51
|
Fusco NA, Pehek E, Munshi‐South J. Urbanization reduces gene flow but not genetic diversity of stream salamander populations in the New York City metropolitan area. Evol Appl 2021; 14:99-116. [PMID: 33519959 PMCID: PMC7819553 DOI: 10.1111/eva.13025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Natural landscape heterogeneity and barriers resulting from urbanization can reduce genetic connectivity between populations. The evolutionary, demographic, and ecological effects of reduced connectivity may lead to population isolation and ultimately extinction. Alteration to the terrestrial and aquatic environment caused by urban influence can affect gene flow, specifically for stream salamanders who depend on both landscapes for survival and reproduction. To examine how urbanization affects a relatively common stream salamander species, we compared genetic connectivity of Eurycea bislineata (northern two-lined salamander) populations within and between streams in an urban, suburban, and rural habitat around the New York City (NYC) metropolitan area. We report reduced genetic connectivity between streams within the urban landscape found to correspond with potential barriers to gene flow, that is, areas with more dense urbanization (roadways, industrial buildings, and residential housing). The suburban populations also exhibited areas of reduced connectivity correlated with areas of greater human land use and greater connectivity within a preserve protected from development. Connectivity was relatively high among neighboring rural streams, but a major roadway corresponded with genetic breaks even though the habitat contained more connected green space overall. Despite greater human disturbance across the landscape, urban and suburban salamander populations maintained comparable levels of genetic diversity to their rural counterparts. Yet small effective population size in the urban habitats yielded a high probability of loss of heterozygosity due to genetic drift in the future. In conclusion, urbanization impacted connectivity among stream salamander populations where its continual influence may eventually hinder population persistence for this native species in urban habitats.
Collapse
Affiliation(s)
| | - Ellen Pehek
- Natural Resources GroupNew York City Department of Parks & RecreationNew YorkNYUSA
| | | |
Collapse
|
52
|
Gene Copy Number Variation Does Not Reflect Structure or Environmental Selection in Two Recently Diverged California Populations of Suillus brevipes. G3 (BETHESDA, MD.) 2020; 10:4591-4597. [PMID: 33051263 PMCID: PMC7718732 DOI: 10.1534/g3.120.401735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene copy number variation across individuals has been shown to track population structure and be a source of adaptive genetic variation with significant fitness impacts. In this study, we report opposite results for both predictions based on the analysis of gene copy number variants (CNVs) of Suillus brevipes, a mycorrhizal fungus adapted to coastal and montane habitats in California. In order to assess whether gene copy number variation mirrored population structure and selection in this species, we investigated two previously studied locally adapted populations showing a highly differentiated genomic region encompassing a gene predicted to confer salt tolerance. In addition, we examined whether copy number in the genes related to salt homeostasis was differentiated between the two populations. Although we found many instances of CNV regions across the genomes of S. brevipes individuals, we also found CNVs did not recover population structure and known salt-tolerance-related genes were not under selection across the coastal population. Our results contrast with predictions of CNVs matching single-nucleotide polymorphism divergence and showed CNVs of genes for salt homeostasis are not under selection in S. brevipes.
Collapse
|
53
|
McKinney GJ, Nichols KM, Ford MJ. A mobile sex-determining region, male-specific haplotypes and rearing environment influence age at maturity in Chinook salmon. Mol Ecol 2020; 30:131-147. [PMID: 33111366 DOI: 10.1111/mec.15712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Variation in age at maturity is an important contributor to life history and demographic variation within and among species. The optimal age at maturity can vary by sex, and the ability of each sex to evolve towards its fitness optimum depends on the genetic architecture of maturation. Using GWAS of RAD sequencing data, we show that age at maturity in Chinook salmon exhibits sex-specific genetic architecture, with age at maturity in males influenced by large (up to 20 Mb) male-specific haplotypes. These regions showed no such effect in females. We also provide evidence for translocation of the sex-determining gene between two different chromosomes. This has important implications for sexually antagonistic selection, particularly that sex linkage of adaptive genes may differ within and among populations based on chromosomal location of the sex-determining gene. Our findings will facilitate research into the genetic causes of shifting demography in Chinook salmon as well as a better understanding of sex determination in this species and Pacific salmon in general.
