51
|
Wang X, Jia N, Zhao C, Fang Y, Lv T, Zhou W, Sun Y, Li B. Knockout of AtDjB1, a J-domain protein from Arabidopsis thaliana, alters plant responses to osmotic stress and abscisic acid. PHYSIOLOGIA PLANTARUM 2014; 152:286-300. [PMID: 24521401 DOI: 10.1111/ppl.12169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 05/26/2023]
Abstract
AtDjB1 is a member of the Arabidopsis thaliana J-protein family. AtDjB1 is targeted to the mitochondria and plays a crucial role in A. thaliana heat and oxidative stress resistance. Herein, the role of AtDjB1 in adapting to saline and drought stress was studied in A. thaliana. AtDjB1 expression was induced through salinity, dehydration and abscisic acid (ABA) in young seedlings. Reverse genetic analyses indicate that AtDjB1 is a negative regulator in plant osmotic stress tolerance. Further, AtDjB1 knockout mutant plants (atj1-1) exhibited greater ABA sensitivity compared with the wild-type (WT) plants and the mutant lines with a rescued AtDjB1 gene. AtDjB1 gene knockout also altered the expression of several ABA-responsive genes, which suggests that AtDjB1 is involved in osmotic stress tolerance through its effects on ABA signaling pathways. Moreover, atj1-1 plants exhibited higher glucose levels and greater glucose sensitivity in the post-germination development stage. Applying glucose promoted an ABA response in seedlings, and the promotion was more evident in atj1-1 than WT seedlings. Taken together, higher glucose levels in atj1-1 plants are likely responsible for the greater ABA sensitivity and increased osmotic stress tolerance.
Collapse
Affiliation(s)
- Xingxing Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Bandurska H, Niedziela J, Chadzinikolau T. Separate and combined responses to water deficit and UV-B radiation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 213:98-105. [PMID: 24157212 DOI: 10.1016/j.plantsci.2013.09.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/08/2013] [Accepted: 09/01/2013] [Indexed: 05/22/2023]
Abstract
Crops and other plants in natural conditions are routinely affected by several stresses acting simultaneously or in sequence. In areas affected by drought, plants may also be exposed to enhanced UV-B radiation (280-315nm). Each of these stress factors differently affects cellular metabolism. A common consequence of plant exposure to the separate action of water deficit and UV-B radiation is the enhanced generation of reactive oxygen species (ROS) causing damage to proteins, lipids, carbohydrates and DNA. Despite this destructive activity, ROS also act as signalling molecules in cellular processes responsible for defence responses. Plants have evolved many physiological and biochemical mechanisms that avoid or tolerate the effects of stress factors. Water deficit avoidance leads to stomatal closure, stimulation of root growth, and accumulation of free proline and other osmolytes. Secondary metabolites (flavonols, flavones and anthocyanins) that accumulate in epidermal cells effectively screen UV-B irradiation and reduce its penetration to mesophyll tissue. The coordinated increased activity of the enzymatic antioxidant defence system such as up-regulation of superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase and glutathione reductase is an important mechanism of tolerance to water deficit and UV-B radiation. The accumulation of low molecular antioxidants (proline, glycine betaine, ascorbate and glutathione) can also contribute to tolerance to water deficit. Polyamines, tocopherol, carotenoids, alkaloids, flavonoids and other secondary metabolites participate in the removal of ROS under conditions of increased UV-B radiation. The combination of water deficit and UV-B radiation induces responses that can be antagonistic, additive or synergistic in comparison with the action of single stresses. UV-B radiation may enhance resistance to water deficit and vice versa. Hydrogen peroxide, nitric oxide (NO), abscisic acid (ABA), jasmonic acid, ethylene, and salicylic acid participate in the activation of defence mechanisms. The involvement of these molecules in cross-resistance may rely on activation of enzymatic and non-enzymatic antioxidant systems, enzymes of flavonoid biosynthesis and the accumulation of low-molecular-weight osmolytes as well as regulation of stomatal closure. However, under the conditions of prolonged action of stressors or in the case where one of them is severe, the capacity of the defence system becomes exhausted, leading to damage and even death.
