51
|
O'Hara NB, Rest JS, Franks SJ. Increased susceptibility to fungal disease accompanies adaptation to drought in Brassica rapa. Evolution 2015; 70:241-8. [PMID: 26648585 DOI: 10.1111/evo.12833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 12/29/2022]
Abstract
Recent studies have demonstrated adaptive evolutionary responses to climate change, but little is known about how these responses may influence ecological interactions with other organisms, including natural enemies. We used a resurrection experiment in the greenhouse to examine the effect of evolutionary responses to drought on the susceptibility of Brassica rapa plants to a fungal pathogen, Alternaria brassicae. In agreement with previous studies in this population, we found an evolutionary shift to earlier flowering postdrought, which was previously shown to be adaptive. Here, we report the novel finding that postdrought descendant plants were also more susceptible to disease, indicating a rapid evolutionary shift to increased susceptibility. This was accompanied by an evolutionary shift to increased specific leaf area (thinner leaves) following drought. We found that flowering time and disease susceptibility displayed plastic responses to experimental drought treatments, but that this plasticity did not match the direction of evolution, indicating that plastic and evolutionary responses to changes in climate can be opposed. The observed evolutionary shift to increased disease susceptibility accompanying adaptation to drought provides evidence that even if populations can rapidly adapt in response to climate change, evolution in other traits may have ecological effects that could make species more vulnerable.
Collapse
Affiliation(s)
- Niamh B O'Hara
- Jacobs Technion-Cornell Institute, Cornell Tech, New York, New York, 10011. .,Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794. .,Department of Biology, Fordham University, Bronx, New York, 10458.
| | - Joshua S Rest
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794
| | - Steven J Franks
- Department of Biology, Fordham University, Bronx, New York, 10458
| |
Collapse
|
52
|
Gao L, Geng Y, Yang H, Hu Y, Yang J. Gene Expression Reaction Norms Unravel the Molecular and Cellular Processes Underpinning the Plastic Phenotypes of Alternanthera Philoxeroides in Contrasting Hydrological Conditions. FRONTIERS IN PLANT SCIENCE 2015; 6:991. [PMID: 26617628 PMCID: PMC4641913 DOI: 10.3389/fpls.2015.00991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/29/2015] [Indexed: 05/25/2023]
Abstract
Alternanthera philoxeroides is an amphibious invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation. Little is known about the molecular basis underlying environment-induced phenotypic changes. Variation in transcript abundance in A. philoxeroides was characterized throughout the time-courses of pond and upland treatments using RNA-Sequencing. Seven thousand eight hundred and five genes demonstrated variable expression in response to different treatments, forming 11 transcriptionally coordinated gene groups. Functional enrichment analysis of plastically expressed genes revealed pathway changes in hormone-mediated signaling, osmotic adjustment, cell wall remodeling, and programmed cell death, providing a mechanistic understanding of the biological processes underlying the phenotypic changes in A. philoxeroides. Both transcriptional modulation of environmentally sensitive loci and environmentally dependent control of regulatory loci influenced the plastic responses to the environment. Phenotypic responses and gene expression patterns to contrasting hydrological conditions were compared between A. philoxeroides and its alien congener Alternanthera pungens. The terricolous A. pungens displayed limited phenotypic plasticity to different treatments. It was postulated based on gene expression comparison that the interspecific variation in plasticity between A. philoxeroides and A. pungens was not due to environmentally-mediated changes in hormone levels but to variations in the type and relative abundance of different signal transducers and receptors expressed in the target tissue.
Collapse
Affiliation(s)
- Lexuan Gao
- Center for Evolutionary Biology and Institute of Biodiversity Science, Fudan UniversityShanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical GardenShanghai, China
| | - Yupeng Geng
- School of Ecology and Environmental Sciences, Institute of Ecology and Geobotany, Yunnan UniversityKunming, China
| | - Hongxing Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical GardenShanghai, China
| | - Yonghong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical GardenShanghai, China
| | - Ji Yang
- Center for Evolutionary Biology and Institute of Biodiversity Science, Fudan UniversityShanghai, China
| |
Collapse
|
53
|
Sultan SE, Matesanz S. An ideal weed: plasticity and invasiveness in Polygonum cespitosum. Ann N Y Acad Sci 2015; 1360:101-19. [PMID: 26457473 DOI: 10.1111/nyas.12946] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The introduced Asian plant Polygonum cespitosum has only recently become invasive in northeastern North America, spreading into sunny as well as shaded habitats. We present findings from a multiyear case study of this ongoing species invasion, drawing on field environmental measurements, glasshouse plasticity and resurrection experiments, and molecular genetic (microsatellite) data. We focus in particular on patterns of individual phenotypic plasticity (norms of reaction), their diversity within and among populations in the species' introduced range, and their contribution to its potential to evolve even greater invasiveness. Genotypes from introduced-range P. cespitosum populations have recently evolved to express greater adaptive plasticity to full sun and/or dry conditions without any loss of fitness in shade. Evidently, this species may evolve the sort of "general-purpose genotypes" hypothesized by Herbert Baker to characterize an "ideal weed." Indeed, we identified certain genotypes capable of extremely high reproductive output across contrasting conditions, including sunny, shaded, moist, and dry. Populations containing these high-performance genotypes had consistently higher fitness in all glasshouse habitats; there was no evidence for local adaptive differentiation among populations from sunny, shaded, moist, or dry sites. Norm of reaction data may provide valuable insights to invasion biology: the presence of broadly adaptive, high-performance genotypes can promote a species' ecological spread while providing the fuel for increased invasiveness to evolve.
