51
|
Dam B, Dam S, Blom J, Liesack W. Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp. strain SC2. PLoS One 2013; 8:e74767. [PMID: 24130670 PMCID: PMC3794950 DOI: 10.1371/journal.pone.0074767] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/28/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Methylocystis sp. strain SC2 can adapt to a wide range of methane concentrations. This is due to the presence of two isozymes of particulate methane monooxygenase exhibiting different methane oxidation kinetics. To gain insight into the underlying genetic information, its genome was sequenced and found to comprise a 3.77 Mb chromosome and two large plasmids. PRINCIPAL FINDINGS We report important features of the strain SC2 genome. Its sequence is compared with those of seven other methanotroph genomes, comprising members of the Alphaproteobacteria, Gammaproteobacteria, and Verrucomicrobia. While the pan-genome of all eight methanotroph genomes totals 19,358 CDS, only 154 CDS are shared. The number of core genes increased with phylogenetic relatedness: 328 CDS for proteobacterial methanotrophs and 1,853 CDS for the three alphaproteobacterial Methylocystaceae members, Methylocystis sp. strain SC2 and strain Rockwell, and Methylosinus trichosporium OB3b. The comparative study was coupled with physiological experiments to verify that strain SC2 has diverse nitrogen metabolism capabilities. In correspondence to a full complement of 34 genes involved in N2 fixation, strain SC2 was found to grow with atmospheric N2 as the sole nitrogen source, preferably at low oxygen concentrations. Denitrification-mediated accumulation of 0.7 nmol (30)N2/hr/mg dry weight of cells under anoxic conditions was detected by tracer analysis. N2 production is related to the activities of plasmid-borne nitric oxide and nitrous oxide reductases. CONCLUSIONS/PERSPECTIVES Presence of a complete denitrification pathway in strain SC2, including the plasmid-encoded nosRZDFYX operon, is unique among known methanotrophs. However, the exact ecophysiological role of this pathway still needs to be elucidated. Detoxification of toxic nitrogen compounds and energy conservation under oxygen-limiting conditions are among the possible roles. Relevant features that may stimulate further research are, for example, absence of CRISPR/Cas systems in strain SC2, high number of iron acquisition systems in strain OB3b, and large number of transposases in strain Rockwell.
Collapse
Affiliation(s)
- Bomba Dam
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Somasri Dam
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Jochen Blom
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Werner Liesack
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
52
|
The (d)evolution of methanotrophy in the Beijerinckiaceae--a comparative genomics analysis. ISME JOURNAL 2013; 8:369-82. [PMID: 23985741 DOI: 10.1038/ismej.2013.145] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/17/2013] [Accepted: 07/24/2013] [Indexed: 01/26/2023]
Abstract
The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT. This was supported by a compositional analysis suggesting that all MMOs in Alphaproteobacteria methanotrophs are foreign in origin. Some members of the Beijerinckiaceae subsequently lost methanotrophic functions and regained the ability to grow on multicarbon energy substrates. We conclude that B. indica is a recidivist multitroph, the only known example of a bacterium having completely abandoned an evolved lifestyle of specialized methanotrophy.
Collapse
|
53
|
Deng Y, Cui X, Lüke C, Dumont MG. Aerobic methanotroph diversity in Riganqiao peatlands on the Qinghai-Tibetan Plateau. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:566-574. [PMID: 23864571 DOI: 10.1111/1758-2229.12046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 06/02/2023]
Abstract
The Zoige Plateau is characterized by its high altitude, low latitude and low annual mean temperature of approximately 1°C and is a major source of atmospheric methane in the Qinghai-Tibetan Plateau. Methanotrophs play an important role in the global cycling of CH4, but the diversity, identity and activity of methanotrophs in this region are poorly characterized. Soils were collected from hummocks and hollows in the Riganqiao peatland and the methanotroph community was analysed by qPCR and sequencing methane monooxygenase (pmoA and mmoX) genes. The pmoA genes ranged between 10(7) and 10(8) copies g(-1) fresh soil, with a somewhat greater abundance in hummocks than hollows. The pmoA genes were analysed by amplicon pyrosequencing and the mmoX genes by cloning and sequencing. Methylocystis species were found to be the most abundant methanotrophs, but numerous clades were present including three novel pmoA and three novel mmoX clusters. There were differences between the methanotroph communities in the hummocks and hollows, with the most significant being an increased abundance of uncultivated type Ib methanotrophs in the hollows. The results indicate that aerobic methanotrophs are abundant in Riganqiao peatland and include previously undetected clades in this geographically isolated and distinctive environment.
