51
|
Machado-Vieira R, Henter ID, Zarate CA. New targets for rapid antidepressant action. Prog Neurobiol 2017; 152:21-37. [PMID: 26724279 PMCID: PMC4919246 DOI: 10.1016/j.pneurobio.2015.12.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Current therapeutic options for major depressive disorder (MDD) and bipolar disorder (BD) are associated with a lag of onset that can prolong distress and impairment for patients, and their antidepressant efficacy is often limited. All currently approved antidepressant medications for MDD act primarily through monoaminergic mechanisms. Glutamate is the major excitatory neurotransmitter in the central nervous system, and glutamate and its cognate receptors are implicated in the pathophysiology of MDD, and in the development of novel therapeutics for this disorder. The rapid and robust antidepressant effects of the N-methyl-d-aspartate (NMDA) antagonist ketamine were first observed in 2000. Since then, other NMDA receptor antagonists have been studied in MDD. Most have demonstrated relatively modest antidepressant effects compared to ketamine, but some have shown more favorable characteristics. This article reviews the clinical evidence supporting the use of novel glutamate receptor modulators with direct affinity for cognate receptors: (1) non-competitive NMDA receptor antagonists (ketamine, memantine, dextromethorphan, AZD6765); (2) subunit (GluN2B)-specific NMDA receptor antagonists (CP-101,606/traxoprodil, MK-0657); (3) NMDA receptor glycine-site partial agonists (GLYX-13); and (4) metabotropic glutamate receptor (mGluR) modulators (AZD2066, RO4917523/basimglurant). We also briefly discuss several other theoretical glutamate receptor targets with preclinical antidepressant-like efficacy that have yet to be studied clinically; these include α-amino-3-hydroxyl-5-methyl-4-isoxazoleproprionic acid (AMPA) agonists and mGluR2/3 negative allosteric modulators. The review also discusses other promising, non-glutamatergic targets for potential rapid antidepressant effects, including the cholinergic system (scopolamine), the opioid system (ALKS-5461), corticotropin releasing factor (CRF) receptor antagonists (CP-316,311), and others.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ioline D Henter
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
52
|
Lysine Acetylation and Deacetylation in Brain Development and Neuropathies. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:19-36. [PMID: 28161493 PMCID: PMC5339409 DOI: 10.1016/j.gpb.2016.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022]
Abstract
Embryonic development is critical for the final functionality and maintenance of the adult brain. Brain development is tightly regulated by intracellular and extracellular signaling. Lysine acetylation and deacetylation are posttranslational modifications that are able to link extracellular signals to intracellular responses. A wealth of evidence indicates that lysine acetylation and deacetylation are critical for brain development and functionality. Indeed, mutations of the enzymes and cofactors responsible for these processes are often associated with neurodevelopmental and psychiatric disorders. Lysine acetylation and deacetylation are involved in all levels of brain development, starting from neuroprogenitor survival and proliferation, cell fate decisions, neuronal maturation, migration, and synaptogenesis, as well as differentiation and maturation of astrocytes and oligodendrocytes, to the establishment of neuronal circuits. Hence, fluctuations in the balance between lysine acetylation and deacetylation contribute to the final shape and performance of the brain. In this review, we summarize the current basic knowledge on the specific roles of lysine acetyltransferase (KAT) and lysine deacetylase (KDAC) complexes in brain development and the different neurodevelopmental disorders that are associated with dysfunctional lysine (de)acetylation machineries.
Collapse
|
53
|
Tremblay M, Winstanley CA. Anticonvulsant medications attenuate amphetamine-induced deficits in behavioral inhibition but not decision making under risk on a rat gambling task. Behav Brain Res 2016; 314:143-51. [DOI: 10.1016/j.bbr.2016.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/05/2016] [Accepted: 08/07/2016] [Indexed: 01/24/2023]
|
54
|
Bengesser SA, Reininghaus EZ, Lackner N, Birner A, Fellendorf FT, Platzer M, Kainzbauer N, Tropper B, Hörmanseder C, Queissner R, Kapfhammer HP, Wallner-Liebmann SJ, Fuchs R, Petek E, Windpassinger C, Schnalzenberger M, Reininghaus B, Evert B, Waha A. Is the molecular clock ticking differently in bipolar disorder? Methylation analysis of the clock gene ARNTL. World J Biol Psychiatry 2016; 19:S21-S29. [PMID: 27739341 DOI: 10.1080/15622975.2016.1231421] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/30/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The clock gene ARNTL is associated with the transcription activation of monoamine oxidase A according to previous literature. Thus, we hypothesised that methylation of ARNTL may differ between bipolar disorder (BD) and controls. METHODS The methylation status of one CpG island covering the first exon of ARNTL (PS2) and one site in the 5' region of ARNTL (cg05733463) were analysed in patients with BD (n = 151) versus controls (n = 66). Methylation analysis was performed by bisulphite-conversion of DNA from fasting blood with the EpiTect Bisulfite Kit, PCR and pyrosequencing. Analysis of covariances considering the covariates age, body mass index, sex, smoking, lithium and anticonvulsant intake were performed to test methylation differences between BD and controls. RESULTS Methylation at cg05733463 of ARNTL was significantly higher in BD than in controls (F(1,209) = 44.500, P < .001). In contrast, methylation was significantly lower in BD at PS2_POS1 compared to controls (F(1,128) = 5.787, P = .018) and by trend at PS2_POS2 (F(1,128) = 3.033, P = .084) and POS7 (F(1,34) = 3.425, P = .073). CONCLUSIONS Methylation of ARNTL differed significantly between BD and controls. Thus, our study suggests that altered epigenetic regulation of ARNTL might provide a mechanistic basis for better understanding circadian rhythms and mood swings in BD.