Collapse
Affiliation(s)
- Sonia E Sultan
- Biology Department, Wesleyan University, Middletown, Connecticut
| | - Silvia Matesanz
- Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Universidad Rey Juan Carlos, c/ Tulipán s/n, Móstoles, Spain
| |
Collapse
|
54
|
Horgan-Kobelski T, Matesanz S, Sultan SE. Limits to Future Adaptation in the Invasive PlantPolygonum cespitosum: Expression of Functional and Fitness Traits at Elevated CO2. J Hered 2015; 107:42-50. [DOI: 10.1093/jhered/esv070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/22/2015] [Indexed: 11/13/2022] Open
|
55
|
Hendry AP. Key Questions on the Role of Phenotypic Plasticity in Eco-Evolutionary Dynamics. J Hered 2015; 107:25-41. [PMID: 26297912 DOI: 10.1093/jhered/esv060] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/16/2015] [Indexed: 11/13/2022] Open
Abstract
Ecology and evolution have long been recognized as reciprocally influencing each other, with recent research emphasizing how such interactions can occur even on very short (contemporary) time scales. Given that these interactions are mediated by organismal phenotypes, they can be variously shaped by genetic variation, phenotypic plasticity, or both. I here address 8 key questions relevant to the role of plasticity in eco-evolutionary dynamics. Focusing on empirical evidence, especially from natural populations, I offer the following conclusions. 1) Plasticity is--not surprisingly--sometimes adaptive, sometimes maladaptive, and sometimes neutral. 2) Plasticity has costs and limits but these constraints are highly variable, often weak, and hard to detect. 3) Variable environments favor the evolution of increased trait plasticity, which can then buffer fitness/performance (i.e., tolerance). 4) Plasticity sometimes aids colonization of new environments (Baldwin Effect) and responses to in situ environmental change. However, plastic responses are not always necessary or sufficient in these contexts. 5) Plasticity will sometimes promote and sometimes constrain genetic evolution. 6) Plasticity will sometimes help and sometimes hinder ecological speciation but, at present, empirical tests are limited. 7) Plasticity can show considerable evolutionary change in contemporary time, although the rates of this reaction norm evolution are highly variable among taxa and traits. 8) Plasticity appears to have considerable influences on ecological dynamics at the community and ecosystem levels, although many more studies are needed. In summary, plasticity needs to be an integral part of any conceptual framework and empirical investigation of eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Andrew P Hendry
- From the Redpath Museum & Department of Biology, 859 Sherbrooke St. W., Montreal, Quebec H3A OC4, Canada.
| |
Collapse
|
56
|
Ensslin A, Fischer M. Variation in life-history traits and their plasticities to elevational transplantation among seed families suggests potential for adaptative evolution of 15 tropical plant species to climate change. AMERICAN JOURNAL OF BOTANY 2015; 102:1371-1379. [PMID: 26290559 DOI: 10.3732/ajb.1400518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 07/14/2015] [Indexed: 06/04/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Because not all plant species will be able to move in response to global warming, adaptive evolution matters largely for plant persistence. As prerequisites for adaptive evolution, genetic variation in and selection on phenotypic traits are needed, but these aspects have not been studied in tropical species. We studied how plants respond to transplantation to different elevations on Mt. Kilimanjaro, Tanzania, and whether there is quantitative genetic (among-seed family) variation in and selection on life-history traits and their phenotypic plasticity to the different environments.• METHODS We reciprocally transplanted seed families of 15 common tropical, herbaceous species of the montane and savanna vegetation zone at Mt. Kilimanjaro to a watered experimental garden in the montane (1450 m) and in the savanna (880 m) zone at the mountain's slope and measured performance, reproductive, and phenological traits.• RESULTS Plants generally performed worse in the savanna garden, indicating that the savanna climate was more stressful and thus that plants may suffer from future climate warming. We found significant quantitative genetic variation in all measured performance and reproductive traits in both gardens and for several measures of phenotypic plasticity in response to elevational transplantation. Moreover, we found positive selection on traits at low and intermediate trait values levelling to neutral or negative selection at high values.• CONCLUSIONS We conclude that common plants at Mt. Kilimanjaro express quantitative genetic variation in fitness-relevant traits and in their plasticities, suggesting potential to adapt evolutionarily to future climate warming and increased temperature variability.
Collapse
Affiliation(s)
- Andreas Ensslin
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland Oeschger Center for Climate Change Research, Zähringerstrasse 24, 3012 Bern, Switzerland
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland Oeschger Center for Climate Change Research, Zähringerstrasse 24, 3012 Bern, Switzerland Senckenberg Gesellschaft für Naturforschung, Biodiversity and Climate Research Centre (BiK-F) 60325 Frankfurt, Germany
| |
Collapse
|
57
|
Tepolt CK, Palumbi SR. Transcriptome sequencing reveals both neutral and adaptive genome dynamics in a marine invader. Mol Ecol 2015; 24:4145-58. [DOI: 10.1111/mec.13294] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 12/30/2022]
Affiliation(s)
- C. K. Tepolt
- Hopkins Marine Station of Stanford University; 120 Ocean View Boulevard Pacific Grove CA 93950 USA
| | - S. R. Palumbi
- Hopkins Marine Station of Stanford University; 120 Ocean View Boulevard Pacific Grove CA 93950 USA
| |
Collapse
|
58
|
Muñoz AR, Márquez AL, Real R. An approach to consider behavioral plasticity as a source of uncertainty when forecasting species' response to climate change. Ecol Evol 2015; 5:2359-73. [PMID: 26120426 PMCID: PMC4475369 DOI: 10.1002/ece3.1519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 11/25/2022] Open
Abstract
The rapid ecological shifts that are occurring due to climate change present major challenges for managers and policymakers and, therefore, are one of the main concerns for environmental modelers and evolutionary biologists. Species distribution models (SDM) are appropriate tools for assessing the relationship between species distribution and environmental conditions, so being customarily used to forecast the biogeographical response of species to climate change. A serious limitation of species distribution models when forecasting the effects of climate change is that they normally assume that species behavior and climatic tolerances will remain constant through time. In this study, we propose a new methodology, based on fuzzy logic, useful for incorporating the potential capacity of species to adapt to new conditions into species distribution models. Our results demonstrate that it is possible to include different behavioral responses of species when predicting the effects of climate change on species distribution. Favorability models offered in this study show two extremes: one considering that the species will not modify its present behavior, and another assuming that the species will take full advantage of the possibilities offered by an increase in environmental favorability. This methodology may mean a more realistic approach to the assessment of the consequences of global change on species' distribution and conservation. Overlooking the potential of species' phenotypical plasticity may under- or overestimate the predicted response of species to changes in environmental drivers and its effects on species distribution. Using this approach, we could reinforce the science behind conservation planning in the current situation of rapid climate change.