Collapse
Affiliation(s)
- Yongcui Deng
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | | | | | | |
Collapse
|
54
|
Sullivan BW, Selmants PC, Hart SC. Does dissolved organic carbon regulate biological methane oxidation in semiarid soils? GLOBAL CHANGE BIOLOGY 2013; 19:2149-2157. [PMID: 23526765 DOI: 10.1111/gcb.12201] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/18/2013] [Accepted: 01/30/2013] [Indexed: 06/02/2023]
Abstract
In humid ecosystems, the rate of methane (CH4 ) oxidation by soil-dwelling methane-oxidizing bacteria (MOB) is controlled by soil texture and soil water holding capacity, both of which limit the diffusion of atmospheric CH4 into the soil. However, it remains unclear whether these same mechanisms control CH4 oxidation in more arid soils. This study was designed to measure the proximate controls of potential CH4 oxidation in semiarid soils during different seasons. Using a unique and well-constrained 3-million-year-old semiarid substrate age gradient, we were able to hold state factors constant while exploring the relationship between seasonal potential CH4 oxidation rates and soil texture, soil water holding capacity, and dissolved organic carbon (DOC). We measured unexpectedly higher rates of potential CH4 oxidation in the wet season than the dry season. Although other studies have attributed low CH4 oxidation rates in dry soils to desiccation of MOB, we present several lines of evidence that this may be inaccurate. We found that soil DOC concentration explained CH4 oxidation rates better than soil physical factors that regulate the diffusion of CH4 from the atmosphere into the soil. We show evidence that MOB facultatively incorporated isotopically labeled glucose into their cells, and MOB utilized glucose in a pattern among our study sites that was similar to wet-season CH4 oxidation rates. This evidence suggests that DOC, which is utilized by MOB in other environments with varying effects on CH4 oxidation rates, may be an important regulator of CH4 oxidation rates in semiarid soils. Our collective understanding of the facultative use of DOC by MOB is still in its infancy, but our results suggest it may be an important factor controlling CH4 oxidation in soils from dry ecosystems.
Collapse
|
55
|
Bodelier PLE, Meima-Franke M, Hordijk CA, Steenbergh AK, Hefting MM, Bodrossy L, von Bergen M, Seifert J. Microbial minorities modulate methane consumption through niche partitioning. ISME JOURNAL 2013; 7:2214-28. [PMID: 23788331 DOI: 10.1038/ismej.2013.99] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/03/2013] [Accepted: 05/17/2013] [Indexed: 01/12/2023]
Abstract
Microbes catalyze all major geochemical cycles on earth. However, the role of microbial traits and community composition in biogeochemical cycles is still poorly understood mainly due to the inability to assess the community members that are actually performing biogeochemical conversions in complex environmental samples. Here we applied a polyphasic approach to assess the role of microbial community composition in modulating methane emission from a riparian floodplain. We show that the dynamics and intensity of methane consumption in riparian wetlands coincide with relative abundance and activity of specific subgroups of methane-oxidizing bacteria (MOB), which can be considered as a minor component of the microbial community in this ecosystem. Microarray-based community composition analyses demonstrated linear relationships of MOB diversity parameters and in vitro methane consumption. Incubations using intact cores in combination with stable isotope labeling of lipids and proteins corroborated the correlative evidence from in vitro incubations demonstrating γ-proteobacterial MOB subgroups to be responsible for methane oxidation. The results obtained within the riparian flooding gradient collectively demonstrate that niche partitioning of MOB within a community comprised of a very limited amount of active species modulates methane consumption and emission from this wetland. The implications of the results obtained for biodiversity-ecosystem functioning are discussed with special reference to the role of spatial and temporal heterogeneity and functional redundancy.
Collapse
Affiliation(s)
- Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Ho A, Kerckhof FM, Luke C, Reim A, Krause S, Boon N, Bodelier PLE. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:335-45. [PMID: 23754714 DOI: 10.1111/j.1758-2229.2012.00370.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/06/2012] [Accepted: 07/15/2012] [Indexed: 05/11/2023]
Abstract
Methane-oxidizing bacteria (MOB) possess the ability to use methane for energy generation and growth, thereby, providing a key ecosystem service that is highly relevant to the regulation of the global climate. MOB subgroups have different responses to key environmental controls, reflecting on their functional traits. Their unique features (C1-metabolism, unique lipids and congruence between the 16S rRNA and pmoA gene phylogeny) have facilitated numerous environmental studies, which in combination with the availability of cultured representatives, yield the most comprehensive ecological picture of any known microbial functional guild. Here, we focus on the broad MOB subgroups (type I and type II MOB), and aim to conceptualize MOB functional traits and observational characteristics derived primarily from these environmental studies to be interpreted as microbial life strategies. We focus on the functional traits, and the conditions under which these traits will render different MOB subgroups a selective advantage. We hypothesize that type I and type II MOB generally have distinct life strategies, enabling them to predominate under different conditions and maintain functionality. The ecological characteristics implicated in their adopted life strategies are discussed, and incorporated into the Competitor-Stress tolerator-Ruderal functional classification framework as put forward for plant communities. In this context, type I MOB can broadly be classified as competitor-ruderal while type II MOB fit more within the stress tolerator categories. Finally, we provide an outlook on MOB applications by exemplifying two approaches where their inferred life strategies could be exploited thereby, putting MOB into the context of microbial resource management.
