51
|
Zhou T, Xu W, Hirani AH, Liu Z, Tuan PA, Ayele BT, Daayf F, McVetty PBE, Duncan RW, Li G. Transcriptional Insight Into Brassica napus Resistance Genes LepR3 and Rlm2-Mediated Defense Response Against the Leptosphaeria maculans Infection. FRONTIERS IN PLANT SCIENCE 2019; 10:823. [PMID: 31333690 PMCID: PMC6615431 DOI: 10.3389/fpls.2019.00823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/07/2019] [Indexed: 05/21/2023]
Abstract
The phytopathogenic fungus Leptosphaeria maculans causes the blackleg disease on Brassica napus, resulting in severe loss of rapeseed production. Breeding of resistant cultivars containing race-specific resistance genes is provably effective to combat this disease. While two allelic resistance genes LepR3 and Rlm2 recognizing L. maculans avirulence genes AvrLm1 and AvrLm2 at plant apoplastic space have been cloned in B. napus, the downstream gene expression network underlying the resistance remains elusive. In this study, transgenic lines expressing LepR3 and Rlm2 were created in the susceptible "Westar" cultivar and inoculated with L. maculans isolates containing different sets of AvrLm1 and AvrLm2 for comparative transcriptomic analysis. Through grouping the RNA-seq data based on different levels of defense response, we find LepR3 and Rlm2 orchestrate a hierarchically regulated gene expression network, consisting of induced ABA acting independently of the disease reaction, activation of signal transduction pathways with gradually increasing intensity from compatible to incompatible interaction, and specifically induced enzymatic and chemical actions contributing to hypersensitive response with recognition of AvrLm1 and AvrLm2. This study provides an unconventional investigation into LepR3 and Rlm2-mediated plant defense machinery and adds novel insight into the interaction between surface-localized receptor-like proteins (RLPs) and apoplastic fungal pathogens.
Collapse
Affiliation(s)
- Tengsheng Zhou
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Wen Xu
- Crop Designing Centre, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Arvind H. Hirani
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Zheng Liu
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Pham Anh Tuan
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Belay T. Ayele
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | | | - Robert W. Duncan
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Genyi Li
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
52
|
Petit-Houdenot Y, Degrave A, Meyer M, Blaise F, Ollivier B, Marais CL, Jauneau A, Audran C, Rivas S, Veneault-Fourrey C, Brun H, Rouxel T, Fudal I, Balesdent MH. A two genes - for - one gene interaction between Leptosphaeria maculans and Brassica napus. THE NEW PHYTOLOGIST 2019; 223:397-411. [PMID: 30802965 DOI: 10.1111/nph.15762] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 02/18/2019] [Indexed: 05/26/2023]
Abstract
Interactions between Leptosphaeria maculans, causal agent of stem canker of oilseed rape, and its Brassica hosts are models of choice to explore the multiplicity of 'gene-for-gene' complementarities and how they diversified to increased complexity in the course of plant-pathogen co-evolution. Here, we support this postulate by investigating the AvrLm10 avirulence that induces a resistance response when recognized by the Brassica nigra resistance gene Rlm10. Using genome-assisted map-based cloning, we identified and cloned two AvrLm10 candidates as two genes in opposite transcriptional orientation located in a subtelomeric repeat-rich region of the genome. The AvrLm10 genes encode small secreted proteins and show expression profiles in planta similar to those of all L. maculans avirulence genes identified so far. Complementation and silencing assays indicated that both genes are necessary to trigger Rlm10 resistance. Three assays for protein-protein interactions showed that the two AvrLm10 proteins interact physically in vitro and in planta. Some avirulence genes are recognized by two distinct resistance genes and some avirulence genes hide the recognition specificities of another. Our L. maculans model illustrates an additional case where two genes located in opposite transcriptional orientation are necessary to induce resistance. Interestingly, orthologues exist for both L. maculans genes in other phytopathogenic species, with a similar genome organization, which may point to an important conserved effector function linked to heterodimerization of the two proteins.