Collapse
Affiliation(s)
- Susanne A Bengesser
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | - Eva Z Reininghaus
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | - Nina Lackner
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | - Armin Birner
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | | | - Martina Platzer
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | - Nora Kainzbauer
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | - Bernhard Tropper
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | - Christa Hörmanseder
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | - Robert Queissner
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
| | | | | | - Robert Fuchs
- b Institute of Pathophysiology and Immunology , Medical University of Graz (MUG) , Graz , Austria
| | - Erwin Petek
- c Institute of Human Genetics , Medical University of Graz (MUG) , Graz , Austria
| | | | - Mario Schnalzenberger
- d Institute of Economics , JKU Linz , Leonding, Linz , Austria
- e Cubido business solutions , Leonding, Linz , Austria
| | - Bernd Reininghaus
- a Department of Psychiatry , Medical University of Graz (MUG) , Graz , Austria
- f Justuspark Bad Hall , Austria
| | - Bernd Evert
- g Department of Neurology , University of Bonn , Germany
| | - Andreas Waha
- h Institute of Neuropathology , University of Bonn , Germany
| |
Collapse
|
55
|
Histone deacetylase inhibition is cytotoxic to oligodendrocyte precursor cells in vitro and in vivo. Int J Dev Neurosci 2016; 54:53-61. [PMID: 27587342 DOI: 10.1016/j.ijdevneu.2016.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 11/24/2022] Open
Abstract
Histone deacetylase (HDAC) inhibition mediated by small molecule HDAC inhibitors (HDACi) has demonstrated divergent effects including toxicity towards transformed cell lines, neuroprotection in neurological disease models, and inhibition of oligodendrocyte precursor cell (OPC) differentiation to mature oligodendrocytes (OL). However, it remains unknown if transient HDAC inhibition may promote OPC survival. Using mouse cortical OPC primary cultures, we investigated the effects of the FDA approved pan-HDACi suberoylanilide hydroxamic acid (SAHA) on OPC survival. Initial studies showed differences in the HDAC expression pattern of multiple HDAC isoforms in OPCs relative to their terminally differentiated progeny cells, OLs and astrocytes. Treatment of OPCs with SAHA for up to 72h using a maximum concentration either at or lower than those necessary for cytotoxicity in most transformed cell lines resulted in over 67% reduction in viability relative to vehicle-treated OPCs. This was at least partly due to increased apoptosis as SAHA-treated cells displayed activated caspase 3 and were protected by the general caspase inhibitor Q-VD-OPH. Additionally, SAHA treatment of whole mice at postnatal day 5 induced apoptosis of cortical OPCs. These results suggest that SAHA negatively impacts OPC survival and may be detrimental to the myelinating brain and spinal cord. Such toxicity may be relevant in a clinical context as SAHA is currently involved in numerous clinical trials and is in consideration for use in the treatment of psychiatric and neurodegenerative conditions.
Collapse
|
56
|
Saavedra K, Molina-Márquez AM, Saavedra N, Zambrano T, Salazar LA. Epigenetic Modifications of Major Depressive Disorder. Int J Mol Sci 2016; 17:ijms17081279. [PMID: 27527165 PMCID: PMC5000676 DOI: 10.3390/ijms17081279] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/24/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022] Open
Abstract
Major depressive disorder (MDD) is a chronic disease whose neurological basis and pathophysiology remain poorly understood. Initially, it was proposed that genetic variations were responsible for the development of this disease. Nevertheless, several studies within the last decade have provided evidence suggesting that environmental factors play an important role in MDD pathophysiology. Alterations in epigenetics mechanism, such as DNA methylation, histone modification and microRNA expression could favor MDD advance in response to stressful experiences and environmental factors. The aim of this review is to describe genetic alterations, and particularly altered epigenetic mechanisms, that could be determinants for MDD progress, and how these alterations may arise as useful screening, diagnosis and treatment monitoring biomarkers of depressive disorders.
Collapse
Affiliation(s)
- Kathleen Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile.
| | - Ana María Molina-Márquez
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile.
| | - Nicolás Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile.
| | - Tomás Zambrano
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile.
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile.
- Millennium Institute for Research in Depression and Personality (MIDAP), Universidad de La Frontera, Temuco 4811230, Chile.
| |
Collapse
|
57
|
Chang TT, Chen SL, Chang YH, Chen PS, Chu CH, Chen SH, Huang SY, Tzeng NS, Wang LJ, Wang TY, Li CL, Chung YL, Hsieh TH, Lee IH, Chen KC, Yang YK, Hong JS, Lu RB, Lee SY. The DRD3 Ser9Gly Polymorphism Predicted Metabolic Change in Drug-Naive Patients With Bipolar II Disorder. Medicine (Baltimore) 2016; 95:e3488. [PMID: 27310943 PMCID: PMC4998429 DOI: 10.1097/md.0000000000003488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Patients with bipolar II disorder (BDII) have a higher prevalence rate of metabolic disturbance. Whether BDII itself, in addition to its current standard treatment, is a risk factor for metabolic syndrome warrants additional study. The dopamine receptor D3 (DRD3) gene, one of the candidate genes for BDII, is also involved in the dopaminergic system. We investigated whether it is related to changes in the metabolic indices of patients with BDII given 12 weeks of standard treatment.Patients with a first diagnosis of BDII (n = 117) were recruited. Metabolic profiles (cholesterol, triglycerides, fasting serum glucose, body mass index) were measured at baseline and at 2, 8, and 12 weeks. The genotype of the DRD3 Ser9Gly polymorphism (rs6280) was determined. Multiple linear regressions with generalized estimating equation methods were used.Seventy-six (65.0%) patients completed the 12-week intervention. Significant differences in triglyceride change were associated with the DRD3 Ser9Gly genotype (P = 0.03). Patients with the Ser/Ser genotype had significantly smaller triglyceride increases and a lower risk of developing metabolic syndrome than did those with the Ser/Gly+Gly/Gly genotype. However, the associations between the DRD3 Ser9Gly polymorphism with changes in triglyceride level become nonsignificant after correcting for multiple comparisons.We conclude that the DRD3 Ser9Gly polymorphism is nominally associated with changes in triglycerides and metabolic syndrome after 12 weeks of standard BDII treatment.
Collapse
Affiliation(s)
- Ting-Ting Chang
- From the Department of Psychiatry, E-Da Hospital, I-Shou University (T-TC); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), Lipid Science and Aging Research Center, KMU, Kaohsiung (S-LC); Department of Psychiatry, National Cheng Kung University Hospital, Tainan (S-LC, Y-HC, P-SC, T-YW, C-LL, Y-LC, T-HH, I-HL, K-CC, Y-KY, R-BL, S-YL); Department of Psychology, Asia University, Taichung (Y-HC); Institute of Allied Health, College of Medicine (Y-HC, R-BL); Department of Psychiatry, College of Medicine (P-SC, T-YW, I-HL, K-CC, Y-KY, R-BL, S-YL); Addiction Research Center (P-SC, R-BL); Institute of Molecular Medicine, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan (C-HC); Neurobiology Laboratory, NIH/NIEHS, Research Triangle Park, North Carolina (S-HC, J-SH); Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S-YH, N-ST); Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung (L-JW); Institute of Basic Medical Sciences, National Cheng Kung University, Tainan (Y-LC); Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin (Y-KY); Institute of Behavioral Medicine Sciences, College of Medicine and Hospital, National Cheng Kung University, Tainan (R-BL); Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan (R-BL); Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (S-YL)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Naaldijk YM, Bittencourt MC, Sack U, Ulrich H. Kinins and microglial responses in bipolar disorder: a neuroinflammation hypothesis. Biol Chem 2016; 397:283-96. [DOI: 10.1515/hsz-2015-0257] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/04/2016] [Indexed: 12/27/2022]
Abstract
Abstract
Bipolar disorder (BD) is a severe psychiatric disorder that affects up to 15% of the worldwide population. Characterized by switches in mood between mania and depression, its etiology is still unknown and efforts have been made to elucidate the mechanisms involved in first episode, development and progression of the disorder. Microglia activation, abnormal activity of GSK-3β and reduction in neurotrophic factor expression related to neuroinflammatory processes have been indicated to be part of the disorder’s pathophysiology. Lithium, the main mood stabilizer used for the treatment and prevention of relapses, acts as an anti-inflammatory agent. Based on that, here we suggest a neuroinflammatory pathway for would be BD progression, in which microglia activation states modulated via constitutive induction of kinin-B1 receptor and reduction of kinin-B2 receptor expression and activity.