Collapse
Affiliation(s)
- Adrian Ho
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Coupure Links 653, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
57
|
Zhao T, Zhang L, Zhang Y, Xing Z, Peng X. Characterization of Methylocystis strain JTA1 isolated from aged refuse and its tolerance to chloroform. J Environ Sci (China) 2013; 25:770-775. [PMID: 23923786 DOI: 10.1016/s1001-0742(12)60046-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To accelerate the efficiency of methane biodegradation in landfills, a Gram-negative, rod-shaped, non-motile, non-spore-forming bacterium, JTA1, which can utilize methane as well as acetate, was isolated from the Laogang MSW landfills, Shanghai, China. Strain JTA1 was a member of genus Methylocystis on the basis of 16S rRNA and pmoA gene sequence similarity. The maximum specific cell growth rates (micro(max) = 0.042 hr(-1), R2 = 0.995) was derived through Boltzmann simulation, and the apparent half-saturation constants (K(m(app)) = 7.08 mmol/L, R2 = 0.982) was calculated according to Michaelis-Menton hyperbolic model, indicating that Methylocystis strain JTA1 had higher-affinity potential for methane oxidation than other reported methanotrophs. By way of adding the strain JTA1 culture, the methane consumption of aged refuse reached 115 mL, almost two times of control experiment. In addition, high tolerance of Methylocystis strain JTA1 to chloroform could facilitate the methane oxidation of aged refuse bio-covers. At the chloroform concentration of 50 mg/L, the methane-oxidation rate of bio-cover reached 0.114 mL/(day x g), much higher than the highest rate, 0.0135 mL/(day x g), of reported bio-covers. In conclusion, strain JTA1 opens up a new possibility for environmental biotechnology, such as soil or landfills bioremediation and wastewater decontamination.
Collapse
Affiliation(s)
- Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | | | | | | | | |
Collapse
|
58
|
Complete genome sequence of Methylocystis sp. strain SC2, an aerobic methanotroph with high-affinity methane oxidation potential. J Bacteriol 2013; 194:6008-9. [PMID: 23045511 DOI: 10.1128/jb.01446-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylocystis sp. strain SC2 is an aerobic type II methanotroph isolated from a highly polluted aquifer in Germany. A specific trait of the SC2 strain is the expression of two isozymes of particulate methane monooxygenase with different methane oxidation kinetics. Here we report the complete genome sequence of this methanotroph that contains not only a circular chromosome but also two large plasmids.
Collapse
|
59
|
Bodelier PLE, Bär-Gilissen MJ, Meima-Franke M, Hordijk K. Structural and functional response of methane-consuming microbial communities to different flooding regimes in riparian soils. Ecol Evol 2012; 2:106-27. [PMID: 22408730 PMCID: PMC3297182 DOI: 10.1002/ece3.34] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 02/02/2023] Open
Abstract
Climate change will lead to more extreme precipitation and associated increase of flooding events of soils. This can turn these soils from a sink into a source of atmospheric methane. The latter will depend on the balance of microbial methane production and oxidation. In the present study, the structural and functional response of methane oxidizing microbial communities was investigated in a riparian flooding gradient. Four sites differing in flooding frequency were sampled and soil-physico-chemistry as well as methane oxidizing activities, numbers and community composition were assessed. Next to this, the active community members were determined by stable isotope probing of lipids. Methane consumption as well as population size distinctly increased with flooding frequency. All methane consumption parameters (activity, numbers, lipids) correlated with soil moisture, organic matter content, and conductivity. Methane oxidizing bacteria were present and activated quickly even in seldom flooded soils. However, the active species comprised only a few representatives belonging to the genera Methylobacter, Methylosarcina, and Methylocystis, the latter being active only in permanently or regularly flooded soils. This study demonstrates that soils exposed to irregular flooding harbor a very responsive methane oxidizing community that has the potential to mitigate methane produced in these soils. The number of active species is limited and dominated by one methane oxidizing lineage. Knowledge on the characteristics of these microbes is necessary to assess the effects of flooding of soils and subsequent methane cycling therein.
Collapse
Affiliation(s)
- Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands
| | | | | | | |
Collapse
|
60
|
Jagadevan S, Semrau JD. Priority pollutant degradation by the facultative methanotroph, Methylocystis strain SB2. Appl Microbiol Biotechnol 2012; 97:5089-96. [DOI: 10.1007/s00253-012-4310-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 07/08/2012] [Accepted: 07/14/2012] [Indexed: 01/28/2023]
|
61
|
Khadem AF, Pol A, Wieczorek AS, Jetten MSM, Op den Camp HJM. Metabolic Regulation of "Ca. Methylacidiphilum Fumariolicum" SolV Cells Grown Under Different Nitrogen and Oxygen Limitations. Front Microbiol 2012; 3:266. [PMID: 22848206 PMCID: PMC3404531 DOI: 10.3389/fmicb.2012.00266] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/05/2012] [Indexed: 11/13/2022] Open
Abstract
Aerobic methanotrophic bacteria can use methane as their sole energy source. The discovery of “Ca. Methylacidiphilum fumariolicum” strain SolV and other verrucomicrobial methanotrophs has revealed that the ability of bacteria to oxidize CH4 is much more diverse than has previously been assumed in terms of ecology, phylogeny, and physiology. A remarkable characteristic of the methane-oxidizing Verrucomicrobia is their extremely acidophilic phenotype, growing even below pH 1. In this study we used RNA-Seq to analyze the metabolic regulation of “Ca. M. fumariolicum” SolV cells growing at μmax in batch culture or under nitrogen fixing or oxygen limited conditions in chemostats, all at pH 2. The analysis showed that two of the three pmoCAB operons each encoding particulate methane monoxygenases were differentially expressed, probably regulated by the available oxygen. The hydrogen produced during N2 fixation is apparently recycled as demonstrated by the upregulation of the genes encoding a Ni/Fe-dependent hydrogenase. These hydrogenase genes were also upregulated under low oxygen conditions. Handling of nitrosative stress was shown by the expression of the nitric oxide reductase encoding genes norB and norC under all conditions tested, the upregulation of nitrite reductase nirK under oxygen limitation and of hydroxylamine oxidoreductase hao in the presence of ammonium. Unraveling the gene regulation of carbon and nitrogen metabolism helps to understand the underlying physiological adaptations of strain SolV in view of the harsh conditions of its natural ecosystem.
