51
|
Tanibuchi Y, Wu J, Toyohara J, Fujita Y, Iyo M, Hashimoto K. Characterization of [3H]CHIBA-1001 binding to α7 nicotinic acetylcholine receptors in the brain from rat, monkey, and human. Brain Res 2010; 1348:200-8. [DOI: 10.1016/j.brainres.2010.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/31/2010] [Accepted: 06/01/2010] [Indexed: 11/29/2022]
|
52
|
Christensen DZ, Mikkelsen JD, Hansen HH, Thomsen MS. Repeated administration of alpha7 nicotinic acetylcholine receptor (nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain. J Neurochem 2010; 114:1205-16. [PMID: 20533993 DOI: 10.1111/j.1471-4159.2010.06845.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The alpha7 nicotinic acetylcholine receptor (nAChR) is an important target for treatment of cognitive deficits in schizophrenia and Alzheimer's disease. However, the receptor desensitizes rapidly in vitro, which has led to concern regarding its applicability as a clinically relevant drug target. Here we investigate the effects of repeated agonism on alpha7 nAChR receptor levels and responsiveness in vivo in rats. Using [(125)I]-alpha-bungarotoxin (BTX) autoradiography we show that acute or repeated administration with the selective alpha7 nAChR agonist A-582941 increases the number of alpha7 nAChR binding sites in several brain regions, particularly in the prefrontal cortex. The alpha7 nAChR agonists SSR180711 and PNU-282987 also increase [(125)I]-BTX binding, suggesting that this is a general consequence of alpha7 nAChR agonism. Interestingly, the alpha7 nAChR positive allosteric modulators PNU-120596 and NS1738 do not increase [(125)I]-BTX binding. Furthermore, A-582941-induced increase in Arc and c-fos mRNA expression in the prefrontal cortex is enhanced and unaltered, respectively, after repeated administration, demonstrating that the alpha7 nAChRs remain responsive. Contrarily, A-582941-induced phosphorylation of Erk2 in the prefrontal cortex occurs following acute, but not repeated administration. Our results demonstrate that repeated agonist administration increases the number of alpha7 nAChRs in the brain, and leads to coupling versus uncoupling of specific intracellular signaling pathways. Additionally, our data suggest a fundamental difference between the sequelae of repeated administration with agonists and allosteric modulators of the alpha7 nAChR.
Collapse
Affiliation(s)
- Ditte Z Christensen
- Neurobiology Research Unit, University Hospital Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
53
|
Li T, Bunnelle WH, Ryther KB, Anderson DJ, Malysz J, Helfrich R, Grønlien JH, Håkerud M, Peters D, Schrimpf MR, Gopalakrishnan M, Ji J. Syntheses and structure–activity relationship (SAR) studies of 2,5-diazabicyclo[2.2.1]heptanes as novel α7 neuronal nicotinic receptor (NNR) ligands. Bioorg Med Chem Lett 2010; 20:3636-9. [DOI: 10.1016/j.bmcl.2010.04.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
|
54
|
Ghiron C, Haydar SN, Aschmies S, Bothmann H, Castaldo C, Cocconcelli G, Comery TA, Di L, Dunlop J, Lock T, Kramer A, Kowal D, Jow F, Grauer S, Harrison B, La Rosa S, Maccari L, Marquis KL, Micco I, Nencini A, Quinn J, Robichaud AJ, Roncarati R, Scali C, Terstappen GC, Turlizzi E, Valacchi M, Varrone M, Zanaletti R, Zanelli U. Novel Alpha-7 Nicotinic Acetylcholine Receptor Agonists Containing a Urea Moiety: Identification and Characterization of the Potent, Selective, and Orally Efficacious Agonist 1-[6-(4-Fluorophenyl)pyridin-3-yl]-3-(4-piperidin-1-ylbutyl) Urea (SEN34625/WYE-103914). J Med Chem 2010; 53:4379-89. [DOI: 10.1021/jm901692q] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chiara Ghiron
- Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Simon N. Haydar
- Chemical Sciences and Neuroscience Discovery Research, Wyeth Research, CN 8000, Princeton, New Jersey 08543-8000
| | - Suzan Aschmies
- Chemical Sciences and Neuroscience Discovery Research, Wyeth Research, CN 8000, Princeton, New Jersey 08543-8000
| | - Hendrick Bothmann
- Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Cristiana Castaldo
- Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | | | - Thomas A. Comery
- Chemical Sciences and Neuroscience Discovery Research, Wyeth Research, CN 8000, Princeton, New Jersey 08543-8000
| | - Li Di
- Chemical Sciences and Neuroscience Discovery Research, Wyeth Research, CN 8000, Princeton, New Jersey 08543-8000
| | - John Dunlop
- Chemical Sciences and Neuroscience Discovery Research, Wyeth Research, CN 8000, Princeton, New Jersey 08543-8000
| | - Tim Lock
- Chemical Sciences and Neuroscience Discovery Research, Wyeth Research, CN 8000, Princeton, New Jersey 08543-8000
| | - Angela Kramer
- Chemical Sciences and Neuroscience Discovery Research, Wyeth Research, CN 8000, Princeton, New Jersey 08543-8000
| | - Dianne Kowal
- Chemical Sciences and Neuroscience Discovery Research, Wyeth Research, CN 8000, Princeton, New Jersey 08543-8000
| | - Flora Jow
- Chemical Sciences and Neuroscience Discovery Research, Wyeth Research, CN 8000, Princeton, New Jersey 08543-8000
| | - Steve Grauer
- Chemical Sciences and Neuroscience Discovery Research, Wyeth Research, CN 8000, Princeton, New Jersey 08543-8000
| | - Boyd Harrison
- Chemical Sciences and Neuroscience Discovery Research, Wyeth Research, CN 8000, Princeton, New Jersey 08543-8000
| | - Salvatore La Rosa
- Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Laura Maccari
- Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Karen L. Marquis
- Chemical Sciences and Neuroscience Discovery Research, Wyeth Research, CN 8000, Princeton, New Jersey 08543-8000
| | - Iolanda Micco
- Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Arianna Nencini
- Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Joanna Quinn
- Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Albert J. Robichaud
- Chemical Sciences and Neuroscience Discovery Research, Wyeth Research, CN 8000, Princeton, New Jersey 08543-8000
| | - Renza Roncarati
- Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Carla Scali
- Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Georg C. Terstappen
- Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Elisa Turlizzi
- Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Michela Valacchi
- Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Maurizio Varrone
- Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Riccardo Zanaletti
- Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Ugo Zanelli
- Siena Biotech SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| |
Collapse
|
55
|
O'Donnell CJ, Rogers BN, Bronk BS, Bryce DK, Coe JW, Cook KK, Duplantier AJ, Evrard E, Hajós M, Hoffmann WE, Hurst RS, Maklad N, Mather RJ, McLean S, Nedza FM, O'Neill BT, Peng L, Qian W, Rottas MM, Sands SB, Schmidt AW, Shrikhande AV, Spracklin DK, Wong DF, Zhang A, Zhang L. Discovery of 4-(5-methyloxazolo[4,5-b]pyridin-2-yl)-1,4-diazabicyclo[3.2.2]nonane (CP-810,123), a novel alpha 7 nicotinic acetylcholine receptor agonist for the treatment of cognitive disorders in schizophrenia: synthesis, SAR development, and in vivo efficacy in cognition models. J Med Chem 2010; 53:1222-37. [PMID: 20043678 DOI: 10.1021/jm9015075] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel alpha 7 nAChR agonist, 4-(5-methyloxazolo[4,5-b]pyridin-2-yl)-1,4-diazabicyclo[3.2.2]nonane (24, CP-810,123), has been identified as a potential treatment for cognitive deficits associated with psychiatric or neurological conditions including schizophrenia and Alzheimer's disease. Compound 24 is a potent and selective compound with excellent pharmaceutical properties. In rodent, the compound displays high oral bioavailability and excellent brain penetration affording high levels of receptor occupancy and in vivo efficacy in auditory sensory gating and novel object recognition. The structural diversity of this compound and its preclinical in vitro and in vivo package support the hypothesis that alpha 7 nAChR agonists may have potential as a pharmacotherapy for the treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Christopher J O'Donnell