Collapse
Affiliation(s)
- Hanna Bandurska
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | | | | |
Collapse
|
53
|
Yao T, Jin D, Liu Q, Gong Z. Abscisic acid suppresses the highly occurred somatic homologous recombination in Arabidopsis rfc1 mutant. J Genet Genomics 2013; 40:465-71. [PMID: 24053948 DOI: 10.1016/j.jgg.2013.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
The phytohormone abscisic acid (ABA) regulates many aspects of plant growth, including seed germination, root growth and cell division. Previous study indicates that ABA treatment increases DNA damage and somatic homologous recombination (HR) in Arabidopsis abo4/pol ɛ (aba overly-sensitive 4 /DNA polymerase ɛ) mutants. DNA replication factor C (RFC) complex is required for loading PCNA (Proliferating Cell Nuclear Antigen) during DNA replication. The defect in RFC1, the largest subunit of RFC, causes the high HR and DNA damage sensitivity in Arabidopsis. Here we found that like pol ε/abo4, rfc1 is sensitive to ABA in both ABA-inhibiting seed germination and root growth. However, ABA treatment greatly reduces HR and also reduces the expression of the DNA-damaged marker genes in rfc1. These results suggest that RFC1 plays critical roles in ABA-mediated HR in Arabidopsis.
Collapse
Affiliation(s)
- Tingxiu Yao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | |
Collapse
|
54
|
Boursiac Y, Léran S, Corratgé-Faillie C, Gojon A, Krouk G, Lacombe B. ABA transport and transporters. TRENDS IN PLANT SCIENCE 2013; 18:325-33. [PMID: 23453706 DOI: 10.1016/j.tplants.2013.01.007] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/15/2013] [Accepted: 01/28/2013] [Indexed: 05/19/2023]
Abstract
Abscisic acid (ABA) metabolism, perception, and transport form a triptych allowing higher plants to use ABA as a signaling molecule. The molecular bases of ABA metabolism are now well described and, over the past few years, several ABA receptors have been discovered. Although ABA transport has long been demonstrated in planta, the first breakthroughs in identifying plasma membrane-localized ABA transporters came in 2010, with the identification of two ATP-binding cassette (ABC) proteins. More recently, two ABA transporters in the nitrate transporter 1/peptide transporter (NRT1/PTR) family have been identified. In this review, we discuss the role of these different ABA transporters and examine the scientific impact of their identification. Given that the NRT1/PTR family is involved in the transport of nitrogen (N) compounds, further work should determine whether an interaction between ABA and N signaling or nutrition occurs.
Collapse
Affiliation(s)
- Yann Boursiac
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier Cedex, France
| | | | | | | | | | | |
Collapse
|
55
|
Miyakawa T, Fujita Y, Yamaguchi-Shinozaki K, Tanokura M. Structure and function of abscisic acid receptors. TRENDS IN PLANT SCIENCE 2013; 18:259-66. [PMID: 23265948 DOI: 10.1016/j.tplants.2012.11.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/26/2012] [Accepted: 11/01/2012] [Indexed: 05/18/2023]
Abstract
The phytohormone abscisic acid (ABA) plays a crucial role in adaptive responses to environmental stresses, such as drought and high salinity, as well as in plant development, such as seed maturation and dormancy. PYR/PYL/RCAR has been identified as a bona fide ABA receptor (ABAR) that constitutes the core regulatory component of ABA signaling networks in plants. Here, we review recent structural and functional studies of the ABAR that have elucidated its activation mechanism, early signaling components, and physiological responses. A crucial event in the receptor's activation was found to be an open-to-closed conformational change in the gate loop of the receptor protein. More recent progress has provided strategies for controlling the gate's closure using chemical agonists or protein engineering approaches.