Collapse
Affiliation(s)
- Ahmad F Khadem
- Department of Microbiology, Institute of Water and Wetland Research, Radboud University Nijmegen Nijmegen, Netherlands
| | | | | | | | | |
Collapse
|
62
|
Belova SE, Kulichevskaya IS, Bodelier PLE, Dedysh SN. Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. Int J Syst Evol Microbiol 2012; 63:1096-1104. [PMID: 22707532 DOI: 10.1099/ijs.0.043505-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A novel species is proposed for two facultatively methanotrophic representatives of the genus Methylocystis, strains H2s(T) and S284, which were isolated from an acidic (pH 4.3) Sphagnum peat-bog lake (Teufelssee, Germany) and an acidic (pH 3.8) peat bog (European North Russia), respectively. Cells of strains H2s(T) and S284 are aerobic, Gram-negative, non-motile, curved coccoids or short rods that contain an intracytoplasmic membrane system typical of type-II methanotrophs. They possess both a soluble and a particulate methane monooxygenase (MMO); the latter is represented by two isozymes, pMMO1 and pMMO2. The preferred growth substrates are methane and methanol. In the absence of C1 substrates, however, these methanotrophs are capable of slow growth on acetate. Atmospheric nitrogen is fixed by means of an aerotolerant nitrogenase. Strains H2s(T) and S284 grow between pH 4.2 and 7.6 (optimum pH 6.0-6.5) and at 8-37 °C (optimum 25-30 °C). The major fatty acids are C18 : 1ω8c, C18 : 1ω7c and C16 : 1ω7c; the major quinone is Q-8. The DNA G+C content is 62.0-62.3 mol%. Strains H2s(T) and S284 share identical 16S rRNA gene sequences, which displayed 96.6-97.3 % similarity to sequences of other taxonomically characterized members of the genus Methylocystis. Therefore, strains H2s(T) and S284 are classified as members of a novel species, for which the name Methylocystis bryophila sp. nov. is proposed; strain H2s(T) ( = DSM 21852(T) = VKM B-2545(T)) is the type strain.
Collapse
Affiliation(s)
- Svetlana E Belova
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Irina S Kulichevskaya
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Paul L E Bodelier
- Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700AB Wageningen, The Netherlands
| | - Svetlana N Dedysh
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| |
Collapse
|
63
|
Krause S, Lüke C, Frenzel P. Methane source strength and energy flow shape methanotrophic communities in oxygen-methane counter-gradients. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:203-8. [PMID: 23757274 DOI: 10.1111/j.1758-2229.2011.00322.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The role of microbial diversity for ecosystem functioning has become an important subject in microbial ecology. Recent work indicates that microbial communities and microbial processes can be very sensitive to anthropogenic disturbances. However, to what extent microbial communities may change upon, resist to, or overcome disturbances might differ depending on substrate availability. We used soil from an Italian rice field in gradient microcosms, and analysed the response of methanotrophic communities to an NH4 (+) pulse as a potential disturbance under two different CH4 source strengths. We found a significant influence of source strength, i.e. the energy flow through the methanotrophic community, while NH4 (+) had no effect. Our data suggest that historical contingencies, i.e. nitrogen fertilization, led to an ammonium-tolerant MOB community. Methanotrophs were able to oxidize virtually all CH4 diffusing into the oxic-anoxic boundary layer regardless of NH4 (+) addition. Total and active methanotrophic communities were assessed by a pmoA-specific microarray. From the reservoir of dormant methanotrophs, different species became active with Methylobacter and an environmental cluster affiliated with paddy soils being indicative for high CH4 source strength. Thus, a microbial seed bank is an important prerequisite to maintain functioning in a fluctuating environment.