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Thomsen MS, Hay-Schmidt A, Hansen HH, Mikkelsen JD. Distinct neural pathways mediate α7 nicotinic acetylcholine receptor-dependent activation of the forebrain. ACTA ACUST UNITED AC 2010; 20:2092-102. [PMID: 20051354 DOI: 10.1093/cercor/bhp283] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
alpha(7) nicotinic acetylcholine receptor (nAChR) agonists are candidates for the treatment of cognitive deficits in schizophrenia. Selective alpha(7) nAChR agonists, such as SSR180711, activate neurons in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (ACCshell) in rats, regions important for cognitive function. However, the neural substrates involved in these effects remain elusive. Here we identify cortically projecting cholinergic neurons in the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain (BF) as important targets for alpha(7) nAChR activation, as measured by c-Fos immunoreactivity, a marker of neuronal activation. Selective depletion of these cholinergic neurons abolishes the SSR180711-induced activation of the mPFC but not the ACCshell, demonstrating their critical importance for alpha(7) nAChR-dependent activation of the mPFC. Contrarily, selective depletion of dopaminergic neurons in the ventral tegmental area abolishes the SSR180711-induced activation of the ACCshell but not the mPFC or HDB. These results demonstrate 2 distinct neural pathways activated by SSR180711. The BF and mPFC are important for attentional function and may subserve the procognitive effects of alpha(7) nAChR agonists, whereas activation of the ACCshell is implicated in the beneficial effect of antipsychotics on the positive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Morten S Thomsen
- Neurobiology Research Unit, Copenhagen University Hospital, DK2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
57
|
Structure–activity relationships of N-substituted ligands for the α7 nicotinic acetylcholine receptor. Bioorg Med Chem Lett 2010; 20:104-7. [DOI: 10.1016/j.bmcl.2009.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/09/2009] [Indexed: 11/18/2022]
|
58
|
Ondrejcak T, Klyubin I, Hu NW, Barry AE, Cullen WK, Rowan MJ. Alzheimer's disease amyloid beta-protein and synaptic function. Neuromolecular Med 2009; 12:13-26. [PMID: 19757208 DOI: 10.1007/s12017-009-8091-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 08/25/2009] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized neuropathologically by the deposition of different forms of amyloid beta-protein (A beta) including variable amounts of soluble species that correlate with severity of dementia. The extent of synaptic loss in the brain provides the best morphological correlate of cognitive impairment in clinical AD. Animal research on the pathophysiology of AD has therefore focussed on how soluble A beta disrupts synaptic mechanisms in vulnerable brain regions such as the hippocampus. Synaptic plasticity in the form of persistent activity-dependent increases or decreases in synaptic strength provide a neurophysiological substrate for hippocampal-dependent learning and memory. Acute treatment with human-derived or chemically prepared soluble A beta that contains certain oligomeric assemblies, potently and selectively disrupts synaptic plasticity causing inhibition of long-term potentiation (LTP) and enhancement of long-term depression (LTD) of glutamatergic transmission. Over time these and related actions of A beta have been implicated in reducing synaptic integrity. This review addresses the involvement of neurotransmitter intercellular signaling in mediating or modulating the synaptic plasticity disrupting actions of soluble A beta, with particular emphasis on the different roles of glutamatergic and cholinergic mechanisms. There is growing evidence to support the view that NMDA and possibly nicotinic receptors are critically involved in mediating the disruptive effect of A beta and that targeting muscarinic receptors can indirectly modulate A beta's actions. Such studies should help inform ongoing and future clinical trials of drugs acting through the glutamatergic and cholinergic systems.
