the HDAC inhibitors suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) significantly increased ABCB1 expression at the mRNA and protein levels, whereas they had no evident effect on ABCG2 protein expression. SAHA and TSA decreased ABCG2 mRNA expression in A549 cells and had no evident effect on ABCG2 mRNA expression in HCT116 cells. Notably, SAHA and TSA increased the mRNA expression levels of ABCC5, ABCC6, ABCC10, ABCC11 and ABCC12, as well as the protein expression levels of ABCC2, ABCC10 and ABCC12. By contrast, these inhibitors decreased the mRNA expression levels of ABCC1, ABCC2, ABCC3 and ABCC4, as well as the expression of ABCC1 and ABCC3 proteins. Furthermore, SAHA and TSA were found to downregulate HDAC3 and HDAC4, but not HDAC1 and HDAC2. Taken together, the results suggested that HDAC inhibitors work synergistically with DNA alkylators, in part, due to the inhibitory effect of these inhibitors on ABCC1 expression, which translocates these alkylators from inside to outside of cancer cells. These results further suggested the possibility of antagonism when HDAC inhibitors are combined with anthracyclines and other ABCB1 drug ligands in chemotherapy.
Collapse
Affiliation(s)
- Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Chun-Hua Chi
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Ying Zhang
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Bin Shi
- Anorectal Department of Traditional Chinese Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Ru Jia
- Department of Anorectal Surgery, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230001, P.R. China
| | - Ben-Jun Wang
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
67
|
Briz O, Perez-Silva L, Al-Abdulla R, Abete L, Reviejo M, Romero MR, Marin JJG. What "The Cancer Genome Atlas" database tells us about the role of ATP-binding cassette (ABC) proteins in chemoresistance to anticancer drugs. Expert Opin Drug Metab Toxicol 2019; 15:577-593. [PMID: 31185182 DOI: 10.1080/17425255.2019.1631285] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Chemotherapy remains the only option for advanced cancer patients when other alternatives are not feasible. Nevertheless, the success rate of this type of therapy is often low due to intrinsic or acquired mechanisms of chemoresistance. Among them, drug extrusion from cancer cells through ATP-binding cassette (ABC) proteins plays an important role. ABC pumps are primary active transporters involved in the barrier and secretory functions of many healthy cells. Areas covered: In this review, we have used The Cancer Genome Atlas (TCGA) database to explore the relationship between the expression of the major ABC proteins involved in cancer chemoresistance in the most common types of cancer, and the drugs used in the treatment of these tumors that are substrates of these pumps. Expert opinion: From unicellular organisms to humans, several ABC proteins play a major role in detoxification processes. Cancer cells exploit this ability to protect themselves from cytostatic drugs. Among the ABC pumps, MDR1, MRPs and BCRP are able to export many antitumor drugs and are expressed in several types of cancer, and further up-regulated during treatment. This event results in the enhanced ability of tumor cells to reduce intracellular drug concentrations and hence the pharmacological effect of chemotherapy.
Collapse
Affiliation(s)
- Oscar Briz
- a Experimental Hepatology and Drug Targeting (HEVEFARM) , University of Salamanca, IBSAL , Salamanca , Spain.,b Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd) , Carlos III National Institute of Health , Madrid , Spain
| | - Laura Perez-Silva
- a Experimental Hepatology and Drug Targeting (HEVEFARM) , University of Salamanca, IBSAL , Salamanca , Spain
| | - Ruba Al-Abdulla
- a Experimental Hepatology and Drug Targeting (HEVEFARM) , University of Salamanca, IBSAL , Salamanca , Spain
| | - Lorena Abete
- c Department of Physiology and Pharmacology "V. Erspamer" , Sapienza University of Rome , Rome , Italy
| | - Maria Reviejo
- a Experimental Hepatology and Drug Targeting (HEVEFARM) , University of Salamanca, IBSAL , Salamanca , Spain
| | - Marta R Romero
- a Experimental Hepatology and Drug Targeting (HEVEFARM) , University of Salamanca, IBSAL , Salamanca , Spain.,b Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd) , Carlos III National Institute of Health , Madrid , Spain
| | - Jose J G Marin
- a Experimental Hepatology and Drug Targeting (HEVEFARM) , University of Salamanca, IBSAL , Salamanca , Spain.,b Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd) , Carlos III National Institute of Health , Madrid , Spain
| |
Collapse
|
68
|
The Integration of a Three-Dimensional Spheroid Cell Culture Operation in a Circulating Tumor Cell (CTC) Isolation and Purification Process: A Preliminary Study of the Clinical Significance and Prognostic Role of the CTCs Isolated from the Blood Samples of Head and Neck Cancer Patients. Cancers (Basel) 2019; 11:cancers11060783. [PMID: 31174311 PMCID: PMC6627984 DOI: 10.3390/cancers11060783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023] Open
Abstract
Conventional positive and negative selection-based circulating tumor cell (CTC) isolation methods might generally ignore metastasis-relevant CTCs that underwent epithelial-to- mesenchymal transition and suffer from a low CTC purity problem, respectively. To address these issues, we previously proposed a 2-step CTC isolation method integrating a negative selection CTC isolation and subsequent spheroid cell culture. In addition to its ability to isolate CTCs, more importantly, the spheroid cell culture used could serve as a cell culture model mimicking the process of new tumor tissue formation during cancer metastasis. Therefore, it is promising not only to selectively isolate metastasis-relevant CTCs but also to test the potential of cancer metastasis and thus the prognosis of disease. To explore these issues, experiments were performed. The key findings of this study demonstrated that the method was able to harvest both epithelial (E)- and mesenchymal (M)-type CTCs without selection bias. Moreover, both the M-type CTC count and the information obtained from the multidrug resistance-associated protein 2 (MRP2) and MRP5 gene expression analysis of the CTCs isolated via the 2-step CTC isolation method might be able to serve as prognostic factors for progression-free survival in head and neck squamous cell carcinoma.
Collapse
|
69
|
Milosevic V, Kopecka J, Salaroglio IC, Libener R, Napoli F, Izzo S, Orecchia S, Ananthanarayanan P, Bironzo P, Grosso F, Tabbò F, Comunanza V, Alexa-Stratulat T, Bussolino F, Righi L, Novello S, Scagliotti GV, Riganti C. Wnt/IL-1β/IL-8 autocrine circuitries control chemoresistance in mesothelioma initiating cells by inducing ABCB5. Int J Cancer 2019; 146:192-207. [PMID: 31107974 DOI: 10.1002/ijc.32419] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/26/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a tumor with high chemoresistance and poor prognosis. MPM-initiating cells (ICs) are known to be drug resistant, but it is unknown if and how stemness-related pathways determine chemoresistance. Moreover, there are no predictive markers of IC-associated chemoresistance. Aim of this work is to clarify if and by which mechanisms the chemoresistant phenotype of MPM IC was due to specific stemness-related pathways. We generated MPM IC from primary MPM samples and compared the gene expression and chemo-sensitivity profile of IC and differentiated/adherent cells (AC) of the same patient. Compared to AC, IC had upregulated the drug efflux transporter ABCB5 that determined resistance to cisplatin and pemetrexed. ABCB5-knocked-out (KO) IC clones were resensitized to the drugs in vitro and in patient-derived xenografts. ABCB5 was transcriptionally activated by the Wnt/GSK3β/β-catenin/c-myc axis that also increased IL-8 and IL-1β production. IL-8 and IL-1β-KO IC clones reduced the c-myc-driven transcription of ABCB5 and reacquired chemosensitivity. ABCB5-KO clones had lower IL-8 and IL-1β secretion, and c-myc transcriptional activity, suggesting that either Wnt/GSK3β/β-catenin and IL-8/IL-1β signaling drive c-myc-mediated transcription of ABCB5. ABCB5 correlated with lower time-to-progression and overall survival in MPM patients treated with cisplatin and pemetrexed. Our work identified multiple autocrine loops linking stemness pathways and resistance to cisplatin and pemetrexed in MPM IC. ABCB5 may represent a new target to chemosensitize MPM IC and a potential biomarker to predict the response to the first-line chemotherapy in MPM patients.