Collapse
Affiliation(s)
- Sascha Krause
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 6708 AB Wageningen, The Netherlands
| | | | | |
Collapse
|
64
|
Kolb S, Horn MA. Microbial CH(4) and N(2)O Consumption in Acidic Wetlands. Front Microbiol 2012; 3:78. [PMID: 22403579 PMCID: PMC3291872 DOI: 10.3389/fmicb.2012.00078] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/15/2012] [Indexed: 01/21/2023] Open
Abstract
Acidic wetlands are global sources of the atmospheric greenhouse gases methane (CH(4)), and nitrous oxide (N(2)O). Consumption of both atmospheric gases has been observed in various acidic wetlands, but information on the microbial mechanisms underlying these phenomena is scarce. A substantial amount of CH(4) is consumed in sub soil by aerobic methanotrophs at anoxic-oxic interfaces (e.g., tissues of Sphagnum mosses, rhizosphere of vascular plant roots). Methylocystis-related species are likely candidates that are involved in the consumption of atmospheric CH(4) in acidic wetlands. Oxygen availability regulates the activity of methanotrophs of acidic wetlands. Other parameters impacting on the methanotroph-mediated CH(4) consumption have not been systematically evaluated. N(2)O is produced and consumed by microbial denitrification, thus rendering acidic wetlands as temporary sources or sinks for N(2)O. Denitrifier communities in such ecosystems are diverse, and largely uncultured and/or new, and environmental factors that control their consumption activity are unresolved. Analyses of the composition of N(2)O reductase genes in acidic wetlands suggest that acid-tolerant Proteobacteria have the potential to mediate N(2)O consumption in such soils. Thus, the fragmented current state of knowledge raises open questions concerning methanotrophs and denitrifiers that consume atmospheric CH(4) and N(2)O in acidic wetlands.
Collapse
Affiliation(s)
- Steffen Kolb
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany
| | - Marcus A. Horn
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany
| |
Collapse
|
65
|
Wang J, Krause S, Muyzer G, Meima-Franke M, Laanbroek HJ, Bodelier PLE. Spatial patterns of iron- and methane-oxidizing bacterial communities in an irregularly flooded, riparian wetland. Front Microbiol 2012; 3:64. [PMID: 22375139 PMCID: PMC3284728 DOI: 10.3389/fmicb.2012.00064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/06/2012] [Indexed: 11/13/2022] Open
Abstract
Iron- and methane-cycling are important processes in wetlands with one connected to plant growth and the other to greenhouse gas emission, respectively. In contrast to acidic habitats, there is scarce information on the ecology of microbes oxidizing ferrous iron at circumneutral pH. The latter is mainly due to the lack of isolated representatives and molecular detection techniques. Recently, we developed PCR-DGGE and qPCR assays to detect and enumerate Gallionella-related neutrophilic iron-oxidizers (Ga-FeOB) enabling the assessment of controlling physical as well as biological factors in various ecosystems. In this study, we investigated the spatial distribution of Ga-FeOB in co-occurrence with methane-oxidizing bacteria (MOB) in a riparian wetland. Soil samples were collected at different spatial scales (ranging from meters to centimeters) representing a hydrological gradient. The diversity of Ga-FeOB was assessed using PCR-DGGE and the abundance of both Ga-FeOB and MOB by qPCR. Geostatistical methods were applied to visualize the spatial distribution of both groups. Spatial distribution as well as abundance of Ga-FeOB and MOB was clearly correlated to the hydrological gradient as expressed in moisture content of the soil. Ga-FeOB outnumbered the MOB subgroups suggesting their competitiveness or the prevalence of Fe(2+) over CH(4) oxidation in this floodplain.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Sascha Krause
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Gerard Muyzer
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, AmsterdamNetherlands
| | - Marion Meima-Franke
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Hendrikus J. Laanbroek
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
- Institute of Environmental Biology, Utrecht UniversityUtrecht, Netherlands
| | - Paul L. E. Bodelier
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| |
Collapse
|
66
|
Siljanen HMP, Saari A, Bodrossy L, Martikainen PJ. Effects of nitrogen load on the function and diversity of methanotrophs in the littoral wetland of a boreal lake. Front Microbiol 2012; 3:39. [PMID: 22363324 PMCID: PMC3282490 DOI: 10.3389/fmicb.2012.00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/24/2012] [Indexed: 01/23/2023] Open
Abstract
Methane is the second most abundant greenhouse gas in the atmosphere. A major part of the total methane emissions from lake ecosystems is emitted from littoral wetlands. Methane emissions are significantly reduced by methanotrophs, as they use methane as their sole energy and carbon source. Methanotrophic activity can be either activated or inhibited by nitrogen. However, the effects of nitrogen on methanotrophs in littoral wetlands are unknown. Here we report how nitrogen loading in situ affected the function and diversity of methanotrophs in a boreal littoral wetland. Methanotrophic community composition and functional diversity were analyzed with a particulate methane monooxygenase (pmoA) gene targeted microarray. Nitrogen load had no effects on methane oxidation potential and methane fluxes. Nitrogen load activated pmoA gene transcription of type I (Methylobacter, Methylomonas, and LW21-freshwater phylotypes) methanotrophs, but decreased the relative abundance of type II (Methylocystis, Methylosinus trichosporium, and Methylosinus phylotypes) methanotrophs. Hence, the overall activity of a methanotroph community in littoral wetlands is not affected by nitrogen leached from the catchment area.