Collapse
Affiliation(s)
- Antonio-Román Muñoz
- Biogeography, Diversity and Conservation Research Team, Department of Animal Biology, Faculty of Sciences, University of MalagaE-29071, Malaga, Spain
- Department of Didactic of Science, Faculty of Science Education, University of MalagaE-29071, Malaga, Spain
| | - Ana Luz Márquez
- Biogeography, Diversity and Conservation Research Team, Department of Animal Biology, Faculty of Sciences, University of MalagaE-29071, Malaga, Spain
| | - Raimundo Real
- Biogeography, Diversity and Conservation Research Team, Department of Animal Biology, Faculty of Sciences, University of MalagaE-29071, Malaga, Spain
| |
Collapse
|
59
|
Matesanz S, Horgan-Kobelski T, Sultan SE. Evidence for rapid ecological range expansion in a newly invasive plant. AOB PLANTS 2015; 7:plv038. [PMID: 25862919 PMCID: PMC4511186 DOI: 10.1093/aobpla/plv038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 03/26/2015] [Indexed: 05/28/2023]
Abstract
Little is known about how an introduced species may expand its ecological range, i.e. the set of local environmental conditions in which it can successfully establish populations. Delimiting this range of conditions is a methodological challenge, because it is impossible to sample all potential field locations for any species in a given region. Developing approaches to track ecological range over time could substantially contribute to understanding invasion dynamics. In this study, we use a previously established sampling strategy to document apparent changes across a 15-year time interval in the ecological range of the Asian annual Polygonum cespitosum Blume in northeastern North America, where the species has recently become invasive. Using a structured sample drawn from a large set of field populations, we determined the range of light, soil moisture and soil nutrient conditions that the species currently occupies in this region and the proportional distribution of individuals in differing types of microsite, and compared them with field measurements that were similarly determined 15 years earlier. Although in 1994 the species was absent from both high-light and flooded habitats, in 2009 P. cespitosum occurred in open as well as shaded habitats, across a wide range of moisture conditions. In 2009 the species also occupied a greater proportion of high-light microsites within field sites than in 1994. These findings suggest an expanded ecological range that, intriguingly, is consistent with the recent evolution in North American P. cespitosum populations of adaptive plasticity in response to high light. Possible non-evolutionary explanations for the change in field distribution are also considered.
Collapse
Affiliation(s)
- Silvia Matesanz
- Área de Biodiversidad y Conservación. Departamento de Biología y Geología, Universidad Rey Juan Carlos, c/ Tulipán s/n, Móstoles 28933, Spain
| | | | - Sonia E Sultan
- Biology Department, Wesleyan University, Middletown 06459, CT, USA
| |
Collapse
|
60
|
Thomann M, Imbert E, Engstrand RC, Cheptou PO. Contemporary evolution of plant reproductive strategies under global change is revealed by stored seeds. J Evol Biol 2015; 28:766-78. [DOI: 10.1111/jeb.12603] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/30/2015] [Accepted: 02/05/2015] [Indexed: 01/14/2023]
Affiliation(s)
- M. Thomann
- CEFE UMR 5175; CNRS; Université de Montpellier; Université Paul-Valéry Montpellier; EPHE; Montpellier Cedex 05 France
- Institut des Sciences de l'Evolution de Montpellier - (UMR 5554 CNRS); Université de Montpellier II; Montpellier Cedex 05 France
| | - E. Imbert
- Institut des Sciences de l'Evolution de Montpellier - (UMR 5554 CNRS); Université de Montpellier II; Montpellier Cedex 05 France
| | - R. C. Engstrand
- CEFE UMR 5175; CNRS; Université de Montpellier; Université Paul-Valéry Montpellier; EPHE; Montpellier Cedex 05 France
| | - P.-O. Cheptou
- CEFE UMR 5175; CNRS; Université de Montpellier; Université Paul-Valéry Montpellier; EPHE; Montpellier Cedex 05 France
| |
Collapse
|
61
|
Phenotypic response of plants to simulated climate change in a long-term rain-manipulation experiment: a multi-species study. Oecologia 2015; 177:1015-24. [PMID: 25707776 DOI: 10.1007/s00442-015-3231-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 01/13/2015] [Indexed: 10/23/2022]
Abstract
Many species will need to adapt to the observed climate change in order to persist. However, research about adaptation or phenotypic plasticity in response to climate change is rare. In particular, field studies are lacking that impose artificial selection for a sufficiently long time to elicit changes in phenotypic and genotypic structure of populations. Here, we present findings for an 8-year field experiment with 16 annual plant species that tested potentially adaptive phenotypic responses to precipitation change. In both a Mediterranean and a semi-arid site, annual precipitation was manipulated (±30%) and phenotypic response was recorded. We measured flowering time as a key trait related to climatic conditions and biomass and survival as fitness correlates. Differences in traits among treatments were compared to trait shifts between sites, according to space-for-time approaches. In the drier site, phenology was accelerated, but within that site, experimental drought delayed phenology, probably as a plastic response to delayed ontogenetic development. Biomass was smaller in the dry treatments of that site, but it was also reduced in irrigated plots in both sites, indicating more intense competition. The shifts from limitation by drought to limitation by competition corresponded to patterns along the gradient. This also implies a larger negative impact of climate change in the drier site. Our results suggest that experimental selection in the field caused directional responses in most species, but these were not necessarily adaptive. Furthermore, competitive release imposed by climate change may revert direct negative effects of rainfall change in determining plant performance.