Collapse
Affiliation(s)
- Tomas Ondrejcak
- Department of Pharmacology and Therapeutics, Biotechnology Building and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
59
|
Bunnelle WH, Tietje KR, Frost JM, Peters D, Ji J, Li T, Scanio MJC, Shi L, Anderson DJ, Dyhring T, Grønlien JH, Ween H, Thorin-Hagene K, Meyer MD. Octahydropyrrolo[3,4-c]pyrrole: A Diamine Scaffold for Construction of Either α4β2 or α7-Selective Nicotinic Acetylcholine Receptor (nAChR) Ligands. Substitutions that Switch Subtype Selectivity. J Med Chem 2009; 52:4126-41. [DOI: 10.1021/jm900249k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- William H. Bunnelle
- Neuroscience Research, Abbott Laboratories, Department R47W, Building AP9A, Abbott Park, Illinois 60064-6117
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark
| | - Karin R. Tietje
- Neuroscience Research, Abbott Laboratories, Department R47W, Building AP9A, Abbott Park, Illinois 60064-6117
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark
| | - Jennifer M. Frost
- Neuroscience Research, Abbott Laboratories, Department R47W, Building AP9A, Abbott Park, Illinois 60064-6117
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark
| | - Dan Peters
- Neuroscience Research, Abbott Laboratories, Department R47W, Building AP9A, Abbott Park, Illinois 60064-6117
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark
| | - Jianguo Ji
- Neuroscience Research, Abbott Laboratories, Department R47W, Building AP9A, Abbott Park, Illinois 60064-6117
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark
| | - Tao Li
- Neuroscience Research, Abbott Laboratories, Department R47W, Building AP9A, Abbott Park, Illinois 60064-6117
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark
| | - Marc J. C. Scanio
- Neuroscience Research, Abbott Laboratories, Department R47W, Building AP9A, Abbott Park, Illinois 60064-6117
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark
| | - Lei Shi
- Neuroscience Research, Abbott Laboratories, Department R47W, Building AP9A, Abbott Park, Illinois 60064-6117
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark
| | - David J. Anderson
- Neuroscience Research, Abbott Laboratories, Department R47W, Building AP9A, Abbott Park, Illinois 60064-6117
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark
| | - Tino Dyhring
- Neuroscience Research, Abbott Laboratories, Department R47W, Building AP9A, Abbott Park, Illinois 60064-6117
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark
| | - Jens H. Grønlien
- Neuroscience Research, Abbott Laboratories, Department R47W, Building AP9A, Abbott Park, Illinois 60064-6117
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark
| | - Hilde Ween
- Neuroscience Research, Abbott Laboratories, Department R47W, Building AP9A, Abbott Park, Illinois 60064-6117
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark
| | - Kirsten Thorin-Hagene
- Neuroscience Research, Abbott Laboratories, Department R47W, Building AP9A, Abbott Park, Illinois 60064-6117
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark
| | - Michael D. Meyer
- Neuroscience Research, Abbott Laboratories, Department R47W, Building AP9A, Abbott Park, Illinois 60064-6117
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark
| |
Collapse
|
60
|
Leiser SC, Bowlby MR, Comery TA, Dunlop J. A cog in cognition: How the α7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol Ther 2009; 122:302-11. [DOI: 10.1016/j.pharmthera.2009.03.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 03/20/2009] [Indexed: 12/11/2022]
|
61
|
Hauser TA, Kucinski A, Jordan KG, Gatto GJ, Wersinger SR, Hesse RA, Stachowiak EK, Stachowiak MK, Papke RL, Lippiello PM, Bencherif M. TC-5619: an alpha7 neuronal nicotinic receptor-selective agonist that demonstrates efficacy in animal models of the positive and negative symptoms and cognitive dysfunction of schizophrenia. Biochem Pharmacol 2009; 78:803-12. [PMID: 19482012 DOI: 10.1016/j.bcp.2009.05.030] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/19/2009] [Accepted: 05/21/2009] [Indexed: 02/07/2023]
Abstract