Collapse
Affiliation(s)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | | | - Roberta Libener
- Pathology Division, S. Antonio and Biagio Hospital, Alessandria, Italy
| | - Francesca Napoli
- Department of Oncology, University of Torino, Torino, Italy.,Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Stefania Izzo
- Department of Oncology, University of Torino, Torino, Italy.,Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Sara Orecchia
- Pathology Division, S. Antonio and Biagio Hospital, Alessandria, Italy
| | | | - Paolo Bironzo
- Department of Oncology, University of Torino, Torino, Italy.,Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Federica Grosso
- Oncology Division, S. Antonio and Biagio Hospital, Alessandria, Italy
| | - Fabrizio Tabbò
- Department of Oncology, University of Torino, Torino, Italy.,Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Valentina Comunanza
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Italy
| | | | - Federico Bussolino
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Italy
| | - Luisella Righi
- Department of Oncology, University of Torino, Torino, Italy.,Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Silvia Novello
- Department of Oncology, University of Torino, Torino, Italy.,Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Giorgio V Scagliotti
- Department of Oncology, University of Torino, Torino, Italy.,Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy.,Interdepartmental Center "G. Scansetti" for the Study of Asbestos and Other Toxic Particulates, University of Torino, Torino, Italy
| |
Collapse
|
70
|
Schmidt L, Wielsch N, Wang D, Boland W, Burse A. Tissue-specific profiling of membrane proteins in the salicin sequestering juveniles of the herbivorous leaf beetle, Chrysomela populi. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:81-91. [PMID: 30922827 DOI: 10.1016/j.ibmb.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Sequestration of plant secondary metabolites is a detoxification strategy widespread in herbivorous insects including not only storage, but also usage of these metabolites for the insects' own benefit. Larvae of the poplar leaf beetle Chrysomela populi sequester plant-derived salicin to produce the deterrent salicylaldehyde in specialized exocrine glands. To identify putative transporters involved in the sequestration process we investigated integral membrane proteins of several tissues from juvenile C. populi by using a proteomics approach. Computational analyses led to the identification of 122 transport proteins in the gut, 105 in the Malpighian tubules, 94 in the fat body and 27 in the defensive glands. Among these, primary active transporters as well as electrochemical potential-driven transporters were most abundant in all tissues, including ABC transporters (especially subfamilies B, C and G) and sugar porters as most interesting families facilitating the sequestration of plant glycosides. Whereas ABC transporters are predominantly expressed simultaneously in several tissues, sugar porters are often expressed in only one tissue, suggesting that sugar porters govern more distinct functions than members of the ABC family. The inventory of transporters presented in this study provides the base for further functional characterizations on transport processes of sequestered glycosides in insects.
Collapse
Affiliation(s)
- Lydia Schmidt
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Natalie Wielsch
- Max Planck Institute for Chemical Ecology, Research Group Mass Spectrometry/ Proteomics, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Ding Wang
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Antje Burse
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745, Jena, Germany.
| |
Collapse
|
71
|
Huang W, Zhao H, Wan J, Zhou Y, Xu Q, Zhao Y, Yang X, Gan L. pH- and photothermal-driven multistage delivery nanoplatform for overcoming cancer drug resistance. Theranostics 2019; 9:3825-3839. [PMID: 31281516 PMCID: PMC6587350 DOI: 10.7150/thno.33958] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
Reversing multidrug resistance (MDR) remains a big challenge in cancer therapy. Combining the hyperthermia and chemotherapy is a promising strategy for efficient cancer treatment with MDR reversal. Gold nanocages (GNCs) are an ideal photothermal (PTT)-chemotherapy integration platform due to their good photothermal conversion efficiency and the unique hollow interiors. However, insufficient tumor cell internalization and in vivo premature drug leakage restrict the anticancer activity of GNCs-based drug delivery systems. Methods: pH low insertion peptide (pHLIP)- and thermoresponsive poly(di(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate) polymer-conjugated GNCs were rationally constructed to load anticancer drug doxorubicin (DOX@pPGNCs). Tumor acidic environment-responsive tumor cell internalization, and near-infrared (NIR) laser-induced tumor accumulation, penetration and on-demand drug release were systematically examined. Results: DOX@pPGNCs display good photothermal efficacy and thermoresponsive property. NIR laser irradiations at the tumor site significantly enhance tumor accumulation and penetration. Once DOX@pPGNCs reach the tumor site, the conformational transformation of pHLIP at the acidic tumor microenvironment contributes to the enhanced cellular internalization. Furthermore, NIR laser-triggered photothermal effects induce the shrinkage of thermoresponsive polymer, resulting in the opening of the pores of GNCs and a rapid intracellular DOX release to the nuclei. DOX@pPGNCs exhibit synergistic antitumor effect with MDR reversal in vitro and in vivo. Conclusion: DOX@pPGNCs present strong potential to overcome MDR in cancer.
Collapse
Affiliation(s)
- Wenjing Huang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiangshan Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Zhou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingbo Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
72
|
Wu KJ, Liu X, Wong SY, Zhou Y, Ma DL, Leung CH. Synthesis and Evaluation of Dibenzothiophene Analogues as Pin1 Inhibitors for Cervical Cancer Therapy. ACS OMEGA 2019; 4:9228-9234. [PMID: 31460012 PMCID: PMC6648297 DOI: 10.1021/acsomega.9b00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/08/2019] [Indexed: 05/03/2023]
Abstract
The peptidyl-prolyl isomerase Pin1 is correlated with the progression of cervical cancer via regulating numerous oncogenic and tumor suppressor pathways. p65 is a crucial regulator of tumorigenesis that is regulated by Pin1, and p65 signaling suppression can enhance the antitumor efficacy of doxorubicin (DOX). Here, we utilized a structural mimicry approach to synthesize a series of dibenzothiophene analogues and evaluated their ability to inhibit Pin1 activity. Compound 1a was identified as a potent Pin1 inhibitor that inhibited p65 signaling in vitro and in cervical cancer cells. Moreover, compound 1a enhanced the cytotoxicity of DOX in cervical cancer cells via reducing p65 nuclear accumulation and enhancing DOX uptake. These compounds are promising scaffolds for developing more potent Pin1 inhibitors against cervical cancer, either alone or in combination with anticancer drugs such as DOX.
Collapse
Affiliation(s)
- Ke-Jia Wu
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Macao, 999078, China
| | - Xie Liu
- School
of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou New District, Suzhou, Jiangsu 215009, China
| | - Suk-Yu Wong
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Yuyang Zhou
- School
of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou New District, Suzhou, Jiangsu 215009, China
| | - Dik-Lung Ma
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Chung-Hang Leung
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Macao, 999078, China
| |
Collapse
|
73
|
ABC Transporters in Prorocentrum lima and Their Expression Under Different Environmental Conditions Including Okadaic Acid Production. Mar Drugs 2019; 17:md17050259. [PMID: 31052268 PMCID: PMC6563122 DOI: 10.3390/md17050259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/19/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022] Open
Abstract
Prorocentrum lima is a typical benthic toxic dinoflagellate, which can produce phycotoxins such as okadaic acid (OA). In this study, we identified three ABC transporter genes (ABCB1, ABCC1 and ABCG2) and characterized their expression patterns, as well as OA production under different environmental conditions in P. lima. We found that the three ABC transporters all showed high identity with related ABC proteins from other species, and contained classical features of ABC transport proteins. Among them, ABCG2 was a half size transporter. The three ABC transporter genes displayed various expression profiles under different conditions. The high concentration of Cu2+ could up-regulate ABCB1, ABCC1 and ABCG2 transcripts in P. lima, suggesting the potential defensive role of ABC transporters against metal ions in surrounding waters. Cu2+, in some concentration, could induce OA production; meanwhile, tributyltin inhibited OA accumulation. The grazer Artemia salina could induce OA production, and P. lima displayed some toxicity to the grazer, indicating the possibility of OA as an anti-grazing chemical. Collectively, our results revealed intriguing data about OA production and the expression patterns of three ABC transporter genes. However, we could not find any significant correlation between OA production and expression pattern of the three ABC transporters in P. lima. Our results might provide new molecular insights on the defensive responses of P. lima to the surrounding environment.