Collapse
Affiliation(s)
- Garrett J McKinney
- NRC Research Associateship Program, Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Krista M Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Michael J Ford
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| |
Collapse
|
54
|
Tigano A. A population genomics approach to uncover the CNVs, and their evolutionary significance, hidden in reduced-representation sequencing data sets. Mol Ecol 2020; 29:4749-4753. [PMID: 32997366 DOI: 10.1111/mec.15665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/11/2020] [Indexed: 12/01/2022]
Abstract
The importance of structural variation in adaptation and speciation is becoming increasingly evident in the literature. Among SVs, copy number variants (CNVs) are known to affect phenotypes through changes in gene expression and can potentially reduce recombination between alleles with different copy numbers. However, little is known about their abundance, distribution and frequency in natural populations. In a "From the Cover" article in this issue of Molecular Ecology, Dorant et al. (2020) present a new cost-effective approach to genotype copy number variants (CNVs) from large reduced-representation sequencing (RRS) data sets in nonmodel organisms, and thus to analyse sequence and structural variation jointly. They show that in American lobsters (Homarus americanus), CNVs exhibit strong population structure and several significant associations with annual variance in sea surface temperature, while SNPs fail to uncover any population structure or genotype-environment associations. Their results clearly illustrate that structural variants like CNVs can potentially store important information on differentiation and adaptive differences that cannot be retrieved from the analysis of sequence variation alone. To better understand the factors affecting the evolution of CNVs and their role in adaptation and speciation, we need to compare and synthesize data from a wide variety of species with different demographic histories and genome structure. The approach developed by Dorant et al. (2020) now allows to gain crucial knowledge on CNVs in a cost-effective way, even in species with limited genomic resources.
Collapse
Affiliation(s)
- Anna Tigano
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
55
|
Ferchaud AL, Leitwein M, Laporte M, Boivin-Delisle D, Bougas B, Hernandez C, Normandeau É, Thibault I, Bernatchez L. Adaptive and maladaptive genetic diversity in small populations: Insights from the Brook Charr (Salvelinus fontinalis) case study. Mol Ecol 2020; 29:3429-3445. [PMID: 33463857 DOI: 10.1111/mec.15566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Investigating the relative importance of neutral versus selective processes governing the accumulation of genetic variants is a key goal in both evolutionary and conservation biology. This is particularly true in the context of small populations, where genetic drift can counteract the effect of selection. Using Brook Charr (Salvelinus fontinalis) from Québec, Canada, as a case study, we investigated the importance of demographic versus selective processes governing the accumulation of both adaptive and maladaptive mutations in closed versus open and connected populations to assess gene flow effect. This was achieved by using 14,779 high-quality filtered SNPs genotyped among 1,416 fish representing 50 populations from three life history types: lacustrine (closed populations), riverine and anadromous (connected populations). Using the PROVEAN algorithm, we observed a considerable accumulation of putative deleterious mutations across populations. The absence of correlation between the occurrence of putatively beneficial or deleterious mutations and local recombination rate supports the hypothesis that genetic drift might be the main driver of the accumulation of such variants. However, despite a lower genetic diversity observed in lacustrine than in riverine or anadromous populations, lacustrine populations do not exhibit more deleterious mutations than the two other history types, suggesting that the negative effect of genetic drift in lacustrine populations may be mitigated by that of relaxed purifying selection. Moreover, we also identified genomic regions associated with anadromy, as well as an overrepresentation of transposable elements associated with variation in environmental variables, thus supporting the importance of transposable elements in adaptation.
Collapse
Affiliation(s)
- Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Maeva Leitwein
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Damien Boivin-Delisle
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Bérénice Bougas
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Cécilia Hernandez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Éric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Isabel Thibault
- Direction de l'expertise Sur la Faune Aquatique, Ministère des Forêts, de la Faune et des Parcs du Québec, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|