A growing body of evidence suggests that the alpha7 neuronal nicotinic receptor (NNR) subtype is an important target for the development of novel therapies to treat schizophrenia, offering the possibility to address not only the positive but also the cognitive and negative symptoms associated with the disease. In order to probe the relationship of alpha7 function to relevant behavioral correlates we employed TC-5619, a novel selective agonist for the alpha7 NNR subtype. TC-5619 binds with very high affinity to the alpha7 subtype and is a potent full agonist. TC-5619 has little or no activity at other nicotinic receptors, including the alpha4beta2, ganglionic (alpha3beta4) and muscle subtypes. The transgenic th(tk-)/th(tk-) mouse model that reflects many of the developmental, anatomical, and multi-transmitter biochemical aspects of schizophrenia was used to assess the antipsychotic effects of TC-5619. In these mice TC-5619 acted both alone and synergistically with the antipsychotic clozapine to correct impaired pre-pulse inhibition (PPI) and social behavior which model positive and negative symptoms, respectively. Antipsychotic and cognitive effects of TC-5619 were also assessed in rats. Similar to the results in the transgenic mice, TC-5619 significantly reversed apomorphine-induced PPI deficits. In a novel object recognition paradigm in rats TC-5619 demonstrated long-lasting enhancement of memory over a wide dose range. These results suggest that alpha7-selective agonists such as TC-5619, either alone or in combination with antipsychotics, could offer a new approach to treating the constellation of symptoms associated with schizophrenia, including cognitive dysfunction.
Collapse
MESH Headings
- Animals
- Antipsychotic Agents/pharmacology
- Antipsychotic Agents/therapeutic use
- Behavior, Animal/drug effects
- Benzofurans/pharmacology
- Benzofurans/therapeutic use
- Clozapine/pharmacology
- Clozapine/therapeutic use
- Cognition Disorders/drug therapy
- Cognition Disorders/metabolism
- Cognition Disorders/psychology
- Exploratory Behavior/drug effects
- Female
- Male
- Maze Learning/drug effects
- Mice
- Mice, Transgenic
- Neurons/metabolism
- Nicotinic Agonists/pharmacology
- Nicotinic Agonists/therapeutic use
- Promoter Regions, Genetic
- Quinuclidines/pharmacology
- Quinuclidines/therapeutic use
- Rats
- Rats, Sprague-Dawley
- Receptor, Fibroblast Growth Factor, Type 1/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptors, Nicotinic/physiology
- Reflex, Startle/drug effects
- Schizophrenia/drug therapy
- Schizophrenia/metabolism
- Schizophrenic Psychology
- Social Behavior
- Tyrosine 3-Monooxygenase/genetics
- alpha7 Nicotinic Acetylcholine Receptor
Collapse
Affiliation(s)
- T A Hauser
- Preclinical Research, Targacept, Inc, Winston-Salem, NC 27101, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Haydar SN, Ghiron C, Bettinetti L, Bothmann H, Comery TA, Dunlop J, La Rosa S, Micco I, Pollastrini M, Quinn J, Roncarati R, Scali C, Valacchi M, Varrone M, Zanaletti R. SAR and biological evaluation of SEN12333/WAY-317538: Novel alpha 7 nicotinic acetylcholine receptor agonist. Bioorg Med Chem 2009; 17:5247-58. [PMID: 19515567 DOI: 10.1016/j.bmc.2009.05.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/08/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022]
Abstract
Alpha 7 nicotinic acetylcholine receptor (alpha(7) nAChR) agonists are promising therapeutic candidates for the treatment of cognitive impairment associated with a variety of disorders including Alzheimer's disease and schizophrenia. Alpha 7 nAChRs are expressed in brain regions associated with cognitive function, regulate cholinergic neurotransmission and have been shown to be down regulated in both schizophrenia and Alzheimer's disease. Herein we report a novel, potent small molecule agonist of the alpha 7 nAChR, SEN12333/WAY-317538. This compound is a selective agonist of the alpha(7) nAChR with excellent in vitro and in vivo profiles, excellent brain penetration and oral bioavailability, and demonstrates in vivo efficacy in multiple behavioural cognition models. The SAR and biological evaluation of this series of compounds are discussed.