Collapse
|
74
|
Mechanisms of Anticancer Drug Resistance in Hepatoblastoma. Cancers (Basel) 2019; 11:cancers11030407. [PMID: 30909445 PMCID: PMC6468761 DOI: 10.3390/cancers11030407] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/25/2022] Open
Abstract
The most frequent liver tumor in children is hepatoblastoma (HB), which derives from embryonic parenchymal liver cells or hepatoblasts. Hepatocellular carcinoma (HCC), which rarely affects young people, causes one fourth of deaths due to cancer in adults. In contrast, HB usually has better prognosis, but this is still poor in 20% of cases. Although more responsive to chemotherapy than HCC, the failure of pharmacological treatment used before and/or after surgical resection is an important limitation in the management of patients with HB. To advance in the implementation of personalized medicine it is important to select the best combination among available anti-HB drugs, such as platinum derivatives, anthracyclines, etoposide, tyrosine-kinase inhibitors, Vinca alkaloids, 5-fluorouracil, monoclonal antibodies, irinotecan and nitrogen mustards. This requires predicting the sensitivity to these drugs of each tumor at each time because, it should be kept in mind, that cancer chemoresistance is a dynamic process of Darwinian nature. For this goal it is necessary to improve our understanding of the mechanisms of chemoresistance involved in the refractoriness of HB against the pharmacological challenge and how they evolve during treatment. In this review we have summarized the current knowledge on the multifactorial and complex factors responsible for the lack of response of HB to chemotherapy.
Collapse
|
75
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
76
|
Ruiz-Pinto S, Martin M, Pita G, Caronia D, de la Torre-Montero JC, Moreno LT, Moreno F, García-Sáenz JÁ, Benítez J, González-Neira A. Pharmacogenetic variants and response to neoadjuvant single-agent doxorubicin or docetaxel: a study in locally advanced breast cancer patients participating in the NCT00123929 phase 2 randomized trial. Pharmacogenet Genomics 2018; 28:245-250. [PMID: 30334909 DOI: 10.1097/fpc.0000000000000354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Taxanes and anthracyclines are widely used in the treatment of breast cancer, although the benefit is limited to a proportion of patients and predictive biomarkers for clinical outcome remain elusive. PATIENTS AND METHODS We carried out a pharmacogenetic study in 181 patients with locally advanced breast cancer enrolled in a phase 2 randomized clinical trial (NCT00123929), where patients were randomly assigned to receive neoadjuvant single-agent docetaxel 100 mg/m(2) (n=84) or doxorubicin 75 mg/m(2) (n=97). We studied the association of 226 single nucleotide polymorphisms (SNPs) in 15 key drug biotransformation genes with neoadjuvant pathological tumor response residual cancer burden index to docetaxel and to doxorubicin. RESULTS We identified a significant association for rs162561, an intronic SNP located in the cytochrome P450 family 1 subfamily B member 1 (CYP1B1) gene, with tumor response in patients treated with single-agent docetaxel (dominant model: β=1.02, 95% confidence interval=0.49-1.55; P=1.77×10(-4)), and for rs717620, an SNP located in the promoter of the ATP-binding cassette subfamily C member 2 (ABCC2) gene, in patients treated with neoadjuvant doxorubicin (recessive model: β=1.67; 95% confidence interval=0.26-3.11; P=0.02). CONCLUSION We identified two polymorphisms in CYP1B1 and ABCC2 associated with tumor pathological response following docetaxel or doxorubicin neoadjuvant monotherapy, respectively. Although further validation is required, these variants could be potential predictive genetic markers for treatment outcome in breast cancer patients.
Collapse
Affiliation(s)
| | - Miguel Martin
- Gregorio Marañon Health Research Institute, CIBERONC, GEICAM
| | | | | | - Julio C de la Torre-Montero
- Medical Oncology Service, Institute of Sanitary Research of the San Carlos Clinical Hospital, Complutense University.,San Juan de Dios School of Nursing, Comillas Pontifical University
| | | | - Fernando Moreno
- Medical Oncology Service, Institute of Sanitary Research of the San Carlos Clinical Hospital
| | | | - Javier Benítez
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre.,Biomedical Research Networking Center on Rare Diseases, Madrid, Spain
| | | |
Collapse
|
77
|
Guestini F, Ono K, Miyashita M, Ishida T, Ohuchi N, Nakagawa S, Hirakawa H, Tamaki K, Ohi Y, Rai Y, Sagara Y, Sasano H, McNamara KM. Impact of Topoisomerase IIα, PTEN, ABCC1/MRP1, and KI67 on triple-negative breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat 2018; 173:275-288. [PMID: 30306430 DOI: 10.1007/s10549-018-4985-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) patients with residual disease following neoadjuvant chemotherapy (NAC) harbor higher risk of relapse, and eventual demise compared to those who achieve pathologic complete response. Therefore, in this study, we assessed a panel of molecules involved in key pathways of drug resistance and tumor progression before and after NAC in TNBC patients, in order to clarify the underlying mechanisms. METHODS We studied 148 TNBC Japanese patients treated with anthracycline/taxane-based NAC. KI67, Topoisomerase IIα (TopoIIα), PTEN, p53, Bcl2, vimentin, ABCG2/BCRP1, ABCB1/MDR1, and ABCC1/MRP1 were immunolocalized in surgical pathology materials before and after NAC. RESULTS The status of vimentin and increasing labeling index (LI) of TopoIIα and KI67 in biopsy specimens were significantly associated with those who responded to NAC treatment. The abundance of p53 (p = 0.003), ABCC1/MRP1 (p = 0.033), ABCB1/MDR1 (p = 0.022), and a loss of PTEN (p < 0.0001) in surgery specimens following treatment were associated with pathologic parameters. TopoIIα, PTEN, and ABCC1/MRP1 status predicted pathologic response. In addition, the status of PTEN, ABCC1/MRP1, ABCB1/MDR1, Bcl2, and vimentin in surgical specimens was also significantly associated with adverse clinicopathological factors in surgery specimens, suggesting that these alterations could be responsible for tumor relapse in TNBC patients. CONCLUSION KI67, TopoIIα, PTEN, and ABCC1/MRP1 status could predict treatment response and/or eventual clinical outcomes. These results could also provide an insight into the mechanisms of drug resistance and relapse of TNBC patients receiving NAC.
Collapse
|
78
|
Jin Q, Deng Y, Jia F, Tang Z, Ji J. Gas Therapy: An Emerging “Green” Strategy for Anticancer Therapeutics. ADVANCED THERAPEUTICS 2018; 1. [DOI: 10.1002/adtp.201800084] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Indexed: 09/09/2024]
Abstract
AbstractAs an emerging area, gas therapy has attracted more and more attention in treating many diseases including cancer. The fabrication of stimuli‐responsive delivery systems with on‐demand release behavior is very promising for precision gas therapy, which can obtain optimal therapeutic performance without gas poisoning risks. In this review, the authors introduce the recent progress in the preparation of different kinds of gas carriers for efficient delivery of gaseous molecules (NO, H2S, CO, O2). Particularly, in order to achieve targeted accumulation of gaseous molecules in tumor tissues, gaseous molecules–integrated nanoparticles were constructed. Most importantly, by combination of gas therapy with other therapeutic modalities such as chemotherapy, photodynamic therapy (PDT), and radiotherapy, various multifunctional nanocarriers have been designed for synergistic cancer therapy. Especially, the recent developments of multifunctional gas‐carrying nanocarriers for synergistic cancer therapy are discussed in detail.
Collapse
Affiliation(s)
- Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yongyan Deng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Zhe Tang
- Department of Surgery Second Affiliated Hospital, School of Medicine Zhejiang University Hangzhou 310009 China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
79
|
Bossennec M, Di Roio A, Caux C, Ménétrier-Caux C. MDR1 in immunity: friend or foe? Oncoimmunology 2018; 7:e1499388. [PMID: 30524890 PMCID: PMC6279327 DOI: 10.1080/2162402x.2018.1499388] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/08/2018] [Indexed: 02/09/2023] Open
Abstract
MDR1 is an ATP-dependent transmembrane transporter primarily studied for its role in the detoxification of tissues and for its implication in resistance of tumor cells to chemotherapy treatment. Several studies also report on its expression on immune cells where it plays a protective role from xenobiotics and toxins. This review provides an overview of what is known on MDR1 expression in immune cells in human, and its implications in different pathologies and their treatment options.