Collapse
|
59
|
Moos WH, Maneta E, Pinkert CA, Irwin MH, Hoffman ME, Faller DV, Steliou K. Epigenetic Treatment of Neuropsychiatric Disorders: Autism and Schizophrenia. Drug Dev Res 2016; 77:53-72. [PMID: 26899191 DOI: 10.1002/ddr.21295] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuropsychiatric disorders are a heterogeneous group of conditions that often share underlying mitochondrial dysfunction and biological pathways implicated in their pathogenesis, progression, and treatment. To date, these disorders have proven notoriously resistant to molecular-targeted therapies, and clinical options are relegated to interventional types, which do not address the core symptoms of the disease. In this review, we discuss emerging epigenetic-driven approaches using novel acylcarnitine esters (carnitinoids) that act on master regulators of antioxidant and cytoprotective genes and mitophagic pathways. These carnitinoids are actively transported, mitochondria-localizing, biomimetic coenzyme A surrogates of short-chain fatty acids, which inhibit histone deacetylase and may reinvigorate synaptic plasticity and protect against neuronal damage. We outline these neuroprotective effects in the context of treatment of neuropsychiatric disorders such as autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.,SRI Biosciences, A Division of SRI International, Menlo Park, CA, USA
| | - Eleni Maneta
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Carl A Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, USA.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michelle E Hoffman
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Douglas V Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA.,PhenoMatriX, Inc., Boston, MA, USA
| |
Collapse
|
60
|
|
61
|
Nakai N, Otsuka S, Myung J, Takumi T. Autism spectrum disorder model mice: Focus on copy number variation and epigenetics. SCIENCE CHINA-LIFE SCIENCES 2015; 58:976-84. [DOI: 10.1007/s11427-015-4891-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
62
|
Bioprotective Carnitinoids: Lipoic Acid, Butyrate, and Mitochondria-Targeting to Treat Radiation Injury: Mitochondrial Drugs Come of Age. Drug Dev Res 2015; 76:167-75. [DOI: 10.1002/ddr.21258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 05/28/2015] [Indexed: 12/16/2022]
|
63
|
Woo H, Chun M, Yang J, Lim S, Kim M, Kim S, Myung W, Kim D, Lee S. Plasma amino acid profiling in major depressive disorder treated with selective serotonin reuptake inhibitors. CNS Neurosci Ther 2015; 21:417-424. [PMID: 25611566 PMCID: PMC6495833 DOI: 10.1111/cns.12372] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/23/2014] [Accepted: 11/28/2014] [Indexed: 12/24/2022] Open
Abstract
AIMS Amino acids are important body metabolites and seem to be helpful for understanding pathogenesis and predicting therapeutic response in major depressive disorder (MDD). We performed amino acid profiling to discover potential biomarkers in major depressive patients treated with selective serotonin reuptake inhibitors (SSRIs). METHODS Amino acid profiling using aTRAQ™ kits for Amino Acid Analysis in Physiological Fluids on a liquid chromatography-tandem mass spectrometry (LC-MS/MS) system was performed on 158 specimens at baseline and at 6 weeks after the initiation of SSRI treatment for 68 patients with MDD and from 22 healthy controls. RESULTS Baseline alpha-aminobutyric acid (ABA) discriminated the patients according to the therapeutic response. Plasma glutamic acid concentration and glutamine/glutamic acid ratio were different between before and after SSRI treatment only in the response group. Comparing patients with MDD with healthy controls, alterations of ten amino acids, including alanine, beta-alanine, beta-aminoisobutyric acid, cystathionine, ethanolamine, glutamic acid, homocystine, methionine, O-phospho-L-serine, and sarcosine, were observed in MDD. CONCLUSION Metabolism of amino acids, including ABA and glutamic acid, has the potential to contribute to understandings of pathogenesis and predictions of therapeutic response in MDD.
Collapse
Affiliation(s)
- Hye‐In Woo
- Department of Laboratory MedicineSamsung Changwon HospitalSungkyunkwan University School of MedicineChangwonKorea
| | - Mi‐Ryung Chun
- Clinical Trial CenterClinical Research InstituteSamsung Medical CenterSeoulKorea
| | - Jeong‐Soo Yang
- Clinical Trial CenterClinical Research InstituteSamsung Medical CenterSeoulKorea
| | - Shinn‐Won Lim
- SAIHSTSamsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
| | - Min‐Ji Kim
- Biostatistics teamSamsung Biomedical Research InstituteSamsung Medical CenterSeoulKorea
| | - Seon‐Woo Kim
- Biostatistics teamSamsung Biomedical Research InstituteSamsung Medical CenterSeoulKorea
| | - Woo‐Jae Myung
- Department of PsychiatrySamsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
| | - Doh‐Kwan Kim
- Department of PsychiatrySamsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
| | - Soo‐Youn Lee
- Department of Clinical Pharmacology & TherapeuticsSamsung Medical CenterSeoulKorea
- Department of Laboratory Medicine & GeneticsSamsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
| |
Collapse
|
64
|
Effects of Mood Stabilizers on Brain Energy Metabolism in Mice Submitted to an Animal Model of Mania Induced by Paradoxical Sleep Deprivation. Neurochem Res 2015; 40:1144-52. [PMID: 25894682 DOI: 10.1007/s11064-015-1575-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/23/2015] [Accepted: 04/06/2015] [Indexed: 12/17/2022]
Abstract
There is a body of evidence suggesting that mitochondrial dysfunction is involved in bipolar disorder (BD) pathogenesis. Studies suggest that abnormalities in circadian cycles are involved in the pathophysiology of affective disorders; paradoxical sleep deprivation (PSD) induces hyperlocomotion in mice. Thus, the present study aims to investigate the effects of lithium (Li) and valproate (VPA) in an animal model of mania induced by PSD for 96 h. PSD increased exploratory activity, and mood stabilizers prevented PSD-induced behavioral effects. PSD also induced a significant decrease in the activity of complex II-III in hippocampus and striatum; complex IV activity was decreased in prefrontal cortex, cerebellum, hippocampus, striatum and cerebral cortex. Additionally, VPA administration was able to prevent PSD-induced inhibition of complex II-III and IV activities in prefrontal cortex, cerebellum, hippocampus, striatum and cerebral cortex, whereas Li administration prevented PSD-induced inhibition only in prefrontal cortex and hippocampus. Regarding the enzymes of Krebs cycle, only citrate synthase activity was increased by PSD in prefrontal cortex. We also found a similar effect in creatine kinase, an important enzyme that acts in the buffering of ATP levels in brain; its activity was increased in prefrontal cortex, hippocampus and cerebral cortex. These results are consistent with the connection of mitochondrial dysfunction and hyperactivity in BD and suggest that the present model fulfills adequate face, construct and predictive validity as an animal model of mania.