Collapse
Affiliation(s)
- Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
56
|
Jin Z, Xue S, Luo Y, Tian B, Fang H, Li H, Pei Y. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 62:41-46. [PMID: 23178483 DOI: 10.1016/j.plaphy.2012.10.017] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/29/2012] [Indexed: 05/19/2023]
Abstract
Hydrogen sulfide (H(2)S) plays a crucial role in the regulation of stomatal closure in plant response to drought stress, and l-cysteine desulfhydrase (LCD) has been identified as being mainly responsible for the degradation of cysteine to generate H(2)S. In view of the similar roles to abscisic acid (ABA), in this study, the lcd, aba3 and abi1 mutants were studied to investigate the close inter-relationship between H(2)S and ABA. The lcd mutant showed enlarged stomatal aperture and more sensitivity to drought stress than wild-type plants. Expression of Ca(2+) channel and outward-rectifying K(+) channel coding genes decreased in the lcd mutant, and conversely, expression of inward-rectifying K(+) increased. The stomatal aperture of aba3 and abi1 mutants decreased after treatment with NaHS (a H(2)S donor), but stomatal closure in responses to ABA was impaired in the lcd mutant. The expression of LCD and H(2)S production rate decreased in both the aba3 and abi1 mutants. Transcriptional expression of ABA receptor candidates was upregulated in the lcd mutant and decreased with NaHS treatment. The above results suggested that H(2)S may be an important link in stomatal regulation by ABA via ion channels; H(2)S affected the expression of ABA receptor candidates; and ABA also influenced H(2)S production. Thus, H(2)S interacted with ABA in the stomatal regulation responsible for drought stress in Arabidopsis.
Collapse
Affiliation(s)
- Zhuping Jin
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | | | | | | | | | | | | |
Collapse
|
57
|
Hu S, Wang FZ, Liu ZN, Liu YP, Yu XL. [ABA signaling mediated by PYR/PYL/RCAR in plants]. YI CHUAN = HEREDITAS 2012; 34:560-72. [PMID: 22659428 DOI: 10.3724/sp.j.1005.2012.00560] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abscisic acid (ABA) is a phytohormone that plays critical roles in numerous developmental stages as well as in adaptive responses to biotic and abiotic stresses. Recent breakthroughs in the field of ABA signaling have indicated that there are three major components, PYR/PYL/RCAR (an ABA receptor), type 2C protein phosphates (PP2C, a negative regulator), and SNF1-related protein kinase 2 (SnRK2, a positive regulator). Further results show that these three proteins construct a double negative regulatory system, PYR/PYL/RCAR-| PP2C-| SnRK2, to regulate ABA signal responses in plant cells. Moreover, the combination patterns of these components in vivo are restricted by spatio-temporal and biochemical determinants and the combinational variation in the ABA signalosome is specific to different ABA signal responses. This review summarizes recent advances of study on the molecular basis and regulatory mechanism of PYR/PYL/RCAR-mediated ABA signaling pathway and PYR/PYL/RCAR-PP2C-SnRK2 complex-mediated ABA signal regulation network in plants. The perspectives related to this study are proposed.
Collapse
Affiliation(s)
- Shuai Hu
- Institute of Vegetable Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | |
Collapse
|
58
|
Li Z, Li Z, Gao X, Chinnusamy V, Bressan R, Wang ZX, Zhu JK, Wu JW, Liu D. ROP11 GTPase negatively regulates ABA signaling by protecting ABI1 phosphatase activity from inhibition by the ABA receptor RCAR1/PYL9 in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:180-8. [PMID: 22251383 PMCID: PMC3586988 DOI: 10.1111/j.1744-7909.2012.01101.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phytohormone abscisic acid (ABA) regulates many key processes in plants, such as seed germination, seedling growth, and abiotic stress tolerance. In recent years, a minimal set of core components of a major ABA signaling pathway has been discovered. These components include a RCAR/PYR/PYL family of ABA receptors, a group of PP2C phosphatases, and three SnRK2 kinases. However, how the interactions between the receptors and their targets are regulated by other proteins remains largely unknown. In a companion paper published in this issue, we showed that ROP11, a member of the plant-specific Rho-like small GTPase family, negatively regulates multiple ABA responses in Arabidopsis. The current work demonstrated that the constitutively active ROP11 (CA-ROP11) can modulate the RCAR1/PYL9-mediated ABA signaling pathway based on reconstitution assays in Arabidopsis thaliana protoplasts. Furthermore, using luciferase complementation imaging, yeast two-hybrid assays, co-immunoprecipitation assays in Nicotiana benthamiana and bimolecular fluorescence complementation assays, we demonstrated that CA-ROP11 directly interacts with ABI1, a signaling component downstream of RCAR1/PYL9. Finally, we provided biochemical evidence that CA-ROP11 protects ABI1 phosphatase activity from inhibition by RCAR1/PYL9 and thus negatively regulates ABA signaling in plant cells. A model of how ROP11 acts to negatively regulate ABA signaling is presented.