Collapse
Affiliation(s)
- Marion Bossennec
- Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, Lyon France.,Immunology Virology Inflammation (IVI) department, Team "Therapeutic targeting of the tumor cells and their immune stroma", Lyon, France
| | - Anthony Di Roio
- Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, Lyon France.,Immunology Virology Inflammation (IVI) department, Team "Therapeutic targeting of the tumor cells and their immune stroma", Lyon, France
| | - Christophe Caux
- Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, Lyon France.,Immunology Virology Inflammation (IVI) department, Team "Therapeutic targeting of the tumor cells and their immune stroma", Lyon, France
| | - Christine Ménétrier-Caux
- Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, Lyon France.,Immunology Virology Inflammation (IVI) department, Team "Therapeutic targeting of the tumor cells and their immune stroma", Lyon, France
| |
Collapse
|
80
|
Xu PY, Kankala RK, Pan YJ, Yuan H, Wang SB, Chen AZ. Overcoming multidrug resistance through inhalable siRNA nanoparticles-decorated porous microparticles based on supercritical fluid technology. Int J Nanomedicine 2018; 13:4685-4698. [PMID: 30154654 PMCID: PMC6103603 DOI: 10.2147/ijn.s169399] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In recent times, the co-delivery therapeutics have garnered enormous interest from researchers in the treatment of cancers with multidrug resistance (MDR) due to their efficient delivery of multiple agents, which result in synergistic effects and capable of overcoming all the obstacles of MDR in cancer. However, an efficient delivery platform is required for the conveyance of diverse agents that can successfully devastate MDR in cancer. METHODS Initially, short-interfering RNA-loaded chitosan (siRNA-CS) nanoparticles were synthesized using the ionic gelation method. Further, the siRNA-CS nanoparticles and doxorubicin hydrochloride (DOX) were co-loaded in poly-L-lactide porous microparticles (PLLA PMs) (nano-embedded porous microparticles, [NEPMs]) by the supercritical anti-solvent (SAS) process. RESULTS AND DISCUSSION The NEPM formulation exhibited an excellent aerodynamic performance and sustained release of DOX, which displayed higher anticancer efficacy in drug-resistant cells (human small cell lung cancer, H69AR cell line) than those treated with either free DOX and DOX-PLLA PMs due to the siRNA from CS nanoparticles silenced the MDR gene to DOX therapy. CONCLUSION This eco-friendly process provides a convenient way to fabricate such innovative NEPMs co-loaded with a chemotherapeutic agent and a gene, which can devastate MDR in cancer through the co-delivery system.
Collapse
Affiliation(s)
- Pei-Yao Xu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, P. R. China,
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China,
| | - Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, P. R. China,
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China,
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, P. R. China,
| | - Yu-Jing Pan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, P. R. China,
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China,
| | - Hui Yuan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, P. R. China,
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China,
| | - Shi-Bin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, P. R. China,
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China,
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, P. R. China,
| | - Ai-Zheng Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, P. R. China,
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China,
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, P. R. China,
| |
Collapse
|
81
|
Vriend J, Nieskens TTG, Vormann MK, van den Berge BT, van den Heuvel A, Russel FGM, Suter-Dick L, Lanz HL, Vulto P, Masereeuw R, Wilmer MJ. Screening of Drug-Transporter Interactions in a 3D Microfluidic Renal Proximal Tubule on a Chip. AAPS JOURNAL 2018; 20:87. [PMID: 30051196 DOI: 10.1208/s12248-018-0247-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/13/2018] [Indexed: 01/08/2023]
Abstract
Drug-transporter interactions could impact renal drug clearance and should ideally be detected in early stages of drug development to avoid toxicity-related withdrawals in later stages. This requires reliable and robust assays for which current high-throughput screenings have, however, poor predictability. Kidney-on-a-chip platforms have the potential to improve predictability, but often lack compatibility with high-content detection platforms. Here, we combined conditionally immortalized proximal tubule epithelial cells overexpressing organic anion transporter 1 (ciPTEC-OAT1) with the microfluidic titer plate OrganoPlate to develop a screenings assay for renal drug-transporter interactions. In this platform, apical localization of F-actin and intracellular tight-junction protein zonula occludens-1 (ZO-1) indicated appropriate cell polarization. Gene expression levels of the drug transporters organic anion transporter 1 (OAT1; SLC22A6), organic cation transporter 2 (OCT2; SLC22A2), P-glycoprotein (P-gp; ABCB1), and multidrug resistance-associated protein 2 and 4 (MRP2/4; ABCC2/4) were similar levels to 2D static cultures. Functionality of the efflux transporters P-gp and MRP2/4 was studied as proof-of-concept for 3D assays using calcein-AM and 5-chloromethylfluorescein-diacetate (CMFDA), respectively. Confocal imaging demonstrated a 4.4 ± 0.2-fold increase in calcein accumulation upon P-gp inhibition using PSC833. For MRP2/4, a 3.0 ± 0.2-fold increased accumulation of glutathione-methylfluorescein (GS-MF) was observed upon inhibition with a combination of PSC833, MK571, and KO143. Semi-quantitative image processing methods for P-gp and MRP2/4 was demonstrated with corresponding Z'-factors of 0.1 ± 0.3 and 0.4 ± 0.1, respectively. In conclusion, we demonstrate a 3D microfluidic PTEC model valuable for screening of drug-transporter interactions that further allows multiplexing of endpoint read-outs for drug-transporter interactions and toxicity.
Collapse
Affiliation(s)
- Jelle Vriend
- Department of Pharmacology and Toxicology (149), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Tom T G Nieskens
- Department of Pharmacology and Toxicology (149), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Bartholomeus T van den Berge
- Department of Pharmacology and Toxicology (149), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Frans G M Russel
- Department of Pharmacology and Toxicology (149), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Laura Suter-Dick
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| | | | | | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Martijn J Wilmer
- Department of Pharmacology and Toxicology (149), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
82
|
Song K, Zhao W, Wang W, Zhang N, Wang K, Chang Z. Individualized predictive signatures for 5-fluorouracil-based chemotherapy in right- and left-sided colon cancer. Cancer Sci 2018; 109:1939-1948. [PMID: 29700901 PMCID: PMC5989868 DOI: 10.1111/cas.13622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/07/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022] Open
Abstract
5‐Fluorouracil (5‐FU)‐based adjuvant chemotherapy (ACT) is widely used for the treatment of colon cancer. Colon cancers with different primary tumor locations are clinically and molecularly distinct, implied through their response to 5‐FU‐based ACT. In this work, using 69 and 133 samples of patients with stage II‐III right‐sided and left‐sided colon cancer (RCC and LCC) treated with post‐surgery 5‐FU‐based ACT, we preselected gene pairs whose relative expression orderings were significantly correlated with the disease‐free survival of patients by univariate Cox proportional hazards model. Then, from the identified prognostic‐related gene pairs, a forward‐stepwise selection algorithm was formulated to search for an optimal subset of gene pairs that resulted in the highest concordance index, referred to as the gene pair signature (GPS). We identified prognostic signatures, 3‐GPS and 5‐GPS, for predicting response to 5‐FU‐based ACT of patients with RCC and LCC, respectively, which were validated in independent datasets of GSE14333 and GSE72970. With the aid of the signatures, the transcriptional and genomic characteristics between the predicted responders and non‐responders were explored. Notably, both in RCC and LCC, the predicted responders to 5‐FU‐based ACT were characterized by hypermutation, whereas the predicted non‐responders were characterized by frequent copy number alternations. Finally, in comparison with the established relative expression ordering‐based signature, which was developed without considering the differences between RCC and LCC, the newly proposed signatures had a better predictive performance. In conclusion, 3‐GPS or 5‐GPS can robustly predict response to 5‐FU‐based ACT for patients with RCC or LCC, respectively, in an individual level.