Collapse
|
65
|
Effects of sodium butyrate on aversive memory in rats submitted to sepsis. Neurosci Lett 2015; 595:134-8. [PMID: 25888815 DOI: 10.1016/j.neulet.2015.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/31/2015] [Accepted: 04/10/2015] [Indexed: 01/08/2023]
Abstract
Epigenetic mechanisms are involved in normal behavior and are implicated in several brain neurodegenerative conditions, psychiatric and inflammatory diseases as well. Moreover, it has been demonstrated that sepsis lead to an imbalance in acetylation of histones and that histone deacetylase inhibitors (HDACi) can reverse this condition. In the present study, we evaluated the effects of a microinjection of sodium butyrate (SB, HDACi) into cerebral ventricle on aversive memory in rats submitted to the sepsis. Rats were given a single intraventricular injection of artificial cerebrospinal fluid (ACSF) or SB and immediately after the stereotaxic surgery and the drug infusion, the animals were subjected to cecal ligation and perforation (CLP). The animals were killed twenty four hours or ten days after sepsis induction and the prefrontal cortex, hippocampus, striatum and cortex were obtained to the determination of histone deacetylase activity. In a separate cohort of animals 10 days after sepsis induction, it was performed the inhibitory avoidance task. SB administration was able to reverse the impairment in aversive memory and inhibited the HDAC activity in prefrontal cortex and hippocampus 10 days after CLP. These support a role for an epigenetic mechanism in the long-term cognitive impairments observed in sepsis survivors animals.
Collapse
|
66
|
Resistance to antidepressant drugs: the case for a more predisposition-based and less hippocampocentric research paradigm. Behav Pharmacol 2015; 25:352-71. [PMID: 25083567 DOI: 10.1097/fbp.0000000000000066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first half of this paper briefly reviews the evidence that (i) stress precipitates depression by damaging the hippocampus, leading to changes in the activity of a distributed neural system involving, inter alia, the amygdala, the ventromedial and dorsolateral prefrontal cortex, the lateral habenula and ascending monoamine pathways, and (ii) antidepressants work by repairing the damaged hippocampus, thus restoring the normal balance of activity within that circuitry. In the second half of the paper we review the evidence that heightened vulnerability to depression, either because of a clinical history of depression or because of the presence of genetic, personality or developmental risk factors, also confers resistance to antidepressant drug treatment. Thus, although antidepressants provide an efficient means of reversing the neurotoxic effects of stress, they are much less effective in conditions where vulnerability to depression is elevated and the role of stress in precipitating depression is correspondingly lower. Consequently, the issue of vulnerability should feature much more prominently in antidepressant research. Most of the current animal models of depression are based on the induction of a depressive-like phenotype by stress, and pay scant attention to vulnerability. As antidepressants are relatively ineffective in vulnerable individuals, this in turn implies a need for the development of different clinical and preclinical methodologies, and a shift of focus away from the current preoccupation with the hippocampus as a target for antidepressant action in vulnerable patients.
Collapse
|
67
|
Dong XH, Zhen XC. Glial pathology in bipolar disorder: potential therapeutic implications. CNS Neurosci Ther 2015; 21:393-7. [PMID: 25753128 DOI: 10.1111/cns.12390] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/20/2015] [Accepted: 02/05/2015] [Indexed: 12/17/2022] Open
Abstract
Bipolar disorder (BD) is a chronic and severe mental disorder with recurrent episodes of mania and depression. In addition to neuronal alterations, accumulating evidences have revealed the importance of glial system in pathophysiology and phenotype of the illness. Postmortem studies have repeatedly demonstrated the alterations in glial cells and its functions in patients with BD. The activated microglia and inflammatory cytokines are proposed to be the potential biomarkers that may help to predict disease exacerbation in BD. On the other hand, anti-BD drugs have been shown to produce profound effects on glial activity, which not only contributes to the therapeutic efficacy, but may also provide a potential target for the drug development of BD. We will focus on the recent development of glial abnormalities and potential therapeutic benefits targeted to glial modulation in BD.
Collapse
Affiliation(s)
- Xiao-Hua Dong
- Jiangsu Key Laboratory for Translational Research for Neuropsycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmacy, Hebei North University, Zhangjiakou, Hebei, China
| | | |
Collapse
|
68
|
Varela RB, Valvassori SS, Lopes-Borges J, Mariot E, Dal-Pont GC, Amboni RT, Bianchini G, Quevedo J. Sodium butyrate and mood stabilizers block ouabain-induced hyperlocomotion and increase BDNF, NGF and GDNF levels in brain of Wistar rats. J Psychiatr Res 2015; 61:114-21. [PMID: 25467060 DOI: 10.1016/j.jpsychires.2014.11.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/14/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023]
Abstract
Bipolar Disorder (BD) is one of the most severe psychiatric disorders. Despite adequate treatment, patients continue to have recurrent mood episodes, residual symptoms, and functional impairment. Some preclinical studies have shown that histone deacetylase inhibitors may act on manic-like behaviors. Neurotrophins have been considered important mediators in the pathophysiology of BD. The present study aims to investigate the effects of lithium (Li), valproate (VPA), and sodium butyrate (SB), an HDAC inhibitor, on BDNF, NGF and GDNF in the brain of rats subjected to an animal model of mania induced by ouabain. Wistar rats received a single ICV injection of ouabain or artificial cerebrospinal fluid. From the day following ICV injection, the rats were treated for 6 days with intraperitoneal injections of saline, Li, VPA or SB twice a day. In the 7th day after ouabain injection, locomotor activity was measured using the open-field test. The BDNF, NGF and GDNF levels were measured in the hippocampus and frontal cortex by sandwich-ELISA. Li, VPA or SB treatments reversed ouabain-related manic-like behavior. Ouabain decreased BDNF, NGF and GDNF levels in hippocampus and frontal cortex of rats. The treatment with Li, VPA or SB reversed these impairment induced by ouabain. In addition, Li, VPA and SB per se increased NGF and GDNF levels in hippocampus of rats. Our data support the notion that neurotrophic factors play a role in BD and in the mechanisms of the action of Li, VPA and SB.