Collapse
Affiliation(s)
- Zixing Li
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zheng Li
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiang Gao
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Ray Bressan
- Department of Horticulture and Landscape, Purdue University, West Lafayette, Indiana 47907, USA
| | - Zhi-Xin Wang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jia-Wei Wu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dong Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Corresponding author Tel(Fax): +86 10 6278 3603;
| |
Collapse
|
59
|
Li C, Jia H, Chai Y, Shen Y. Abscisic acid perception and signaling transduction in strawberry: a model for non-climacteric fruit ripening. PLANT SIGNALING & BEHAVIOR 2011; 6:1950-3. [PMID: 22095148 PMCID: PMC3337185 DOI: 10.4161/psb.6.12.18024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
On basis of fruit differential respiration and ethylene effects, climacteric and non-climacteric fruits have been classically defined. Over the past decades, the molecular mechanisms of climacteric fruit ripening were abundantly described and found to focus on ethylene perception and signaling transduction. In contrast, until our most recent breakthroughs, much progress has been made toward understanding the signaling perception and transduction mechanisms for abscisic acid (ABA) in strawberry, a model for non-climacteric fruit ripening. Our reports not only have provided several lines of strong evidences for ABA-regulated ripening of strawberry fruit, but also have demonstrated that homology proteins of Arabidopsis ABA receptors, including PYR/PYL/RCAR and ABAR/CHLH, act as positive regulators of ripening in response to ABA. These receptors also trigger a set of ABA downstream signaling components, and determine significant changes in the expression levels of both sugar and pigment metabolism-related genes that are closely associated with ripening. Soluble sugars, especially sucrose, may act as a signal molecular to trigger ABA accumulation through an enzymatic action of 9-cis-epoxycarotenoid dioxygenase 1 (FaNCED1). This mini-review offers an overview of these processes and also outlines the possible, molecular mechanisms for ABA in the regulation of strawberry fruit ripening through the ABA receptors.
Collapse
|
60
|
Sturla L, Fresia C, Guida L, Grozio A, Vigliarolo T, Mannino E, Millo E, Bagnasco L, Bruzzone S, De Flora A, Zocchi E. Binding of abscisic acid to human LANCL2. Biochem Biophys Res Commun 2011; 415:390-5. [DOI: 10.1016/j.bbrc.2011.10.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
|
61
|
Xu ZS, Chen M, Li LC, Ma YZ. Functions and application of the AP2/ERF transcription factor family in crop improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:570-85. [PMID: 21676172 DOI: 10.1111/j.1744-7909.2011.01062.x] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants have acquired sophisticated stress response systems to adapt to changing environments. It is important to understand plants' stress response mechanisms in the effort to improve crop productivity under stressful conditions. The AP2/ERF transcription factors are known to regulate diverse processes of plant development and stress responses. In this study, the molecular characteristics and biological functions of AP2/ERFs in a variety of plant species were analyzed. AP2/ERFs, especially those in DREB and ERF subfamilies, are ideal candidates for crop improvement because their overexpression enhances tolerances to drought, salt, freezing, as well as resistances to multiple diseases in the transgenic plants. The comprehensive analysis of physiological functions is useful in elucidating the biological roles of AP2/ERF family genes in gene interaction, pathway regulation, and defense response under stress environments, which should provide new opportunities for the crop tolerance engineering.
Collapse
Affiliation(s)
- Zhao-Shi Xu
- National Key Facility of Crop Gene Resources and Genetic Improvement (NFCRI), Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | | | | | | |
Collapse
|
62
|
Qu LJ, Zhao Y. Plant hormones: metabolism, signaling and crosstalk. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:410-411. [PMID: 21658176 DOI: 10.1111/j.1744-7909.2011.01057.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|