Collapse
Affiliation(s)
- Kai Song
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenyuan Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wen Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Na Zhang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kai Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhiqiang Chang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
83
|
Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed Pharmacother 2018; 100:335-348. [PMID: 29453043 DOI: 10.1016/j.biopha.2018.02.038] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/27/2023] Open
Abstract
Indeed, multi-drug resistance (MDR) is a significant obstacle to effective chemotherapy. The overexpression of ATP-binding cassette (ABC) membrane transporters is a principal cause of enhanced cytotoxic drug efflux and treatment failure in various types of cancers. At cellular level, the pumps of ABC family regulate the transportation of numerous substances including drugs in and out of the cells. In past, the overexpression of ABC pumps suggested a well-known mechanism of drug resistance in cancers as well as infectious diseases. In oncology, the search for new compounds for the inhibition of these hyperactive ABC pumps either genetically or functionally, growing interest to reverse multi-drug resistance and increase chemotherapeutic effects. Several ABC pump inhibitor/modulators has been explored to address the cancer associated MDR. However, the clinical results are still disappointing and conventional chemotherapies are constantly failed in successful eradication of MDR tumors. In this context, the structural and functional understanding of different ATP pumps is most important. In this concise review, we elaborated basic crystal structure of ABC transporter proteins as well as its critical elements such as different domains, motifs as well as some important amino acids which are responsible for ATP binding and drug efflux as well as demonstrated an ATP-switch model employed by various ABC membrane transporters. Furthermore, we briefly summarized different newly identified MDR inhibitors/modulators, deployed alone or in combination with cytotoxic agents to deal with MDR in different types of cancers.
Collapse
|
84
|
Li J, Jiang K, Wang LJ, Yin G, Wang J, Wang Y, Jin YB, Li Q, Wang TJ. HPLC-MS/MS determination of flavonoids in Gleditsiae Spina for its quality assessment. J Sep Sci 2018; 41:1752-1763. [PMID: 29316281 DOI: 10.1002/jssc.201701249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 12/31/2022]
Abstract
Gleditsiae Spina, the thorn of Gleditsia sinensis Lam., has been used as an anti-inflammatory, anti-tumor, and anti-bacterial traditional medicine for hundreds of years in China. This study used high-performance liquid chromatography and tandem mass spectrometry combined with chemometric methods to allow the fast and accurate identification and quantification of the flavonoids compounds in Gleditsiae Spina, and created reliable criteria for accurate identification of Gleditsiae Spina and its adulterants. This research provides good evidence for the classification and quality evaluation of Gleditsiae Spina. Firstly, eight flavonoids compounds were detected and identified on the basis of their mass spectra, fragment characteristics, and comparison with published data. Then the mass spectroscopic fragmentation pathways of these compounds were determined and, in addition rutin, isoquercitrin, and quercitrin were detected in Gleditsiae Spina for the first time. The quantification was performed on a triple quadrupole tandem mass spectrometer in multi-reaction monitoring mode, and the baseline separation of the eight bioactive flavonoids components was achieved within 13 min. Furthermore, the proposed method was successfully applied for simultaneous quantitative determination of the eight Gleditsiae Spina compounds and adulterants obtained from different sources in China. Then, we built a classification model which showed a high level of accuracy predicting 100% of the samples, correctly.
Collapse
Affiliation(s)
- Jing Li
- Shenzhen Institute for Drug Control, Shenzhen, P. R. China.,Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen, P. R. China.,Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Kun Jiang
- Shenzhen Institute for Drug Control, Shenzhen, P. R. China.,Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen, P. R. China
| | - Li-Jun Wang
- Shenzhen Institute for Drug Control, Shenzhen, P. R. China.,Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen, P. R. China
| | - Guo Yin
- Shenzhen Institute for Drug Control, Shenzhen, P. R. China.,Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen, P. R. China
| | - Jue Wang
- Shenzhen Institute for Drug Control, Shenzhen, P. R. China.,Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen, P. R. China
| | - Yang Wang
- Shenzhen Institute for Drug Control, Shenzhen, P. R. China.,Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen, P. R. China
| | - Yi-Bao Jin
- Shenzhen Institute for Drug Control, Shenzhen, P. R. China.,Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen, P. R. China
| | - Qing Li
- Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Tie-Jie Wang
- Shenzhen Institute for Drug Control, Shenzhen, P. R. China.,Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen, P. R. China.,Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
85
|
ABCC6 plays a significant role in the transport of nilotinib and dasatinib, and contributes to TKI resistance in vitro, in both cell lines and primary patient mononuclear cells. PLoS One 2018; 13:e0192180. [PMID: 29385210 PMCID: PMC5792028 DOI: 10.1371/journal.pone.0192180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/17/2018] [Indexed: 01/15/2023] Open
Abstract
ATP Binding Cassette family efflux proteins ABCB1 and ABCG2 have previously been demonstrated to interact with Tyrosine Kinase Inhibitors (TKIs); however, evidence for the interaction of other potentially relevant drug transporters with TKIs is lacking. Through Taqman transporter array technology we assessed the impact of nilotinib on mRNA expression of ABC transporters, with ABCC6 identified as a transporter of interest. Additionally, increased expression of ABCC6 mRNA was observed during in vitro development of nilotinib resistance in BCR-ABL1-expressing cell lines. K562 cells exposed to gradually increasing concentrations of nilotinib (to 2 μM) expressed up to 57-fold higher levels of ABCC6 mRNA when compared with control cells (p = 0.002). Analogous results were observed in nilotinib resistant K562-Dox cells (up to 33-fold higher levels of ABCC6, p = 0.002). IC50 experiments were conducted on patient mononuclear cells in the absence and presence of three ABCC6 inhibitors: indomethacin, probenecid and pantoprazole. Results demonstrated that all three inhibitors significantly reduced nilotinib IC50 (p<0.001) indicating ABCC6 is likely involved in nilotinib transport. Cell line data confirmed these findings. Similar results were obtained for dasatinib, but not imatinib. Combined, these studies suggest that nilotinib and dasatinib are likely substrates of ABCC6 and to our knowledge, this is the first report of ABCC6 involvement in TKI transport. In addition, ABCC6 overexpression may also contribute to nilotinib and dasatinib resistance in vitro. With nilotinib and dasatinib now front line therapy options in the treatment of CML, concomitant administration of ABCC6 inhibitors may present an attractive option to enhance TKI efficacy.
Collapse
|
86
|
Kojima R, Scheller L, Fussenegger M. Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation. Nat Chem Biol 2017; 14:42-49. [PMID: 29131143 PMCID: PMC5730048 DOI: 10.1038/nchembio.2498] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022]
Abstract
The ability to engineer custom cell-contact-sensing output devices into
human non-immune cells would be useful for extending the applicability of
cell-based cancer therapies and avoiding risks associated with engineered immune
cells. Here, we have developed a new class of synthetic T-cell receptor-like
signal-transduction device that functions efficiently in human non-immune cells
and triggers release of output molecules specifically upon sensing contact with
a target cell. This device employs an interleukin signaling cascade, whose
OFF/ON switching is controlled by biophysical segregation of a transmembrane
signal-inhibitory protein from the sensor cell/target cell interface. We further
showed that designer non-immune cells equipped with this device driving
expression of a membrane-penetrator/prodrug-activating enzyme construct could
specifically kill target cells in the presence of the prodrug, indicating its
potential usefulness for target-cell-specific, cell-based enzyme-prodrug cancer
therapy. Our study also contributes to advancement of synthetic biology by
extending available design principles to transmit extracellular information to
cells.
Collapse
Affiliation(s)
- Ryosuke Kojima
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Leo Scheller
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Martin Fussenegger
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland.,Faculty of Life Science, University of Basel, Basel, Switzerland
| |
Collapse
|
87
|
Zinc chloride rapidly stimulates efflux transporters in renal proximal tubules of killifish ( Fundulus heteroclitus ). Toxicol Appl Pharmacol 2017; 334:88-99. [DOI: 10.1016/j.taap.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/04/2017] [Accepted: 09/01/2017] [Indexed: 12/26/2022]
|
88
|
Liu L, Zhang L, Zhang L, Yang F, Zhu X, Lu Z, Yang Y, Lu H, Feng L, Wang Z, Chen H, Yan S, Wang L, Ju Z, Jin H, Zhu X. Hepatic Tmem30a Deficiency Causes Intrahepatic Cholestasis by Impairing Expression and Localization of Bile Salt Transporters. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2775-2787. [PMID: 28919113 DOI: 10.1016/j.ajpath.2017.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
Mutations in ATP8B1 or ATP11C (members of P4-type ATPases) cause progressive familial intrahepatic cholestasis type 1 in human or intrahepatic cholestasis in mice. Transmembrane protein 30A (TMEM30A), a β-subunit, is essential for the function of ATP8B1 and ATP11C. However, its role in the etiology of cholestasis remains poorly understood. To investigate the function of TMEM30A in bile salt (BS) homeostasis, we developed Tmem30a liver-specific knockout (LKO) mice. Tmem30a LKO mice experienced hyperbilirubinemia, hypercholanemia, inflammatory infiltration, ductular proliferation, and liver fibrosis. The expression and membrane localization of ATP8B1 and ATP11C were significantly reduced in Tmem30a LKO mice, which correlated with the impaired expression and localization of BS transporters, such as OATP1A4, OATP1B2, NTCP, BSEP, and MRP2. The proteasome inhibitor bortezomib partially restored total protein levels of BS transporters but not the localization of BS transporters in the membrane. Furthermore, the expression of nuclear receptors, including FXRα, RXRα, HNF4α, LRH-1, and SHP, was also down-regulated. A cholic acid-supplemented diet exacerbated the liver damage in Tmem30a LKO mice. TMEM30A deficiency led to intrahepatic cholestasis in mice by impairing the expression and localization of BS transporters and the expression of related nuclear receptors. Therefore, TMEM30A may be a novel genetic determinant of intrahepatic cholestasis.