Collapse
Affiliation(s)
- Roger B Varela
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Samira S Valvassori
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil.
| | - Jéssica Lopes-Borges
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Edemilson Mariot
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Gustavo C Dal-Pont
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Rafaela T Amboni
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Guilherme Bianchini
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
69
|
Abstract
Recent studies have shown an association between gene alterations by epigenetic mechanisms and suicidal behavior. These epigenetic mechanisms are mitotically, and in some cases meiotically, heritable changes in the genome through non-DNA sequence coding processes that alter gene expression as a result of variable changes in environmental stimuli. Genome-wide association studies have been inconsistent in elucidating the association between genes and suicidal behavior, thereby making the heritability of suicidal behavior is unclear. However, recent epigenetic studies have provided evidence that epigenetic mechanisms could deliver the missing link between the heritability of suicidal behavior and the interaction between environment and the genome. The present review provides an in-depth discussion of epigenetic mechanisms that may regulate gene expression in suicidal behavior. The findings of current epigenetic studies on suicidal behavior will also be discussed considering future epigenome-wide association studies on elucidating the contributions of environment and genome on suicidal behavior.
Collapse
Affiliation(s)
- Ali Bani-Fatemi
- a Group for Suicide Studies, CAMH, Department of Psychiatry , University of Toronto , Toronto , Canada
| | | | | |
Collapse
|
70
|
Jeong SG, Cho GW. Trichostatin A modulates intracellular reactive oxygen species through SOD2 and FOXO1 in human bone marrow-mesenchymal stem cells. Cell Biochem Funct 2014; 33:37-43. [PMID: 25515622 DOI: 10.1002/cbf.3084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/18/2014] [Accepted: 11/07/2014] [Indexed: 12/16/2022]
Abstract
Engraft cells are often exposed to oxidative stress and inflammation; therefore, any factor that can provide the stem cells resistance to these stresses may yield better efficacy in stem cell therapy. Studies indicate that histone deacetylase (HDACs) inhibitors alleviate damage induced by oxidative stress. In this study, we investigated whether regulation of reactive oxygen species (ROS) occurs through the HDAC inhibitor trichostatin A (TSA) in human bone marrow-mesenchymal stem cells (hBM-MSCs). Intracellular ROS levels increased following exposure to hydrogen peroxide (H2 O2 ), and were suppressed by TSA treatment. Levels of the antioxidant enzyme superoxide dismutase 2 (SOD2) increased following treatment with 200 nM TSA and to a lesser level at 1-5 μM TSA. Cell protective effects against oxidative stress were significantly increased in TSA-MSCs after treatment with low doses of TSA (50-500 nM) and decreased with high doses of TSA (5-10 μM). Consistent results were obtained with immunoblot analysis for caspase3. Investigation of Forkhead box O1 (FOXO1), superoxide dismutase 2 (SOD2), and p53 levels to determine intracellular signaling by TSA in oxidative stress-induced MSCs demonstrated that expression of phosphorylated-FOXO1 and phosphorylated-SOD2 decreased in H2 O2 -treated MSCs while levels of p53 increased. These effects were reversed by the treatment of 200 nM TSA. These results suggest that the main function of ROS modulation by TSA is activated through SOD2 and FOXO1. Thus, optimal treatment with TSA may protect hBM-MSCs against oxidative stress.
Collapse
Affiliation(s)
- Sin-Gu Jeong
- Department of Biology, College of Natural Science, Chosun University, Gwangju, Korea; Department of Life Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Korea
| | | |
Collapse
|
71
|
Dempster EL, Wong CC, Lester KJ, Burrage J, Gregory AM, Mill J, Eley TC. Genome-wide methylomic analysis of monozygotic twins discordant for adolescent depression. Biol Psychiatry 2014; 76:977-83. [PMID: 24929637 PMCID: PMC4252163 DOI: 10.1016/j.biopsych.2014.04.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/14/2014] [Accepted: 04/13/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Adolescent depression is a common neuropsychiatric disorder that often continues into adulthood and is associated with a wide range of poor outcomes including suicide. Although numerous studies have looked at genetic markers associated with depression, the role of epigenetic variation remains relatively unexplored. METHODS Monozygotic (MZ) twins were selected from an adolescent twin study designed to investigate the interplay of genetic and environmental factors in the development of emotional and behavioral difficulties. There were 18 pairs of MZ twins identified in which one member scored consistently higher (group mean within the clinically significant range) on self-rated depression than the other. We assessed genome-wide patterns of DNA methylation in twin buccal cell DNA using the Infinium HumanMethylation450 BeadChip from Illumina. Quality control and data preprocessing was undertaken using the wateRmelon package. Differentially methylated probes (DMPs) were identified using an analysis strategy taking into account both the significance and the magnitude of DNA methylation differences. The top differentially methylated DMP was successfully validated by bisulfite-pyrosequencing, and identified DMPs were tested in postmortem brain samples obtained from patients with major depressive disorder (n = 14) and matched control subjects (n = 15). RESULTS Two reproducible depression-associated DMPs were identified, including the top-ranked DMP that was located within STK32C, which encodes a serine/threonine kinase, of unknown function. CONCLUSIONS Our data indicate that DNA methylation differences are apparent in MZ twins discordant for adolescent depression and that some of the disease-associated variation observed in buccal cell DNA is mirrored in adult brain tissue obtained from individuals with clinical depression.