Collapse
Affiliation(s)
- Simon N Haydar
- Chemical Sciences and Neuroscience Discovery Research, Wyeth Research, CN 8000, Princeton, NJ 08543-8000, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Bitner RS, Nikkel AL, Markosyan S, Otte S, Puttfarcken P, Gopalakrishnan M. Selective α7 nicotinic acetylcholine receptor activation regulates glycogen synthase kinase3β and decreases tau phosphorylation in vivo. Brain Res 2009; 1265:65-74. [DOI: 10.1016/j.brainres.2009.01.069] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/23/2009] [Accepted: 01/31/2009] [Indexed: 11/27/2022]
|
64
|
Dunlop J, Lock T, Jow B, Sitzia F, Grauer S, Jow F, Kramer A, Bowlby MR, Randall A, Kowal D, Gilbert A, Comery TA, Larocque J, Soloveva V, Brown J, Roncarati R. Old and new pharmacology: positive allosteric modulation of the alpha7 nicotinic acetylcholine receptor by the 5-hydroxytryptamine(2B/C) receptor antagonist SB-206553 (3,5-dihydro-5-methyl-N-3-pyridinylbenzo[1,2-b:4,5-b']di pyrrole-1(2H)-carboxamide). J Pharmacol Exp Ther 2009; 328:766-76. [PMID: 19050173 DOI: 10.1124/jpet.108.146514] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The alpha7 nicotinic acetylcholine receptor (nAChR) has been implicated in Alzheimer's disease and schizophrenia, leading to efforts targeted toward discovering agonists and positive allosteric modulators (PAMs) of this receptor. In a Ca2+ flux fluorometric imaging plate reader assay, SB-206553 (3,5-dihydro-5-methyl -N-3-pyridinylbenzo [1, 2-b:4,5 -b']-di pyrrole-1(2H)-carboxamide), a compound known as a 5-hydroxytryptamine(2B/2C) receptor antagonist, produced an 8-fold potentiation of the evoked calcium signal in the presence of an EC(20) concentration of nicotine and a corresponding EC(50) of 1.5 muM for potentiation of EC(20) nicotine responses in GH4C1 cells expressing the alpha7 receptor. SB-206553 was devoid of direct alpha7 receptor agonist activity and selective against other nicotinic receptors. Confirmation of the PAM activity of SB-206553 on the alpha7 nAChR was obtained in patch-clamp electrophysiological experiments in GH4C1 cells, where it failed to evoke any detectable currents when applied alone, yet dramatically potentiated the currents evoked by an EC(20) (17 microM) and EC(100) (124 microM) of acetylcholine (ACh). Native nicotinic receptors in CA1 stratum radiatum interneurons of rat hippocampal slices could also be activated by ACh (200 microM), an effect that was entirely blocked by the alpha7-selective antagonist methyllycaconitine (MLA). These ACh currents were potentiated by SB-206553, which increased the area of the current response significantly, resulting in a 40-fold enhancement at 100 microM. In behavioral experiments in rats, SB-206553 reversed an MK-801 (dizocilpine maleate)-induced deficit in the prepulse inhibition of acoustic startle response, an effect attenuated in the presence of MLA. This latter observation provides further evidence in support of the potential therapeutic utility of alpha7 nAChR PAMs in schizophrenia.
Collapse
Affiliation(s)
- John Dunlop
- Discovery Neuroscience, Wyeth Research, CN-8000, Princeton, NJ 08543, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Molecular imaging of α7 nicotinic acetylcholine receptors: design and evaluation of the potent radioligand [18F]NS10743. Eur J Nucl Med Mol Imaging 2009; 36:791-800. [DOI: 10.1007/s00259-008-1031-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 11/21/2008] [Indexed: 01/05/2023]
|