Collapse
|
62
|
Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH. What we still don't know about invasion genetics. Mol Ecol 2015; 24:2277-97. [PMID: 25474505 DOI: 10.1111/mec.13032] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
Publication of The Genetics of Colonizing Species in 1965 launched the field of invasion genetics and highlighted the value of biological invasions as natural ecological and evolutionary experiments. Here, we review the past 50 years of invasion genetics to assess what we have learned and what we still don't know, focusing on the genetic changes associated with invasive lineages and the evolutionary processes driving these changes. We also suggest potential studies to address still-unanswered questions. We now know, for example, that rapid adaptation of invaders is common and generally not limited by genetic variation. On the other hand, and contrary to prevailing opinion 50 years ago, the balance of evidence indicates that population bottlenecks and genetic drift typically have negative effects on invasion success, despite their potential to increase additive genetic variation and the frequency of peak shifts. Numerous unknowns remain, such as the sources of genetic variation, the role of so-called expansion load and the relative importance of propagule pressure vs. genetic diversity for successful establishment. While many such unknowns can be resolved by genomic studies, other questions may require manipulative experiments in model organisms. Such studies complement classical reciprocal transplant and field-based selection experiments, which are needed to link trait variation with components of fitness and population growth rates. We conclude by discussing the potential for studies of invasion genetics to reveal the limits to evolution and to stimulate the development of practical strategies to either minimize or maximize evolutionary responses to environmental change.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Room 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Barrett SCH. Foundations of invasion genetics: the Baker and Stebbins legacy. Mol Ecol 2015; 24:1927-41. [DOI: 10.1111/mec.13014] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Spencer C. H. Barrett
- Department of Ecology and Evolutionary Biology; University of Toronto; 25 Willcocks Street Toronto Ontario Canada M5S 3B2
| |
Collapse
|
64
|
Wellborn GA, Langerhans RB. Ecological opportunity and the adaptive diversification of lineages. Ecol Evol 2015; 5:176-95. [PMID: 25628875 PMCID: PMC4298445 DOI: 10.1002/ece3.1347] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/30/2014] [Accepted: 11/07/2014] [Indexed: 11/16/2022] Open
Abstract
The tenet that ecological opportunity drives adaptive diversification has been central to theories of speciation since Darwin, yet no widely accepted definition or mechanistic framework for the concept currently exists. We propose a definition for ecological opportunity that provides an explicit mechanism for its action. In our formulation, ecological opportunity refers to environmental conditions that both permit the persistence of a lineage within a community, as well as generate divergent natural selection within that lineage. Thus, ecological opportunity arises from two fundamental elements: (1) niche availability, the ability of a population with a phenotype previously absent from a community to persist within that community and (2) niche discordance, the diversifying selection generated by the adaptive mismatch between a population's niche-related traits and the newly encountered ecological conditions. Evolutionary response to ecological opportunity is primarily governed by (1) spatiotemporal structure of ecological opportunity, which influences dynamics of selection and development of reproductive isolation and (2) diversification potential, the biological properties of a lineage that determine its capacity to diversify. Diversification under ecological opportunity proceeds as an increase in niche breadth, development of intraspecific ecotypes, speciation, and additional cycles of diversification that may themselves be triggered by speciation. Extensive ecological opportunity may exist in depauperate communities, but it is unclear whether ecological opportunity abates in species-rich communities. Because ecological opportunity should generally increase during times of rapid and multifarious environmental change, human activities may currently be generating elevated ecological opportunity - but so far little work has directly addressed this topic. Our framework highlights the need for greater synthesis of community ecology and evolutionary biology, unifying the four major components of the concept of ecological opportunity.
Collapse
Affiliation(s)
- Gary A Wellborn
- Department of Biology, University of OklahomaNorman, Oklahoma, 73019
| | - R Brian Langerhans
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State UniversityCampus Box 7617, Raleigh, North Carolina, 27695
| |
Collapse
|
65
|
Plasticity-mediated persistence in new and changing environments. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2014:416497. [PMID: 25386380 PMCID: PMC4216699 DOI: 10.1155/2014/416497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/18/2022]
Abstract
Baldwin's synthesis of the Organicist position, first published in 1896 and elaborated in 1902, sought to rescue environmentally induced phenotypes from disrepute by showing their Darwinian significance. Of particular interest to Baldwin was plasticity's mediating role during environmental change or colonization—plastic individuals were more likely to successfully survive and reproduce in new environments than were nonplastic individuals. Once a population of plastic individuals had become established, plasticity could further mediate the future course of evolution. The evidence for plasticity-mediated persistence (PMP) is reviewed here with a particular focus on evolutionary rescue experiments, studies on invasive success, and the role of learning in survival. Many PMP studies are methodologically limited, showing that preexistent plasticity has utility in new environments (soft PMP) rather than directly demonstrating that plasticity is responsible for persistence (hard PMP). An ideal PMP study would be able to demonstrate that (1) plasticity preexisted environmental change, (2) plasticity was fortuitously beneficial in the new environment, (3) plasticity was responsible for individual persistence in the new environment, and (4) plasticity was responsible for population persistence in succeeding generations. Although PMP is not ubiquitous, Baldwin's hypotheses have been largely vindicated in theoretical and empirical studies, but much work remains.