Collapse
Affiliation(s)
- Emma L. Dempster
- University of Exeter Medical School, Exeter University, Exeter,Address correspondence to Emma L. Dempster, Ph.D., University of Exeter Medical School, Exeter University, RILD-Medical Research, Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter EX2 5DW, United Kingdom
| | - Chloe C.Y. Wong
- Social Genetic Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
| | - Kathryn J. Lester
- Social Genetic Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
| | - Joe Burrage
- University of Exeter Medical School, Exeter University, Exeter
| | - Alice M. Gregory
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Jonathan Mill
- University of Exeter Medical School, Exeter University, Exeter,Social Genetic Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
| | - Thalia C. Eley
- Social Genetic Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
| |
Collapse
|
72
|
Lopes-Borges J, Valvassori SS, Varela RB, Tonin PT, Vieira JS, Gonçalves CL, Streck EL, Quevedo J. Histone deacetylase inhibitors reverse manic-like behaviors and protect the rat brain from energetic metabolic alterations induced by ouabain. Pharmacol Biochem Behav 2014; 128:89-95. [PMID: 25433326 DOI: 10.1016/j.pbb.2014.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 11/19/2022]
Abstract
Studies have revealed alterations in mitochondrial complexes in the brains of bipolar patients. However, few studies have examined changes in the enzymes of the tricarboxylic acid cycle. Several preclinical studies have suggested that histone deacetylase inhibitors may have antimanic effects. The present study aims to investigate the effects of lithium, valproate and sodium butyrate, a histone deacetylase inhibitor, on the activity of tricarboxylic acid cycle enzymes in the brains of rats subjected to an animal model of mania induced by ouabain. Wistar rats received a single intracerebroventricular injection of ouabain or cerebrospinal fluid. Starting on the day following the intracerebroventricular injection, the rats were treated for 7days with intraperitoneal injections of saline, lithium, valproate or sodium butyrate. Risk-taking behavior, locomotor and exploratory activities were measured using the open-field test. Citrate synthase, succinate dehydrogenase, and malate dehydrogenase were examined in the frontal cortex and hippocampus. All treatments reversed ouabain-related risk-taking behavior and hyperactivity in the open-field test. Ouabain inhibited tricarboxylic acid cycle enzymes in the brain, and valproate and sodium butyrate but not lithium reversed this ouabain-induced dysfunction. Thus, protecting the tricarboxylic acid cycle may contribute to the therapeutic effects of histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Jéssica Lopes-Borges
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Samira S Valvassori
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil.
| | - Roger B Varela
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Paula T Tonin
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Julia S Vieira
- Laboratory of Bioenergetics, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Cinara L Gonçalves
- Laboratory of Bioenergetics, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Emilio L Streck
- Laboratory of Bioenergetics, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
73
|
|
74
|
Implications of epigenetic modulation for novel treatment approaches in patients with schizophrenia. Neuropharmacology 2014; 77:481-6. [DOI: 10.1016/j.neuropharm.2013.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/21/2013] [Accepted: 08/30/2013] [Indexed: 11/21/2022]
|
75
|
Abstract
From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity - reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition - limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional "unified field theory" of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial-neuronal interactions. Among these glial elements are microglia - the brain's primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the hypothalamic-pituitary-adrenal axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway, or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of bipolarity is one of the great questions facing the field and one that is likely to have profound treatment implications, given that fact that such a discovery would greatly increase our ability to individualize - and by extension, enhance - treatment.
Collapse
Affiliation(s)
- Vladimir Maletic
- Department of Neuropsychiatry and Behavioral Sciences, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Charles Raison
- Department of Psychiatry, University of Arizona , Tucson, AZ , USA ; Norton School of Family and Consumer Sciences, College of Agriculture and Life Sciences, University of Arizona , Tucson, AZ , USA
| |
Collapse
|
76
|
Gervain J, Vines BW, Chen LM, Seo RJ, Hensch TK, Werker JF, Young AH. Valproate reopens critical-period learning of absolute pitch. Front Syst Neurosci 2013; 7:102. [PMID: 24348349 PMCID: PMC3848041 DOI: 10.3389/fnsys.2013.00102] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/16/2013] [Indexed: 12/02/2022] Open
Abstract
Absolute pitch, the ability to identify or produce the pitch of a sound without a reference point, has a critical period, i.e., it can only be acquired early in life. However, research has shown that histone-deacetylase inhibitors (HDAC inhibitors) enable adult mice to establish perceptual preferences that are otherwise impossible to acquire after youth. In humans, we found that adult men who took valproate (VPA) (a HDAC inhibitor) learned to identify pitch significantly better than those taking placebo—evidence that VPA facilitated critical-period learning in the adult human brain. Importantly, this result was not due to a general change in cognitive function, but rather a specific effect on a sensory task associated with a critical-period.
Collapse
Affiliation(s)
- Judit Gervain
- Laboratoire Psychologie de la Perception, CNRS Paris, France ; Laboratoire Psychologie de la Perception, Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | - Bradley W Vines
- Department of Psychiatry, Institute of Mental Health, University of British Columbia Vancouver, BC, Canada
| | - Lawrence M Chen
- Department of Linguistics, University of Maryland College Park, MD, USA
| | - Rubo J Seo
- School of Medicine, University of Queensland Brisbane, QLD, Australia
| | - Takao K Hensch
- Department of Molecular Cellular Biology, Center for Brain Science, Harvard University Cambridge, MA, USA
| | - Janet F Werker
- Department of Psychology, University of British Columbia Vancouver, BC, Canada
| | - Allan H Young
- Centre for Affective Disorders, Institute of Psychiatry King's College London, UK
| |
Collapse
|
77
|
Wagner FF, Weїwer M, Lewis MC, Holson EB. Small molecule inhibitors of zinc-dependent histone deacetylases. Neurotherapeutics 2013; 10:589-604. [PMID: 24101253 PMCID: PMC3805861 DOI: 10.1007/s13311-013-0226-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lysine acetylation is an ancient, evolutionarily conserved, reversible post-translational modification. A multitude of diverse cellular functions are regulated by this dynamic modification, including energy and metabolism, protein folding, transcription, and translation. Gene expression can be manipulated through changes in histone acetylation status, and this process is controlled by the function of 2 opposing enzymes: histone acetyl transferases and histone deacetylases (HDACs). The zinc-dependent HDACs are a family of hydrolases that remove acetyl groups from lysines, and their function can be modulated by the action of small molecule ligands. Inhibition through competitive binding of the catalytic domain of these enzymes has been achieved by a diverse array of small molecule chemotypes. Structural biology has aided the development of potent, and in some cases highly isoform-selective, inhibitors that have demonstrated utility in a number of neurological disease models. Continued development and characterization of highly optimized small molecule inhibitors of HDAC enzymes will help refine our understanding of their function and, optimistically, lead to novel therapeutic treatment alternatives for a host of neurological disorders.