Collapse
Affiliation(s)
- Leiming Liu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Lingling Zhang
- Institute of Aging Research, Leibniz Link Partner Group on Stem Cell Aging, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Lin Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China; Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Yang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China; Leibniz Institute for Age Research - Fritz Lipmann Institute, Friedrich-Schiller University of Jena, Jena, Germany
| | - Xudong Zhu
- Institute of Aging Research, Leibniz Link Partner Group on Stem Cell Aging, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Zhongjie Lu
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China; Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Haiqi Lu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhuo Wang
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Yan
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Hepato-Biliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China; Institute of Aging Research, Leibniz Link Partner Group on Stem Cell Aging, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China; Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
89
|
Avril T, Vauléon E, Chevet E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis 2017; 6:e373. [PMID: 28846078 PMCID: PMC5608920 DOI: 10.1038/oncsis.2017.72] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/01/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
The unfolded protein response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress. During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply) challenges, with which they must cope to survive. Moreover, chemotherapy represents an additional extrinsic challenge that cancer cells are facing and to which they adapt in the case of resistance. As of today, resistance to chemotherapy and targeted therapies is one of the important issues that oncologists have to deal with for treating cancer patients. In this review, we first describe the key molecular mechanisms controlling the UPR and their implication in solid cancers. Then, we review the literature that connects cancer chemotherapy resistance mechanisms and activation of the UPR. Finally, we discuss the possible applications of targeting the UPR to bypass drug resistance.
Collapse
Affiliation(s)
- T Avril
- INSERM U1242, 'Chemistry, Oncogenesis, Stress, Signaling', Université de Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - E Vauléon
- INSERM U1242, 'Chemistry, Oncogenesis, Stress, Signaling', Université de Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - E Chevet
- INSERM U1242, 'Chemistry, Oncogenesis, Stress, Signaling', Université de Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| |
Collapse
|
90
|
MRP4 regulates ENaC-dependent CREB/COX-2/PGE 2 signaling during embryo implantation. Oncotarget 2017; 8:78520-78529. [PMID: 29108246 PMCID: PMC5667979 DOI: 10.18632/oncotarget.19676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/22/2017] [Indexed: 01/09/2023] Open
Abstract
Multi-drug resistance protein 4 (MRP4), a potential chemotherapeutic target as well as a transporter for endogenous signaling molecules (e.g. prostaglandins), is known to be expressed in the endometrium, although its possible role(s) in the physiology of the endometrium remains unknown. Here, we show that MRP4 is upregulated at implantation window and localized to the basolateral membrane of the endometrial epithelium, the interface between the epithelium and stroma in mice. In human endometrial epithelial cells, MRP4 expression is upregulated by ENaC activation and the inhibition of MRP4 blocks ENaC-dependent PGE2 release as well as phosphorylation of CREB. Intrauterine injection of MRP4 inhibitor in mice prior to implantation significantly downregulated implantation markers COX-2, Claudin4 and Lif, and reduced implantation rate. These results in together have revealed a previously undefined role of MRP4 in mediating ENaC-dependent CREB/COX-2/PGE2 signaling essential to embryo implantation with implication in cancer progression as well.
Collapse
|
91
|
Xiang R, Li JJ, Fan LL, Jin JY, Xia K, Wang F. Identification of a compound heterozygous mutation of ABCC2 in a patient with hyperbilirubinemia. Mol Med Rep 2017; 16:2830-2834. [PMID: 28713894 DOI: 10.3892/mmr.2017.6926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 04/19/2017] [Indexed: 11/06/2022] Open
Abstract
Bilirubin is the end product of heme catabolism, which is produced primarily from the breakdown of erythrocyte hemoglobin in the reticuloendothelial system. Hyperbilirubinemia is induced not only by increased bilirubin synthesis, but can also be caused by decreased bilirubin clearance. There are several disorders, which can contribute to hyperbilirubinemia, including Dubin‑Johnson syndrome (DJS). DJS is a rare autosomal recessive disorder, which is characterized by predominantly conjugated hyperbilirubinemia without progression to end‑stage liver disease. Previous studies have demonstrated that defects in multidrug resistance proteins ATP‑binding cassette C2 (ABCC2)/multidrug resistance‑associated protein 2 (MRP2) contribute to DJS. In the present study, a case of a patient with hyperbilirubinemia was examined and identified a compound heterozygous mutation in the ABCC2 gene (p.T435P and W442X). These were predicted to be deleterious by three bioinformatics programs (Polymorphism Phenotyping‑2, Sorting Intolerant From Tolerant and MutationTaster). These finding expand on the spectrum of ABCC2 mutations and provide additional evidence that ABCC2 is key in the development of DJS.
Collapse
Affiliation(s)
- Rong Xiang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jing-Jing Li
- Department of Cellular Biology, School of Life Sciences, Central South University and State Key Laboratory of Medical Genetics, Changsha, Hunan 410013, P.R. China
| | - Liang-Liang Fan
- Department of Cellular Biology, School of Life Sciences, Central South University and State Key Laboratory of Medical Genetics, Changsha, Hunan 410013, P.R. China
| | - Jie-Yuan Jin
- Department of Cellular Biology, School of Life Sciences, Central South University and State Key Laboratory of Medical Genetics, Changsha, Hunan 410013, P.R. China
| | - Kun Xia
- Department of Cellular Biology, School of Life Sciences, Central South University and State Key Laboratory of Medical Genetics, Changsha, Hunan 410013, P.R. China
| | - Fang Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
92
|
Moussavi M, Haddad F, Rassouli FB, Iranshahi M, Soleymanifard S. Synergy between Auraptene, Ionizing Radiation, and Anticancer Drugs in Colon Adenocarcinoma Cells. Phytother Res 2017; 31:1369-1375. [PMID: 28675489 DOI: 10.1002/ptr.5863] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/10/2017] [Accepted: 06/11/2017] [Indexed: 11/10/2022]
Abstract
Colorectal cancer is a growing health concern with increasing mortality rates, and resistance to anticancer drugs and radiotherapy is a serious drawback in its treatment. Auraptene is a natural prenyloxycoumarin with valuable anticancer effects. The aim of current study was to determine the synergy between auraptene, ionizing radiation, and chemotherapeutic drugs in colon adenocarcinoma cells for the first time. To do so, HT29 cells were treated with combination of auraptene + cisplatin, + doxorubicin, or + vincristine. Furthermore, cells were pretreated with nontoxic auraptene and then exposed to various doses of X-radiation. Assessment of cell viability not only indicated significant (p < 0.05) synergic effects of auraptene and anticancer agents, also revealed more significant (p < 0.01) increase in the toxicity of applied radiations in auraptene pretreated cells. Interesting synergy between auraptene and radiotherapy was then confirmed by morphological alterations, DAPI staining, and flow cytometric analysis of the cell cycle. Moreover, real-time reverse transcription polymerase chain reaction analysis indicated significant (p < 0.01) overexpression of p21, but not GATA6, in auraptene pretreated cells after radiotherapy, and also significant (p < 0.01) down regulation of CD44 and ALDH1 by auraptene. According to present results, auraptene could be considered as an effective natural coumarin to improve the outcome of current chemoradiotherapy options. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mahdi Moussavi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farhang Haddad
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh B Rassouli
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
93
|
ABCC4 functional SNP in the 3′ splice acceptor site of exon 8 (G912T) is associated with unfavorable clinical outcome in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 2017; 80:109-117. [DOI: 10.1007/s00280-017-3340-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022]
|
94
|
Yang G, Ge S, Singh R, Basu S, Shatzer K, Zen M, Liu J, Tu Y, Zhang C, Wei J, Shi J, Zhu L, Liu Z, Wang Y, Gao S, Hu M. Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metab Rev 2017; 49:105-138. [PMID: 28266877 DOI: 10.1080/03602532.2017.1293682] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucuronidation is a well-recognized phase II metabolic pathway for a variety of chemicals including drugs and endogenous substances. Although it is usually the secondary metabolic pathway for a compound preceded by phase I hydroxylation, glucuronidation alone could serve as the dominant metabolic pathway for many compounds, including some with high aqueous solubility. Glucuronidation involves the metabolism of parent compound by UDP-glucuronosyltransferases (UGTs) into hydrophilic and negatively charged glucuronides that cannot exit the cell without the aid of efflux transporters. Therefore, elimination of parent compound via glucuronidation in a metabolic active cell is controlled by two driving forces: the formation of glucuronides by UGT enzymes and the (polarized) excretion of these glucuronides by efflux transporters located on the cell surfaces in various drug disposition organs. Contrary to the common assumption that the glucuronides reaching the systemic circulation were destined for urinary excretion, recent evidences suggest that hepatocytes are capable of highly efficient biliary clearance of the gut-generated glucuronides. Furthermore, the biliary- and enteric-eliminated glucuronides participate into recycling schemes involving intestinal microbes, which often prolong their local and systemic exposure, albeit at low systemic concentrations. Taken together, these recent research advances indicate that although UGT determines the rate and extent of glucuronide generation, the efflux and uptake transporters determine the distribution of these glucuronides into blood and then to various organs for elimination. Recycling schemes impact the apparent plasma half-life of parent compounds and their glucuronides that reach intestinal lumen, in addition to prolonging their gut and colon exposure.