Collapse
Affiliation(s)
- Henri M P Siljanen
- Department of Environmental Science, University of Eastern Finland Kuopio, Finland
| | | | | | | |
Collapse
|
67
|
Siljanen HM, Saari A, Bodrossy L, Martikainen PJ. Seasonal variation in the function and diversity of methanotrophs in the littoral wetland of a boreal eutrophic lake. FEMS Microbiol Ecol 2012; 80:548-55. [DOI: 10.1111/j.1574-6941.2012.01321.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/18/2012] [Accepted: 01/23/2012] [Indexed: 01/02/2023] Open
Affiliation(s)
| | - Anne Saari
- Department of Environmental Science; University of Eastern Finland; Kuopio; Finland
| | - Levente Bodrossy
- Department of Bioresources/Microbiology; Austrian Institute of Technology; Seibersdorf; Austria
| | | |
Collapse
|
68
|
Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil. ISME JOURNAL 2011; 6:1115-26. [PMID: 22189499 DOI: 10.1038/ismej.2011.179] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microbial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0-10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008. The sites showed seasonal differences in hydrological parameters. Net uptake rates varied seasonally between 0 and 70 μg CH(4) m(-2) h(-1). Greatest uptake rates coincided with lowest soil moisture in spring and summer. Over all sites and seasons, the methanotrophic communities were dominated by uncultivated methanotrophs. These formed a monophyletic cluster defined by the RA14, MHP and JR1 clades, referred to as upland soil cluster alphaproteobacteria (USCα)-like group. The copy numbers of pmoA genes ranged between 3.8 × 10(5)-1.9 × 10(6) copies g(-1) of soil. Temperature was positively correlated with CH(4) uptake rates (P<0.001), but had no effect on methanotrophic population dynamics. The soil moisture was negatively correlated with CH(4) uptake rates (P<0.001), but showed a positive correlation with changes in USCα-like diversity (P<0.001) and pmoA gene abundance (P<0.05). These were greatest at low net CH(4) uptake rates during winter times and coincided with an overall increase in bacterial 16S rRNA gene abundances (P<0.05). Taken together, soil moisture had a significant but opposed effect on CH(4) uptake rates and methanotrophic population dynamics, the latter being increasingly stimulated by soil moisture contents >50 vol% and primarily related to members of the MHP clade.
Collapse
|
69
|
Semrau JD. Bioremediation via Methanotrophy: Overview of Recent Findings and Suggestions for Future Research. Front Microbiol 2011; 2:209. [PMID: 22016748 PMCID: PMC3191459 DOI: 10.3389/fmicb.2011.00209] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 09/24/2011] [Indexed: 01/17/2023] Open
Abstract
Microbially mediated bioremediation of polluted sites has been a subject of much research over the past 30 years, with many different compounds shown to be degraded under both aerobic and anaerobic conditions. Aerobic-mediated bioremediation commonly examines the use of methanotrophs, microorganisms that consume methane as their sole source of carbon and energy. Given the diverse environments in which methanotrophs have been found, the range of substrates they can degrade and the fact that they can be easily stimulated with the provision of methane and oxygen, these microorganisms in particular have been examined for aerobic degradation of chlorinated hydrocarbons. The physiological and phylogenetic diversity of methanotrophy, however, has increased substantially in just the past 5 years. Here in this review, the current state of knowledge of methanotrophy, particularly as it applies to pollutant degradation is summarized, and suggestions for future research provided.
Collapse
Affiliation(s)
- Jeremy D Semrau
- Department of Civil and Environmental Engineering, The University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
70
|
Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN. Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 2011; 61:2456-2463. [DOI: 10.1099/ijs.0.028118-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Two strains of aerobic methanotrophic bacteria, AR4T and SOP9, were isolated from acidic (pH 3.8–4.0) Sphagnum peat bogs in Russia. Another phenotypically similar isolate, strain LAY, was obtained from an acidic (pH 4.0) forest soil in Germany. Cells of these strains were Gram-negative, non-pigmented, non-motile, thin rods that multiplied by irregular cell division and formed rosettes or amorphous cell conglomerates. Similar to Methylocella species, strains AR4T, SOP9 and LAY possessed only a soluble form of methane monooxygenase (sMMO) and lacked intracytoplasmic membranes. Growth occurred only on methane and methanol; the latter was the preferred growth substrate. mRNA transcripts of sMMO were detectable in cells when either methane or both methane and methanol were available. Carbon was assimilated via the serine and ribulose-bisphosphate (RuBP) pathways; nitrogen was fixed via an oxygen-sensitive nitrogenase. Strains AR4T, SOP9 and LAY were moderately acidophilic, mesophilic organisms capable of growth between pH 3.5 and 7.2 (optimum pH 4.8–5.2) and at 4–33 °C (optimum 20–23 °C). The major cellular fatty acid was 18 : 1ω7c and the quinone was Q-10. The DNA G+C content was 55.6–57.5 mol%. The isolates belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and were most closely related to the sMMO-possessing methanotrophs of the genus Methylocella (96.4–97.0 % 16S rRNA gene sequence similarity), particulate MMO (pMMO)-possessing methanotrophs of the genus Methylocapsa (96.1–97.0 %), facultative methylotrophs of the genus Methylovirgula (96.1–96.3 %) and non-methanotrophic organotrophs of the genus Beijerinckia (96.5–97.0 %). Phenotypically, strains AR4T, SOP9 and LAY were most similar to Methylocella species, but differed from members of this genus by cell morphology, greater tolerance of low pH, detectable activities of RuBP pathway enzymes and inability to grow on multicarbon compounds. Therefore, we propose a novel genus and species, Methyloferula stellata gen. nov., sp. nov., to accommodate strains AR4T, SOP9 and LAY. Strain AR4T ( = DSM 22108T = LMG 25277T = VKM B-2543T) is the type strain of Methyloferula stellata.