Collapse
Affiliation(s)
- Florence F. Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142 USA
| | - Michel Weїwer
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142 USA
| | - Michael C. Lewis
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142 USA
| | - Edward B. Holson
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142 USA
| |
Collapse
|
78
|
Onishi Y, Okada A, Noyori H, Okamura A, Hen N, Yagen B, Bialer M, Fujiwara M. Teratology study of amide derivatives of branched aliphatic carboxylic acids with 4-aminobenzensulfonamide in NMRI mice. ACTA ACUST UNITED AC 2013; 98:318-27. [PMID: 24039104 DOI: 10.1002/bdrb.21068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/07/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND Valproic acid (VPA), widely used to treat epilepsy, bipolar disorders, and migraine prophylaxis, is known to cause neural tube and skeletal defects in humans and animals. Aminobenzensulfonamide derivatives of VPA with branched aliphatic carboxylic acids, namely 2-methyl-N-(4-sulfamoyl-phenyl)-pentanamide (MSP), 2-ethyl-N-(4-sulfamoyl-phenyl)-butyramide (ESB), 2-ethyl-4-methyl-N-(4-sulfamoyl-phenyl)-pentanamide (EMSP), and 2-ethyl-N-(4-sulfamoyl-benzyl)-butyramide (ESBB), have shown more potent anticonvulsant activity than VPA in preclinical testing. Here, we investigated the teratogenic effects of these analogous compounds of VPA in NMRI mice. METHODS Pregnant NMRI mice were given a single subcutaneous injection of either VPA at 1.8 or 3.6 mmol/kg, or MSP, ESB, EMSP, or ESBB at 1.8, 3.6, or 4.8 mmol/kg on gestation day (GD) 8. Cesarean section was performed on GD 18, and the live fetuses were examined for external and skeletal malformations. RESULTS Compared with VPA, which induced neural tube defects (NTDs) in fetuses at 1.8 and 3.6 mmol/kg, the analog derivatives induced no NTDs at dose levels up to 4.8 mmol/kg (except for a single case of exencephaly at 4.8 mmol/kg MSP). Skeletal examination showed several abnormalities mainly at the axial skeletal level with VPA at 1.8 mmol/kg. Fused vertebrae and/or fused ribs were also observed with MSP, ESB, EMSP, and ESBB, they were less severe and seen at a lower incidence that those induced by VPA at the same dose level. CONCLUSIONS In addition to exerting more potent preclinical antiepileptic activity, teratology comparison indicates that aminobenzensulfonamide analogs are generally more weakly teratogenic than VPA.
Collapse
Affiliation(s)
- Yuko Onishi
- Drug Safety Research Laboratories, Astellas Pharma Inc, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Hoertel N, de Maricourt P, Gorwood P. Novel routes to bipolar disorder drug discovery. Expert Opin Drug Discov 2013; 8:907-18. [PMID: 23706065 DOI: 10.1517/17460441.2013.804057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is a severe and chronic medical condition typified by episodic recurrent mania (or hypomania) in addition to major depression. BD is associated with a number of negative outcomes including premature death, reduced quality of life and can also lead to other complications including impaired cognitive function. Unfortunately, the currently available pharmacological treatments for BD are insufficient for many with the condition. AREAS COVERED This review focuses on known therapeutic targets of mood stabilizing drugs including: the glycogen synthase kinase-3 (GSK-3), the phosphoinositide pathway and protein kinase C (PKC), the brain-derived neurotrophic factor (BDNF), and histone deacetylases (HDACs). This article also presents new promising therapeutic targets including: the glutamatergic pathway, mitochondrial modulators, neuropeptide-converting endopeptidases, the insulin transduction pathway, the purinergic system and the melatoninergic system. EXPERT OPINION Challenges in improving methods and tools to generate, integrate and analyze high-dimensional data are required to allow opening novel routes to BD drug discovery. Through the application of systems biology approaches and the use of bioinformatical tools to integrate all omics data, it will be possible in the near future to gain deeper insights into pathophysiology of BD. This will in turn lead to the identification and exploitation of new potential therapeutic approaches.
Collapse
Affiliation(s)
- Nicolas Hoertel
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Corentin-Celton, Service de psychiatrie, Issy-les-Moulineaux, Paris, France
| | | | | |
Collapse
|
80
|
Steliou K, Boosalis MS, Perrine SP, Sangerman J, Faller DV. Butyrate histone deacetylase inhibitors. Biores Open Access 2013; 1:192-8. [PMID: 23514803 PMCID: PMC3559235 DOI: 10.1089/biores.2012.0223] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In addition to being a part of the metabolic fatty acid fuel cycle, butyrate is also capable of inducing growth arrest in a variety of normal cell types and senescence-like phenotypes in gynecological cancer cells, inhibiting DNA synthesis and cell growth in colonic tumor cell lines, suppressing hTERT mRNA expression and telomerase activity in human prostate cancer cells, and inducing stem cell differentiation and apoptosis by DNA fragmentation. It regulates gene expression by inhibiting histone deacetylases (HDACs), enhances memory recovery and formation in mice, stimulates neurogenesis in the ischemic brain, promotes osteoblast formation, selectively blocks cell replication in transformed cells (compared to healthy cells), and can prevent and treat diet-induced obesity and insulin resistance in mouse models of obesity, as well as stimulate fetal hemoglobin expression in individuals with hematologic diseases such as the thalassemias and sickle-cell disease, in addition to a multitude of other biochemical effects in vivo. However, efforts to exploit the potential of butyrate in the clinical treatment of cancer and other medical disorders are thwarted by its poor pharmacological properties (short half-life and first-pass hepatic clearance) and the multigram doses needed to achieve therapeutic concentrations in vivo. Herein, we review some of the methods used to overcome these difficulties with an emphasis on HDAC inhibition.
Collapse
Affiliation(s)
- Kosta Steliou
- PhenoMatriX, Inc. , Boston, Massachusetts. ; Cancer Research Center, Boston University School of Medicine , Boston, Massachusetts
| | | | | | | | | |
Collapse
|
81
|
H3K4 tri-methylation in synapsin genes leads to different expression patterns in bipolar disorder and major depression. Int J Neuropsychopharmacol 2013; 16:289-99. [PMID: 22571925 PMCID: PMC3564952 DOI: 10.1017/s1461145712000363] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The synapsin family of neuronal phosphoproteins is composed of three genes (SYN1, SYN2 and SYN3) with alternative splicing resulting in a number of variants with various levels of homology. These genes have been postulated to play significant roles in several neuropsychiatric disorders, including bipolar disorder, schizophrenia and epilepsy. Epigenetic regulatory mechanisms, such as histone modifications in gene regulatory regions, have also been proposed to play a role in a number of psychiatric disorders, including bipolar disorder and major depressive disorder. One of the best characterized histone modifications is histone 3 lysine 4 tri-methylation (H3K4me3), an epigenetic mark shown to be highly enriched at transcriptional start sites and associated with active transcription. In the present study we have quantified the expression of transcript variants of the three synapsin genes and investigated their relationship to H3K4me3 promoter enrichment in post-mortem brain samples. We found that histone modification marks were significantly increased in bipolar disorder and major depression and this effect was correlated with significant increases in gene expression. Our findings suggest that synapsin dysregulation in mood disorders is mediated in part by epigenetic regulatory mechanisms.