Collapse
Affiliation(s)
- Guangyi Yang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China.,b Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine , Shiyan , Hubei , China
| | - Shufan Ge
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Rashim Singh
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Sumit Basu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Katherine Shatzer
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Ming Zen
- d Department of Thoracic and Cardiomacrovascular Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jiong Liu
- e Department of Digestive Diseases Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Yifan Tu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Chenning Zhang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jinbao Wei
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jian Shi
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Lijun Zhu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Zhongqiu Liu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Yuan Wang
- g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Song Gao
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Ming Hu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| |
Collapse
|
95
|
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic metabolic disease with autosomal recessive inheritance caused by mutations in the ABCC6 gene. The lack of functional ABCC6 protein leads to ectopic mineralization that is most apparent in the elastic tissues of the skin, eyes and blood vessels. The clinical prevalence of PXE has been estimated at between 1 per 100,000 and 1 per 25,000, with slight female predominance. The first clinical sign of PXE is almost always small yellow papules on the nape and sides of the neck and in flexural areas. The papules coalesce, and the skin becomes loose and wrinkled. The mid-dermal elastic fibers are short, fragmented, clumped and calcified. Dystrophic calcification of Bruch's membrane, revealed by angioid streaks, may trigger choroidal neovascularization and, ultimately, loss of central vision and blindness in late-stage disease. Lesions in small and medium-sized artery walls may result in intermittent claudication and peripheral artery disease. Cardiac complications (myocardial infarction, angina pectoris) are thought to be relatively rare but merit thorough investigation. Ischemic strokes have been reported. PXE is a metabolic disease in which circulating levels of an anti-mineralization factor are low. There is good evidence to suggest that the factor is inorganic pyrophosphate (PPi), and that the circulating low levels of PPi and decreased PPi/Pi ratio result from the lack of ATP release by hepatocytes harboring the mutant ABCC6 protein. However, the substrate(s) bound, transported or modulated by the ABCC6 protein remain unknown. More than 300 sequence variants of the ABCC6 gene have been identified. There is no cure for PXE; the main symptomatic treatments are vascular endothelial growth factor inhibitor therapy (for ophthalmic manifestations), lifestyle, lipid-lowering and dietary measures (for reducing vascular risk factors), and vascular surgery (for severe cardiovascular manifestations). Future treatment options may include gene therapy/editing and pharmacologic chaperone therapy.
Collapse
Affiliation(s)
- Dominique P Germain
- Division of Medical Genetics, University of Versailles - Saint Quentin en Yvelines, Paris-Saclay University, 2 avenue de la source de la Bièvre, F-78180, Montigny, France.
| |
Collapse
|
96
|
Gupta P, Xie M, Narayanan S, Wang YJ, Wang XQ, Yuan T, Wang Z, Yang DH, Chen ZS. GSK1904529A, a Potent IGF-IR Inhibitor, Reverses MRP1-Mediated Multidrug Resistance. J Cell Biochem 2017; 118:3260-3267. [PMID: 28266043 DOI: 10.1002/jcb.25975] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/03/2017] [Indexed: 12/20/2022]
Abstract
Overexpression of multidrug-resistant efflux transporters is one of the major causes of chemotherapy failure. MRP1, a 190 kDa efflux transporter, confers resistance to a wide of range of chemotherapeutic drugs. Here we study the cellular effects of GSK1904529A in reversing MRP1-mediated drug resistance. Cytotoxicity of GSK1904529A was determined by MTT assay. Reversal effects of GSK1904529A in combination with MRP1 substrates were determined. The intracellular accumulation and efflux of MRP1 substrate was measured by scintillation counter and protein expression was determined by Western blotting analysis. Cell cycle effects of GSK1904529A in combination with MRP1 substrates were determined by flow cytometric analysis. GSK1904529A, at non-toxic concentrations, enhanced the cytotoxicity of MRP1 substrates in HEK293/MRP1 cells. Furthermore, GSK1904529A increased the intracellular accumulation of [3 H]-vinblastine by inhibiting the efflux function of MRP1. GSK1904529A did not alter the expression level of MRP1, induced a G0/G1 phase cell cycle arrest. Our results indicated that GSK1904529A significantly increased the sensitivity of MRP1 overexpressing cells to chemotherapeutic agents. Furthermore, GSK1904529A enhanced the efficacy of chemotherapeutic drugs that are substrates of MRP1. J. Cell. Biochem. 118: 3260-3267, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439
| | - Meina Xie
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439.,Medicine Experiment Center, Weifang Medical University, Weifang Shandong Province, 261053, People's Republic of China
| | - Silpa Narayanan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439
| | - Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Timothy Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439
| | - Ziyue Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439
| |
Collapse
|
97
|
Kathawala RJ, Li T, Yang D, Guo HQ, Yang DH, Chen X, Cheng C, Chen ZS. 2-Trifluoromethyl-2-Hydroxypropionamide Derivatives as Novel Reversal Agents of ABCG2 (BCRP)-Mediated Multidrug Resistance: Synthesis and Biological Evaluations. J Cell Biochem 2017; 118:2420-2429. [PMID: 28120346 DOI: 10.1002/jcb.25908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/23/2017] [Indexed: 12/17/2022]
Abstract
It has been postulated that one of the biggest impediments to a successful chemotherapy is the phenomena of multidrug resistance (MDR) in cancer cells. One of the main mechanisms of MDR is overexpression of the ATP-binding cassette (ABC) transporters in cancer cells which alters absorption, distribution, metabolism, and excretion of various chemotherapeutic drugs. Efforts have been made to find effective inhibitors of ABC transporters. However, none has been approved clinically. This study shows that a novel compound 3-chloro-N-(2-hydroxyphenyl)-4-(3,3,3-trifluoro-2-hydroxy-2-methylpropanamido) benzamide (compound 7d), one of the 2-trifluoromethyl-2-hydroxypropionamide derivatives could reverse ABCG2 (BCRP)-mediated MDR. Cytotoxicity studies show that compound 7d sensitizes the ABCG2-overexpressing cells to chemotherapeutic drugs mitoxantrone and SN-38, which are well-established substrates of the ABCG2 transporter. Western blotting results indicate that compound 7d does not significantly alter the protein level of the ABCG2 transporter. Accumulation and efflux studies demonstrate that compound 7d increases intracellular accumulation of mitoxantrone by inhibiting the function of ABCG2. Overall, these findings indicate a potential use for compound 7d as an adjuvant agent for chemotherapy to inhibit the function of the clinically relevant ABC transporter and sensitize tumor cells to chemotherapeutic drugs. J. Cell. Biochem. 118: 2420-2429, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy Health Sciences, St. John's University, Queens, New York
| | - Tianwen Li
- Key laboratory of Bioorganic Phosphorus and Chemical Biology, The Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Danwen Yang
- Department of Pharmaceutical Sciences, College of Pharmacy Health Sciences, St. John's University, Queens, New York.,Laboratory of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui-Qin Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy Health Sciences, St. John's University, Queens, New York
| | - Xiang Chen
- Laboratory of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changmei Cheng