Collapse
Affiliation(s)
- Alexey V. Vorobev
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Mohamed Baani
- Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Nina V. Doronina
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow region 142292, Russia
| | - Allyson L. Brady
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Werner Liesack
- Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Peter F. Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Svetlana N. Dedysh
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| |
Collapse
|
71
|
Dedysh SN. Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. Front Microbiol 2011; 2:184. [PMID: 21954394 PMCID: PMC3174395 DOI: 10.3389/fmicb.2011.00184] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 08/19/2011] [Indexed: 01/22/2023] Open
Abstract
Northern wetlands play a key role in the global carbon budget, particularly in the budgets of the greenhouse gas methane. These ecosystems also determine the hydrology of northern rivers and represent one of the largest reservoirs of fresh water in the Northern Hemisphere. Sphagnum-dominated peat bogs and fens are the most extensive types of northern wetlands. In comparison to many other terrestrial ecosystems, the bacterial diversity in Sphagnum-dominated wetlands remains largely unexplored. As demonstrated by cultivation-independent studies, a large proportion of the indigenous microbial communities in these acidic, cold, nutrient-poor, and water-saturated environments is composed of as-yet-uncultivated bacteria with unknown physiologies. Most of them are slow-growing, oligotrophic microorganisms that are difficult to isolate and to manipulate in the laboratory. Yet, significant breakthroughs in cultivation of these elusive organisms have been made during the last decade. This article describes the major prerequisites for successful cultivation of peat-inhabiting microbes, gives an overview of the currently captured bacterial diversity from northern wetlands and discusses the unique characteristics of the newly discovered organisms.
Collapse
Affiliation(s)
- Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
72
|
Pratscher J, Dumont MG, Conrad R. Assimilation of acetate by the putative atmospheric methane oxidizers belonging to the USCα clade. Environ Microbiol 2011; 13:2692-701. [PMID: 21883789 DOI: 10.1111/j.1462-2920.2011.02537.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Forest soils are a major biological sink for atmospheric methane, yet the identity and physiology of the microorganisms responsible for this process remain unclear. Although members of the upland soil cluster α (USCα) are assumed to represent methanotrophic bacteria adapted to the oxidation of the trace level of methane in the atmosphere and to be an important sink of this greenhouse gas, so far they have resisted isolation. In particular, the question of whether the atmospheric methane oxidizers are able to obtain all their energy and carbon solely from atmospheric methane still waits to be answered. In this study, we performed stable-isotope probing (SIP) of RNA and DNA to investigate the assimilation of (13) C-methane and (13) C-acetate by USCα in an acidic forest soil. RNA-SIP showed that pmoA mRNA of USCα was not labelled by (13) C of supplemented (13) C methane, although catalysed reporter deposition - fluorescence in situ hybridization (CARD-FISH) targeting pmoA mRNA of USCα detected its expression in the incubated soil. In contrast, incorporation of (13) C-acetate into USCαpmoA mRNA was observed. USCαpmoA genes were not labelled, indicating that they had not grown during the incubation. Our results indicate that the contribution of alternative carbon sources, such as acetate, to the metabolism of the putative atmospheric methane oxidizers in upland forest soils might be substantial.
Collapse
Affiliation(s)
- Jennifer Pratscher
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | | | | |
Collapse
|
73
|
Graef C, Hestnes AG, Svenning MM, Frenzel P. The active methanotrophic community in a wetland from the High Arctic. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:466-472. [PMID: 23761309 DOI: 10.1111/j.1758-2229.2010.00237.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The dominant terminal process of carbon mineralization in most freshwater wetlands is methanogenesis. With methane being an important greenhouse gas, the predicted warming of the Arctic may provide a positive feedback. However, the amount of methane released to the atmosphere may be controlled by the activity of methane-oxidizing bacteria (methanotrophs) living in the oxic surface layer of wetlands. Previously, methanotrophs have been isolated and identified by genetic profiling in High Arctic wetlands showing the presence of only a few genotypes. Two isolates from Solvatnet (Ny-Ålesund, Spitsbergen; 79°N) are available: Methylobacter tundripaludum (type I) and Methylocystis rosea (type II), raising the question whether the low diversity is a cultivation effect. We have revisited Solvatnet applying stable isotope probing (SIP) with (13) C-labelled methane. 16S rRNA profiling revealed active type I methanotrophs including M. tundripaludum, while no active type II methanotrophs were identified. These results indicate that the extant M. tundripaludum is an active methane oxidizer at its locus typicus; furthermore, Methylobacter seems to be the dominant active genus. Diversity of methanotrophs was low as compared, e.g. to wetland rice fields in the Mediterranean. This low diversity suggests a high vulnerability of Arctic methanotroph communities, which deserves more attention.