Collapse
|
82
|
Perucca P, Mula M. Antiepileptic drug effects on mood and behavior: molecular targets. Epilepsy Behav 2013; 26:440-9. [PMID: 23092694 DOI: 10.1016/j.yebeh.2012.09.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/06/2012] [Indexed: 01/09/2023]
Abstract
With almost 100 years of clinical experience, antiepileptic drugs (AEDs) remain the mainstay of epilepsy treatment. They suppress epileptic seizures by acting on a variety of mechanisms and molecular targets involved in the regulation of neuronal excitability. These include inhibitory-GABAergic and excitatory-glutamatergic neurotransmission, as well as ion (sodium and calcium) conductance through voltage-gated channels. On the other hand, accruing evidence indicates that these mechanisms and targets are also implicated in the regulation of mood and behavior, which may explain why each AED is associated with specific psychotropic effects. These effects, however, cannot be explained solely on the basis of the known mode of action of each AED, and other mechanisms or targets are likely to be implicated. In this article, we review positive and negative effects of AEDs on mood and behavior, discuss putative underlying mechanisms, and highlight knowledge gaps which should be addressed in future studies.
Collapse
Affiliation(s)
- Piero Perucca
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | | |
Collapse
|
83
|
Alsaif M, Haenisch F, Guest PC, Rahmoune H, Bahn S. Challenges in drug target discovery in bipolar disorder. Expert Opin Ther Targets 2013; 17:565-77. [PMID: 23419165 DOI: 10.1517/14728222.2013.771169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Misdiagnosis and subsequent inappropriate treatment of patients with bipolar disorder (BD) can worsen their clinical condition and outcome. AREAS COVERED This review focuses on the therapeutic targets which have been implicated in BD, including the glycogen synthase kinase 3 (GSK-3) and phosphoinositide signaling pathways. In addition, evidence is presented for potential new molecular strategies which involve targeting neuropeptide-converting endopeptidases, glutamatergic excitotoxicity, insulin signaling and dysfunctions in mitochondrial metabolism. Current limitations in study design, molecular platforms, preclinical and cellular models in the context of BD drug target discovery, suggest that there are many areas for improvement. EXPERT OPINION For the future outlook, this review outlines the importance of developments such as the use of BD patient-derived cellular models for providing better understanding of the BD etiology and robust translational drug screening tools in combination with developments in the fields of bioinformatics and systems biology.
Collapse
Affiliation(s)
- Murtada Alsaif
- University of Cambridge, Institute of Biotechnology, Department of Chemical Engineering and Biotechnology , Tennis Court Road, Cambridge, CB2 1QT, Cambridgeshire, UK
| | | | | | | | | |
Collapse
|
84
|
Nagy C, Turecki G. Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes. Epigenomics 2012; 4:445-57. [PMID: 22920183 PMCID: PMC5293543 DOI: 10.2217/epi.12.37] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease, but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include DNA methylation, chromatin conformational changes through histone modifications, ncRNAs and, most recently, 5-hydroxymethylcytosine. Although DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods.
Collapse
Affiliation(s)
- Corina Nagy
- McGill Group for Suicide Studies, Douglas Hospital University Institute, 6875 Lasalle boul, Montreal, QC, Canada
| | | |
Collapse
|
85
|
D'Addario C, Caputi FF, Ekström TJ, Di Benedetto M, Maccarrone M, Romualdi P, Candeletti S. Ethanol induces epigenetic modulation of prodynorphin and pronociceptin gene expression in the rat amygdala complex. J Mol Neurosci 2012; 49:312-9. [PMID: 22684622 DOI: 10.1007/s12031-012-9829-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/30/2012] [Indexed: 12/16/2022]
Abstract
Several studies demonstrated the role of the endogenous opioid system in the development of susceptibility to alcohol dependence. Recently, we reported that binge intragastric administration of ethanol induces selective alterations of pronociceptin and prodynorphin gene expression in the rat amygdala complex depending on the days of exposures and on the development of tolerance and dependence. The aim of the present study was to investigate the potential epigenetic mechanisms leading to these alcohol-induced changes in gene expression. Specific histone modifications and DNA methylation at opioid peptide precursor promoters were analyzed by chromatin immunoprecipitation and real-time methylation-specific PCR, respectively. We found a linkage between gene expression alterations and epigenetic modulation at pronociceptin and prodynorphin promoters following alcohol treatment. In animals treated for 1 day, we observed a reversed correlation, with a decrease of histone 3 lysine 27 trimethylation (repressive mark) and an increase of histone 3 lysine 9 acetylation (activating mark), associated with both gene expression up-regulation. In rats treated with alcohol for up to 5 days, we found an increase in histone 3 lysine 9 acetylation in the pronociceptin promoter providing further evidence of the already proposed possible role for histone deacetylases for addiction treatment. No significant alterations in DNA methylation and histone 3 lysine 4 trimethylation following different alcohol exposures were present, suggesting the selectivity of epigenetic effects induced by alcohol. These data demonstrate that ethanol induces selective epigenetic changes, thus better defining the role of opioid peptides in the ethanol-induced effects in the amygdala complex.
Collapse
Affiliation(s)
- Claudio D'Addario
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy.
| | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
DNA methylation and chromatin modifications regulate gene expression and contribute to changes in brain transcriptomes underlying neurodevelopmental and psychiatric disorders. Clinical genetics and preclinical animal models highlight the crucial importance of the correct establishment of epigenetic marks during sensitive windows of development for normal brain function. On the same side of the coin, some of the concerned factors also appear engaged in the programming of experience-dependent long-term effects on mental health following exposure to relevant early-life events. Delineating the particular role of genetic variations in these players could provide new insights into the molecular basis of vulnerability and resilience and advance tailored therapies.
Collapse
|
87
|
Neuroanatomical Profile of Antimaniac Effects of Histone Deacetylases Inhibitors. Mol Neurobiol 2011; 43:207-14. [DOI: 10.1007/s12035-011-8178-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/03/2011] [Indexed: 11/27/2022]
|