Collapse
|
66
|
Posavi M, Gelembiuk GW, Larget B, Lee CE. Testing for beneficial reversal of dominance during salinity shifts in the invasive copepod Eurytemora affinis, and implications for the maintenance of genetic variation. Evolution 2014; 68:3166-83. [PMID: 25135455 DOI: 10.1111/evo.12502] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 07/08/2014] [Indexed: 01/21/2023]
Abstract
Maintenance of genetic variation at loci under selection has profound implications for adaptation under environmental change. In temporally and spatially varying habitats, non-neutral polymorphism could be maintained by heterozygote advantage across environments (marginal overdominance), which could be greatly increased by beneficial reversal of dominance across conditions. We tested for reversal of dominance and marginal overdominance in salinity tolerance in the saltwater-to-freshwater invading copepod Eurytemora affinis. We compared survival of F1 offspring generated by crossing saline and freshwater inbred lines (between-salinity F1 crosses) relative to within-salinity F1 crosses, across three salinities. We found evidence for both beneficial reversal of dominance and marginal overdominance in salinity tolerance. In support of reversal of dominance, survival of between-salinity F1 crosses was not different from that of freshwater F1 crosses under freshwater conditions and saltwater F1 crosses under saltwater conditions. In support of marginal overdominance, between-salinity F1 crosses exhibited significantly higher survival across salinities relative to both freshwater and saltwater F1 crosses. Our study provides a rare empirical example of complete beneficial reversal of dominance associated with environmental change. This mechanism might be crucial for maintaining genetic variation in salinity tolerance in E. affinis populations, allowing rapid adaptation to salinity changes during habitat invasions.
Collapse
Affiliation(s)
- Marijan Posavi
- Center of Rapid Evolution (CORE), University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin, 53706
| | | | | | | |
Collapse
|
67
|
Franks SJ, Munshi-South J. Go forth, evolve and prosper: the genetic basis of adaptive evolution in an invasive species. Mol Ecol 2014; 23:2137-40. [PMID: 24766629 DOI: 10.1111/mec.12718] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/04/2014] [Accepted: 03/08/2014] [Indexed: 12/11/2022]
Abstract
Invasive species stand accused of a familiar litany of offences, including displacing native species, disrupting ecological processes and causing billions of dollars in ecological damage (Cox 1999). Despite these transgressions, invasive species have at least one redeeming virtue--they offer us an unparalleled opportunity to investigate colonization and responses of populations to novel conditions in the invaded habitat (Elton 1958; Sakai et al. 2001). Invasive species are by definition colonists that have arrived and thrived in a new location. How they are able to thrive is of great interest, especially considering a paradox of invasion (Sax & Brown 2000): if many populations are locally adapted (Leimu & Fischer 2008), how could species introduced into new locations become so successful? One possibility is that populations adjust to the new conditions through plasticity--increasing production of allelopathic compounds (novel weapons), or taking advantage of new prey, for example. Alternatively, evolution could play a role, with the populations adapting to the novel conditions of the new habitat. There is increasing evidence, based on phenotypic data, for rapid adaptive evolution in invasive species (Franks et al. 2012; Colautti & Barrett 2013; Sultan et al. 2013). Prior studies have also demonstrated genetic changes in introduced populations using neutral markers, which generally do not provide information on adaptation. Thus, the genetic basis of adaptive evolution in invasive species has largely remained unknown. In this issue of Molecular Ecology, Vandepitte et al. (2014) provide some of the first evidence in invasive populations for molecular genetic changes directly linked to adaptation.
Collapse
Affiliation(s)
- Steven J Franks
- Department of Biological Sciences, Fordham University, 160 Larkin Hall, 441 E. Fordham Road, Bronx, NY, 10458, USA; Louis Calder Center-Biological Field Station, Fordham University, 53 Whippoorwill Road, Armonk, NY, 10504, USA
| | | |
Collapse
|
68
|
Hager HA, Sinasac SE, Gedalof Z, Newman JA. Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions. PLoS One 2014; 9:e100032. [PMID: 24945154 PMCID: PMC4063780 DOI: 10.1371/journal.pone.0100032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/21/2014] [Indexed: 11/18/2022] Open
Abstract
In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.