Collapse
Affiliation(s)
- Christiane Graef
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, N-9037 Tromsø, Norway. Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | | | | | | |
Collapse
|
74
|
Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Appl Environ Microbiol 2011; 77:5643-54. [PMID: 21724892 DOI: 10.1128/aem.05017-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphaproteobacterial methanotrophs was found. With Sphagnum mosses as the inoculum, alpha- and gammaproteobacterial acidophilic methanotrophs were isolated using established and newly designed media. The 16S rRNA, pmoA, pxmA, and mmoX gene sequences showed that the alphaproteobacterial isolates belonged to the Methylocystis and Methylosinus genera. The Methylosinus species isolated are the first acid-tolerant members of this genus. Of the acidophilic gammaproteobacterial strains isolated, strain M5 was affiliated with the Methylomonas genus, and the other strain, M200, may represent a novel genus, most closely related to the genera Methylosoma and Methylovulum. So far, no acidophilic or acid-tolerant methanotrophs in the Gammaproteobacteria class are known. All strains showed the typical features of either type I or II methanotrophs and are, to the best of our knowledge, the first isolated (acidophilic or acid-tolerant) methanotrophs from Sphagnum mosses.
Collapse
|
75
|
Biderre-Petit C, Jézéquel D, Dugat-Bony E, Lopes F, Kuever J, Borrel G, Viollier E, Fonty G, Peyret P. Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake. FEMS Microbiol Ecol 2011; 77:533-45. [PMID: 21595728 DOI: 10.1111/j.1574-6941.2011.01134.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lake Pavin is a meromictic crater lake located in the French Massif Central area. In this ecosystem, most methane (CH(4)) produced in high quantity in the anoxic bottom layers, and especially in sediments, is consumed in the water column, with only a small fraction of annual production reaching the atmosphere. This study assessed the diversity of methanogenic and methanotrophic populations along the water column and in sediments using PCR and reverse transcription-PCR-based approaches targeting functional genes, i.e. pmoA (α-subunit of the particulate methane monooxygenase) for methanotrophy and mcrA (α-subunit of the methyl-coenzyme M reductase) for methanogenesis as well as the phylogenetic 16S rRNA genes. Although methanogenesis rates were much higher in sediments, our results confirm that CH(4) production also occurs in the water column where methanogens were almost exclusively composed of hydrogenotrophic methanogens, whereas both hydrogenotrophs and acetotrophs were almost equivalent in the sediments. Sequence analysis of markers, pmoA and the 16S rRNA gene, suggested that Methylobacter may be an important group actively involved in CH(4) oxidation in the water column. Two main phylotypes were characterized, one of which could consume CH(4) under conditions where the oxygen amount is undetectable.
Collapse
Affiliation(s)
- Corinne Biderre-Petit
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Semrau JD, DiSpirito AA, Vuilleumier S. Facultative methanotrophy: false leads, true results, and suggestions for future research. FEMS Microbiol Lett 2011; 323:1-12. [DOI: 10.1111/j.1574-6968.2011.02315.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
77
|
Acetate repression of methane oxidation by supplemental Methylocella silvestris in a peat soil microcosm. Appl Environ Microbiol 2011; 77:4234-6. [PMID: 21515721 DOI: 10.1128/aem.02902-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Methylocella spp. are facultative methanotrophs that grow on methane and multicarbon substrates, such as acetate. Acetate represses transcription of methane monooxygenase of Methylocella silvestris in laboratory culture. DNA stable-isotope probing (DNA-SIP) using (13)C-methane and (12)C-acetate, carried out with Methylocella-spiked peat soil, showed that acetate also repressed methane oxidation by Methylocella in environmental samples.
Collapse
|
78
|
Wieczorek AS, Drake HL, Kolb S. Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs. FEMS Microbiol Ecol 2011; 77:28-39. [DOI: 10.1111/j.1574-6941.2011.01080.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
79
|
Genome sequence of the methanotrophic alphaproteobacterium Methylocystis sp. strain Rockwell (ATCC 49242). J Bacteriol 2011; 193:2668-9. [PMID: 21441518 DOI: 10.1128/jb.00278-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylocystis sp. strain Rockwell (ATCC 49242) is an aerobic methane-oxidizing alphaproteobacterium isolated from an aquifer in southern California. Unlike most methanotrophs in the Methylocystaceae family, this strain has a single pmo operon encoding particulate methane monooxygenase but no evidence of the genes encoding soluble methane monooxygenase. This is the first reported genome sequence of a member of the Methylocystis species of the Methylocystaceae family in the order Rhizobiales.
Collapse
|
80
|
Im J, Semrau JD. Pollutant degradation by a Methylocystis strain SB2 grown on ethanol: bioremediation via facultative methanotrophy. FEMS Microbiol Lett 2011; 318:137-42. [DOI: 10.1111/j.1574-6968.2011.02249.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
81
|
|