- Key laboratory of Bioorganic Phosphorus and Chemical Biology, The Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy Health Sciences, St. John's University, Queens, New York
| |
Collapse
|
98
|
Lee GM, Kim YR, Ryu JH, Kim TH, Cho EY, Lee YH, Yoon KH. Quantitative Measurement of Hepatic Fibrosis with Gadoxetic Acid-Enhanced Magnetic Resonance Imaging in Patients with Chronic Hepatitis B Infection: A Comparative Study on Aspartate Aminotransferase to Platelet Ratio Index and Fibrosis-4 Index. Korean J Radiol 2017; 18:444-451. [PMID: 28458596 PMCID: PMC5390613 DOI: 10.3348/kjr.2017.18.3.444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
Objective To quantitatively measure hepatic fibrosis on gadoxetic acid-enhanced magnetic resonance (MR) in chronic hepatitis B (CHB) patients and identify the correlations with aspartate aminotransferase-to-platelet ratio index (APRI) and fibrosis-4 index (FIB-4) values. Materials and Methods This study on gadoxetic acid-enhanced 3T MR imaging included 81 patients with CHB infection. To quantitatively measure hepatic fibrosis, MR images were analyzed with an aim to identify inhomogeneous signal intensities calculated from a coefficient of variation (CV) map in the liver parenchyma. We also carried out a comparative analysis between APRI and FIB-4 based on metaregression results. The diagnostic performance of the CV map was evaluated using a receiver-operating characteristic (ROC) curve. Results In the MR images, the mean CV values in control, groups I, II, and III based on APRI were 4.08 ± 0.92, 4.24 ± 0.80, 5.64 ± 1.11, and 5.73 ± 1.28, respectively (p < 0.001). In CHB patients grouped by FIB-4, the mean CV values of groups A, B, and C were 4.22 ± 0.95, 5.40 ± 1.19, and 5.71 ± 1.17, respectively (p < 0.001). The mean CV values correlated well with APRI (r = 0.392, p < 0.001) and FIB-4 (r = 0.294, p < 0.001). In significant fibrosis group, ROC curve analysis yielded an area under the curve of 0.875 using APRI and 0.831 using FIB-4 in HB, respectively. Conclusion Gadoxetic acid-enhanced MR imaging for calculating a CV map showed moderate correlation with APRI and FIB-4 values and could be employed to quantitatively measure hepatic fibrosis in patients with CHB.
Collapse
Affiliation(s)
- Guy Mok Lee
- Department of Radiology, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Youe Ree Kim
- Department of Radiology, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Jong Hyun Ryu
- Imaging Science Research Center, Wonkwang University, Iksan 54538, Korea
| | - Tae-Hoon Kim
- Imaging Science Research Center, Wonkwang University, Iksan 54538, Korea
| | - Eun Young Cho
- Department of Internal Medicine, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Young Hwan Lee
- Department of Radiology, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Kwon-Ha Yoon
- Department of Radiology, Wonkwang University School of Medicine, Iksan 54538, Korea.,Imaging Science Research Center, Wonkwang University, Iksan 54538, Korea
| |
Collapse
|
99
|
Hoshi Y, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. Actin filament-associated protein 1 (AFAP-1) is a key mediator in inflammatory signaling-induced rapid attenuation of intrinsic P-gp function in human brain capillary endothelial cells. J Neurochem 2017; 141:247-262. [PMID: 28112407 DOI: 10.1111/jnc.13960] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/20/2023]
Abstract
The purpose of this study was to identify regulatory molecule(s) involved in the inflammatory signaling-induced decrease in P-glycoprotein (P-gp) efflux function at the blood-brain barrier (BBB) that may occur in brain diseases. We confirmed that in vivo P-gp efflux activity at the BBB was decreased without any change in P-gp protein expression level in a mouse model of acute inflammation induced by 3 mg/kg lipopolysaccharide. In a human BBB model cell line (human brain capillary endothelial cells; hCMEC/D3), 1-h treatment with 10 ng/mL tumor necrosis factor-α (TNF-α; an inflammatory mediator) rapidly reduced P-gp efflux activity, but had no effect on P-gp protein expression level. To clarify the non-transcriptional mechanism that causes the decrease in intrinsic efflux activity of P-gp in acute inflammation, we applied comprehensive quantitative phosphoproteomics to compare hCMEC/D3 cells treated with TNF-α and vehicle (control). Actin filament-associated protein-1 (AFAP-1), MAPK1, and transcription factor AP-1 (AP-1) were significantly phosphorylated in TNF-α-treated cells, and were selected as candidate proteins. In validation experiments, knockdown of AFAP-1 expression blocked the reduction in P-gp efflux activity by TNF-α treatment, whereas inhibition of MAPK function or knockdown of AP-1 expression did not. Quantitative targeted absolute proteomics revealed that the reduction in P-gp activity by TNF-α did not require any change in P-gp protein expression levels in the plasma membrane. Our results demonstrate that AFAP-1 is a key mediator in the inflammatory signaling-induced, translocation-independent rapid attenuation of P-gp efflux activity in human brain capillary endothelial cells.
Collapse
Affiliation(s)
- Yutaro Hoshi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masanori Tachikawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sumio Ohtsuki
- Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Japan Agency for Medical Research and Development (AMED) CREST, Tokyo, Japan
| | - Tetsuya Terasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
100
|
Wang W, Li Y, Zhu JY, Fang D, Ding HF, Dong Z, Jing Q, Su SB, Huang S. Triple negative breast cancer development can be selectively suppressed by sustaining an elevated level of cellular cyclic AMP through simultaneously blocking its efflux and decomposition. Oncotarget 2016; 7:87232-87245. [PMID: 27901486 PMCID: PMC5349984 DOI: 10.18632/oncotarget.13601] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/07/2016] [Indexed: 01/13/2023] Open
Abstract
Triple negative breast cancer (TNBC) has the highest mortality among all breast cancer types and lack of targeted therapy is a key factor contributing to its high mortality rate. In this study, we show that 8-bromo-cAMP, a cyclic adenosine monophosphate (cAMP) analog at high concentration (> 1 mM) selectively suppresses TNBC cell growth. However, commonly-used cAMP-elevating agents such as adenylyl cyclase activator forskolin and pan phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) are ineffective. Inability of cAMP elevating agents to inhibit TNBC cell growth is due to rapid diminution of cellular cAMP through efflux and decomposition. By performing bioinformatics analyses with publically available gene expression datasets from breast cancer patients/established breast cancer cell lines and further validating using specific inhibitors/siRNAs, we reveal that multidrug resistance-associated protein 1/4 (MRP1/4) mediate rapid cAMP efflux while members PDE4 subfamily facilitate cAMP decomposition. When cAMP clearance is prevented by specific inhibitors, forskolin blocks TNBC's in vitro cell growth by arresting cell cycle at G1/S phase. Importantly, cocktail of forskolin, MRP inhibitor probenecid and PDE4 inhibitor rolipram suppresses TNBC in vivo tumor development. This study suggests that a TNBC-targeted therapeutic strategy can be developed by sustaining an elevated level of cAMP through simultaneously blocking its efflux and decomposition.
Collapse
Affiliation(s)
- Wei Wang
- 1 Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- 2 Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jessica Y. Zhu
- 2 Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Dongdong Fang
- 1 Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Han-Fei Ding
- 3 Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Zheng Dong
- 4 Department of Anatomy and Cell Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Qing Jing
- 5 Changhai Hospital, Shanghai, China
| | - Shi-Bing Su
- 1 Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- 6 E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuang Huang
- 1 Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- 2 Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
- 6 E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|