Collapse
Affiliation(s)
- Heather A. Hager
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Sarah E. Sinasac
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ze’ev Gedalof
- Department of Geography, University of Guelph, Guelph, Ontario, Canada
| | - Jonathan A. Newman
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
69
|
Lucek K, Sivasundar A, Seehausen O. DISENTANGLING THE ROLE OF PHENOTYPIC PLASTICITY AND GENETIC DIVERGENCE IN CONTEMPORARY ECOTYPE FORMATION DURING A BIOLOGICAL INVASION. Evolution 2014; 68:2619-32. [DOI: 10.1111/evo.12443] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 04/13/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Kay Lucek
- Department of Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 6 CH-3012 Bern Switzerland
- Department of Fish Ecology and Evolution, Center for Ecology; Evolution and Biogeochemistry; EAWAG Swiss Federal Institute of Aquatic Science and Technology; CH-6047 Kastanienbaum Switzerland
| | - Arjun Sivasundar
- Department of Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 6 CH-3012 Bern Switzerland
- Department of Fish Ecology and Evolution, Center for Ecology; Evolution and Biogeochemistry; EAWAG Swiss Federal Institute of Aquatic Science and Technology; CH-6047 Kastanienbaum Switzerland
- National Centre for Biological Sciences; Tata Institute for Fundamental Research; Bellary Road Bangalore 560065 India
| | - Ole Seehausen
- Department of Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 6 CH-3012 Bern Switzerland
- Department of Fish Ecology and Evolution, Center for Ecology; Evolution and Biogeochemistry; EAWAG Swiss Federal Institute of Aquatic Science and Technology; CH-6047 Kastanienbaum Switzerland
| |
Collapse
|
70
|
Matesanz S, Theiss KE, Holsinger KE, Sultan SE. Genetic diversity and population structure in Polygonum cespitosum: insights to an ongoing plant invasion. PLoS One 2014; 9:e93217. [PMID: 24695495 PMCID: PMC3973574 DOI: 10.1371/journal.pone.0093217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/01/2014] [Indexed: 01/28/2023] Open
Abstract
Molecular markers can help elucidate how neutral evolutionary forces and introduction history contribute to genetic variation in invaders. We examined genetic diversity, population structure and colonization patterns in the invasive Polygonum cespitosum, a highly selfing, tetraploid Asian annual introduced to North America. We used nine diploidized polymorphic microsatellite markers to study 16 populations in the introduced range (northeastern North America), via the analyses of 516 individuals, and asked the following questions: 1) Do populations have differing levels of within-population genetic diversity? 2) Do populations form distinct genetic clusters? 3) Does population structure reflect either geographic distances or habitat similarities? We found low heterozygosity in all populations, consistent with the selfing mating system of P. cespitosum. Despite the high selfing levels, we found substantial genetic variation within and among P. cespitosum populations, based on the percentage of polymorphic loci, allelic richness, and expected heterozygosity. Inferences from individual assignment tests (Bayesian clustering) and pairwise FST values indicated high among-population differentiation, which indicates that the effects of gene flow are limited relative to those of genetic drift, probably due to the high selfing rates and the limited seed dispersal ability of P. cespitosum. Population structure did not reflect a pattern of isolation by distance nor was it related to habitat similarities. Rather, population structure appears to be the result of the random movement of propagules across the introduced range, possibly associated with human dispersal. Furthermore, the high population differentiation, genetic diversity, and fine-scale genetic structure (populations founded by individuals from different genetic sources) in the introduced range suggest that multiple introductions to this region may have occurred. High genetic diversity may further contribute to the invasive success of P. cespitosum in its introduced range.
Collapse
Affiliation(s)
- Silvia Matesanz
- Área de Biodiversidad y Conservación. Departamento de Biología y Geología, Universidad Rey Juan Carlos, Móstoles, Spain
- * E-mail:
| | - Kathryn E. Theiss
- Biology Department, Willamette University, Salem, Oregon, United States of America
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Kent E. Holsinger
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Sonia E. Sultan
- Biology Department, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
71
|
Wolkovich EM, Cleland EE. Phenological niches and the future of invaded ecosystems with climate change. AOB PLANTS 2014; 6:plu013. [PMID: 24876295 PMCID: PMC4025191 DOI: 10.1093/aobpla/plu013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 03/18/2014] [Indexed: 05/05/2023]
Abstract
In recent years, research in invasion biology has focused increasing attention on understanding the role of phenology in shaping plant invasions. Multiple studies have found non-native species that tend to flower distinctly early or late in the growing season, advance more with warming or have shifted earlier with climate change compared with native species. This growing body of literature has focused on patterns of phenological differences, but there is a need now for mechanistic studies of how phenology contributes to invasions. To do this, however, requires understanding how phenology fits within complex functional trait relationships. Towards this goal, we review recent literature linking phenology with other functional traits, and discuss the role of phenology in mediating how plants experience disturbance and stress-via climate, herbivory and competition-across the growing season. Because climate change may alter the timing and severity of stress and disturbance in many systems, it could provide novel opportunities for invasion-depending upon the dominant climate controller of the system, the projected climate change, and the traits of native and non-native species. Based on our current understanding of plant phenological and growth strategies-especially rapid growing, early-flowering species versus later-flowering species that make slower-return investments in growth-we project optimal periods for invasions across three distinct systems under current climate change scenarios. Research on plant invasions and phenology within this predictive framework would provide a more rigorous test of what drives invader success, while at the same time testing basic plant ecological theory. Additionally, extensions could provide the basis to model how ecosystem processes may shift in the future with continued climate change.
Collapse
Affiliation(s)
- Elizabeth M Wolkovich
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada Arnold Arboretum, Harvard University, Boston, MA, USA Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Elsa E Cleland
- Division of Biological Sciences, University of California - San Diego, La Jolla, CA, USA
| |
Collapse
|
72
|
Vandepitte K, de Meyer T, Helsen K, van Acker K, Roldán-Ruiz I, Mergeay J, Honnay O. Rapid genetic adaptation precedes the spread of an exotic plant species. Mol Ecol 2014; 23:2157-64. [DOI: 10.1111/mec.12683] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Katrien Vandepitte
- Plant Conservation and Population Biology; Biology Department; University of Leuven; Kasteelpark Arenberg 31 B-3001 Heverlee Belgium
| | - Tim de Meyer
- Laboratory for Bioinformatics and Computational Genomics; Mathematical Modelling, Statistics & Bioinformatics Department; Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Kenny Helsen
- Plant Conservation and Population Biology; Biology Department; University of Leuven; Kasteelpark Arenberg 31 B-3001 Heverlee Belgium
| | - Kasper van Acker
- Plant Conservation and Population Biology; Biology Department; University of Leuven; Kasteelpark Arenberg 31 B-3001 Heverlee Belgium
| | - Isabel Roldán-Ruiz
- Plant Sciences Unit - Growth and Development; Institute for Agricultural and Fisheries Research ILVO; Caritasstraat 21 B-9090 Melle Belgium
| | - Joachim Mergeay
- Research Institute for Nature and Forest; Gaverstraat 4 B-9500 Geraardsbergen Belgium
| | - Olivier Honnay
- Plant Conservation and Population Biology; Biology Department; University of Leuven; Kasteelpark Arenberg 31 B-3001 Heverlee Belgium
| |
Collapse
|
73
|
Schlichting CD, Wund MA. Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution 2014; 68:656-72. [PMID: 24410266 DOI: 10.1111/evo.12348] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/22/2013] [Indexed: 12/16/2022]
Abstract
The relationship between genotype (which is inherited) and phenotype (the target of selection) is mediated by environmental inputs on gene expression, trait development, and phenotypic integration. Phenotypic plasticity or epigenetic modification might influence evolution in two general ways: (1) by stimulating evolutionary responses to environmental change via population persistence or by revealing cryptic genetic variation to selection, and (2) through the process of genetic accommodation, whereby natural selection acts to improve the form, regulation, and phenotypic integration of novel phenotypic variants. We provide an overview of models and mechanisms for how such evolutionary influences may be manifested both for plasticity and epigenetic marking. We point to promising avenues of research, identifying systems that can best be used to address the role of plasticity in evolution, as well as the need to apply our expanding knowledge of genetic and epigenetic mechanisms to our understanding of how genetic accommodation occurs in nature. Our review of a wide variety of studies finds widespread evidence for evolution by genetic accommodation.
Collapse
Affiliation(s)
- Carl D Schlichting
- Department of Ecology & Evolutionary Biology, U-3043, University of Connecticut, Storrs, Connecticut 06269.
| | | |
Collapse
|
74
|
Matesanz S, Sultan SE. High-performance genotypes in an introduced plant: insights to future invasiveness. Ecology 2014; 94:2464-74. [PMID: 24400498 DOI: 10.1890/12-1359.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Maintaining high reproductive output in diverse conditions has consistently been found to promote invasiveness in introduced taxa. Following on this key observation, studies have compared the performance across environments of invasive vs. native congeners, and of introduced vs. native populations within invasive species. Performance differences among genotypes within introduced species have received far less attention, although such genetic variation could be critical to invasive potential. If an introduced species contains genotypes that can maintain high fitness across contrasting environments, such broadly adaptive, high-performance genotypes could promote and shape the species' immediate spread across multiple habitats. Furthermore, their presence could lead to the evolution of greater aggressiveness in the species, as these high performers increase in frequency. We investigated the existence and distribution of high-performance genotypes in Polygonum cespitosum, a newly invasive Asian annual. We raised 416 genotypes, collected from 14 North American populations, under resource-rich conditions to identify potential high-performance genotypes (the top 5% in total reproductive output). We then compared their fitness, life history, and functional traits to a random group of the remaining genotypes in three contrasting environments to ask the following: (1) Do consistently high-performance genotypes (i.e., genotypes with high relative fitness in diverse conditions) exist within introduced-range populations? (2) If so, do these high-performance genotypes possess distinctive life history and/or functional traits? (3) Do these genotypes occur in all populations or in only a subset of populations? Genotypes initially identified as high-performance in favorable conditions also had higher reproductive output in resource-limited environments. Their fitness advantage compared with control genotypes varied in magnitude from one environment to another but was significant within all three test environments. High-performance genotypes shared a developmental syndrome characterized by rapid and high germination, fast seedling growth, early reproductive onset, and high reproductive allocation, but they did not differ in other functional traits. P. cespitosum includes a subset of genotypes with accelerated development and significantly greater fitness in both favorable and stressful conditions. The nonrandom distribution of these high-performance genotypes among populations in the species' introduced range highlights the importance of genotypic and population-level variation for invasion dynamics.
Collapse
Affiliation(s)
- Silvia Matesanz
- Departamento de Biología y Geología, Universidad Rey Juan Carlos, Móstoles, 28933, Spain.
| | - Sonia E Sultan
- Biology Department, Wesleyan University, Middletown, Connecticut 06459, USA
| |
Collapse
|
75
|
Franks SJ, Weber JJ, Aitken SN. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol Appl 2014; 7:123-39. [PMID: 24454552 PMCID: PMC3894902 DOI: 10.1111/eva.12112] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/05/2013] [Indexed: 12/14/2022] Open
Abstract
As climate change progresses, we are observing widespread changes in phenotypes in many plant populations. Whether these phenotypic changes are directly caused by climate change, and whether they result from phenotypic plasticity or evolution, are active areas of investigation. Here, we review terrestrial plant studies addressing these questions. Plastic and evolutionary responses to climate change are clearly occurring. Of the 38 studies that met our criteria for inclusion, all found plastic or evolutionary responses, with 26 studies showing both. These responses, however, may be insufficient to keep pace with climate change, as indicated by eight of 12 studies that examined this directly. There is also mixed evidence for whether evolutionary responses are adaptive, and whether they are directly caused by contemporary climatic changes. We discuss factors that will likely influence the extent of plastic and evolutionary responses, including patterns of environmental changes, species' life history characteristics including generation time and breeding system, and degree and direction of gene flow. Future studies with standardized methodologies, especially those that use direct approaches assessing responses to climate change over time, and sharing of data through public databases, will facilitate better predictions of the capacity for plant populations to respond to rapid climate change.
Collapse
Affiliation(s)
- Steven J Franks
- Department of Biological Sciences, Fordham University Bronx, NY, USA
| | - Jennifer J Weber
- Department of Biological Sciences, Fordham University Bronx, NY, USA
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
76
|
Contrasting levels of evolutionary potential in populations of the invasive plant Polygonum cespitosum. Biol Invasions 2013. [DOI: 10.1007/s10530-013-0533-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
77
|
Travis JMJ, Delgado M, Bocedi G, Baguette M, Bartoń K, Bonte D, Boulangeat I, Hodgson JA, Kubisch A, Penteriani V, Saastamoinen M, Stevens VM, Bullock JM. Dispersal and species’ responses to climate change. OIKOS 2013. [DOI: 10.1111/j.1600-0706.2013.00399.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
78
|
Guggisberg A, Lai Z, Huang J, Rieseberg LH. Transcriptome divergence between introduced and native populations of Canada thistle, Cirsium arvense. THE NEW PHYTOLOGIST 2013; 199:595-608. [PMID: 23586922 DOI: 10.1111/nph.12258] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/06/2013] [Indexed: 06/02/2023]
Abstract
Introduced plants may quickly evolve new adaptive traits upon their introduction. Canada thistle (Cirsium arvense - Cardueae, Asteraceae) is one of the worst invasive weeds worldwide. The goal of this study is to compare gene expression profiles of native (European) and introduced (North American) populations of this species, to elucidate the genetic mechanisms that may underlie such rapid adaptation. We explored the transcriptome of ten populations (five per range) of C. arvense in response to three treatments (control, nutrient deficiency and shading) using a customized microarray chip containing 63 690 expressed sequence tags (ESTs), and verified the expression level of 13 loci through real-time quantitative PCR. Only 2116 ESTs (3.5%) were found to be differentially expressed between the ranges, and 4458 ESTs (7.1%) exhibited a significant treatment-by-range effect. Among them was an overrepresentation of loci involved in stimulus and stress responses. Cirsium arvense has evolved different life history strategies on each continent. The two ranges notably differ with regard to R-protein mediated defence, sensitivity to abiotic stresses, and developmental timing. The fact that genotypes from the Midwest exhibit different expression kinetics than remaining North American samples further corroborates the hypothesis that the New World has been colonized twice, independently.
Collapse
Affiliation(s)
- Alessia Guggisberg
- Botany Department, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Institute of Integrative Biology (IBZ), ETH Zürich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - Zhao Lai
- Department of Biology and Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Jie Huang
- Department of Biology and Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Loren H Rieseberg
- Botany Department, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Biology and Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
79
|
Thomann M, Imbert E, Devaux C, Cheptou PO. Flowering plants under global pollinator decline. TRENDS IN PLANT SCIENCE 2013; 18:353-359. [PMID: 23688727 DOI: 10.1016/j.tplants.2013.04.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 06/02/2023]
Abstract
There is now compelling evidence of a reduction of pollinator richness and density at a global scale. In this opinion article, we argue that such pollinator decline intensifies pollen limitation and reduces plant reproductive success, threatening natural populations of extinction. We use genetic architecture and selection experiments on floral traits and evaluate the potential for plant reproductive strategies to adapt rapidly to new pollination environments. We propose that plant reproductive strategies could adapt to the current pollinator decline by decreasing or increasing their reliance to pollinators, for example, increasing autonomous selfing or reinforcing interactions with pollinators. We further discuss if and how adaptation of plant reproductive strategies can buffer the demographic consequences of pollinator decline, and possibly rescue plant populations from extinction.
Collapse
Affiliation(s)
- Michel Thomann
- UMR 5175 CEFE, Centre d'Ecologie Fonctionnelle et Evolutive (CNRS), 1919 Route de Mende, F-34293 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
80
|
Gangoso L, Márquez-Ferrando R, Ramírez F, Gomez-Mestre I, Figuerola J. Understanding phenotypic responses to global change. Bioessays 2013. [DOI: 10.1002/bies.201300019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
81
|
Matesanz S, Horgan-Kobelski T, Sultan SE. Phenotypic plasticity and population differentiation in an ongoing species invasion. PLoS One 2012; 7:e44955. [PMID: 23028702 PMCID: PMC3446995 DOI: 10.1371/journal.pone.0044955] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/10/2012] [Indexed: 11/19/2022] Open
Abstract
The ability to succeed in diverse conditions is a key factor allowing introduced species to successfully invade and spread across new areas. Two non-exclusive factors have been suggested to promote this ability: adaptive phenotypic plasticity of individuals, and the evolution of locally adapted populations in the new range. We investigated these individual and population-level factors in Polygonum cespitosum, an Asian annual that has recently become invasive in northeastern North America. We characterized individual fitness, life-history, and functional plasticity in response to two contrasting glasshouse habitat treatments (full sun/dry soil and understory shade/moist soil) in 165 genotypes sampled from nine geographically separate populations representing the range of light and soil moisture conditions the species inhabits in this region. Polygonum cespitosum genotypes from these introduced-range populations expressed broadly similar plasticity patterns. In response to full sun, dry conditions, genotypes from all populations increased photosynthetic rate, water use efficiency, and allocation to root tissues, dramatically increasing reproductive fitness compared to phenotypes expressed in simulated understory shade. Although there were subtle among-population differences in mean trait values as well as in the slope of plastic responses, these population differences did not reflect local adaptation to environmental conditions measured at the population sites of origin. Instead, certain populations expressed higher fitness in both glasshouse habitat treatments. We also compared the introduced-range populations to a single population from the native Asian range, and found that the native population had delayed phenology, limited functional plasticity, and lower fitness in both experimental environments compared with the introduced-range populations. Our results indicate that the future spread of P. cespitosum in its introduced range will likely be fueled by populations consisting of individuals able to express high fitness across diverse light and moisture conditions, rather than by the evolution of locally specialized populations.
Collapse
Affiliation(s)
- Silvia Matesanz
- Departamento de Biología y Geología, Universidad Rey Juan Carlos, Madrid, Spain
| | - Tim Horgan-Kobelski
- Biology Department, Wesleyan University, Middletown, Connecticut, United States of America
| | - Sonia E. Sultan
- Biology Department, Wesleyan University, Middletown, Connecticut, United States of America
- * E-mail:
| |
Collapse
|