Collapse
Affiliation(s)
- Yohann Petit-Houdenot
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| | - Alexandre Degrave
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| | - Michel Meyer
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| | - Françoise Blaise
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| | - Bénédicte Ollivier
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| | - Claire-Line Marais
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| | - Alain Jauneau
- Plateforme Imagerie, Pôle de Biotechnologie Végétale, Fédération de Recherche 3450, Castanet-Tolosan, F-31326, France
| | - Corinne Audran
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, F-31326, France
| | - Susana Rivas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, F-31326, France
| | - Claire Veneault-Fourrey
- Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, INRA, UMR 1136, INRA-Université de Lorraine Interactions Arbres/Microorganismes, Champenoux, F-54280, France
- Laboratoire d'Excellence ARBRE, Faculté des Sciences et Technologies, UMR 1136 INRA-Université de Lorraine Interactions Arbres/Microorganismes, Université de Lorraine, Vandoeuvre les Nancy, F-54506, France
| | | | - Thierry Rouxel
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| | - Isabelle Fudal
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| | - Marie-Hélène Balesdent
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| |
Collapse
|
53
|
Haddadi P, Larkan NJ, Borhan MH. Dissecting R gene and host genetic background effect on the Brassica napus defense response to Leptosphaeria maculans. Sci Rep 2019; 9:6947. [PMID: 31061421 PMCID: PMC6502879 DOI: 10.1038/s41598-019-43419-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
While our understanding of the genetics underlying the Brassica-Leptosphaeria pathosystem has advanced greatly in the last decade, differences in molecular responses due to interaction between resistance genes and host genetic background has not been studied. We applied RNAseq technology to monitor the transcriptome profiles of Brassica napus (Bn) lines carrying one of four blackleg R genes (Rlm2, Rlm3, LepR1 & LepR2) in Topas or Westar background, during the early stages of infection by a Leptosphaeria maculans (Lm) isolate carrying the corresponding Avr genes. We observed upregulation of host genes involved in hormone signalling, cell wall thickening, response to chitin and glucosinolate production in all R gene lines at 3 day after inoculation (dai) albeit having higher level of expression in LepR1 and Rlm2 than in Rlm3 and LepR2 lines. Bn-SOBIR1 (Suppressor Of BIR1-1), a receptor like kinase (RLK) that forms complex receptor like proteins (RLPs) was highly expressed in LepR1 and Rlm2 at 3 dai. In contrast Bn-SOBIR1 induction was low in Rlm3 line, which could indicate that Rlm3 may function independent of SOBIR1. Expression of Salicylic acid (SA) related defense was enhanced in LepR1 and Rlm2 at 3 dai. In contrast to SA, expression of Bn genes with homology to PDF1.2, a jasmonic acid (JA) pathway marker, were increased in all Rlm and LepR lines at 6 and 9 dai. Effect of host genetic background on induction of defense, was determined by comparison of LepR1 and LepR2 in Topas vs Westar genotype (i.e. T-LepR1 vs W-LepR1 and T-LepR2 vs W-LepR2). In both cases (regardless of R gene) overall number of defense related genes at the earliest time point (3 dai) was higher in Tops compared to Westar. SA and JA markers genes such as PR1 and PDF1.2 were more induced in Topas compared to Westar introgression lines at this time point. Even in the absence of any R gene, effect of Topas genotype in enhanced defense, was also evident by the induction of PDF1.2 that started at a low level at 3 dai and peaked at 6 and 9 dai, while no induction in Westar genotype was observed at any of these time points. Overall, variation in time and intensity of expression of genes related to defense, was clearly dependent on both R gene and the host genotype.
Collapse
Affiliation(s)
- Parham Haddadi
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | | | - M Hossein Borhan
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| |
Collapse
|
54
|
Ahmad SF, Martins C. The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses. Cells 2019; 8:E156. [PMID: 30781835 PMCID: PMC6406668 DOI: 10.3390/cells8020156] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Supernumerary B chromosomes (Bs) are extra karyotype units in addition to A chromosomes, and are found in some fungi and thousands of animals and plant species. Bs are uniquely characterized due to their non-Mendelian inheritance, and represent one of the best examples of genomic conflict. Over the last decades, their genetic composition, function and evolution have remained an unresolved query, although a few successful attempts have been made to address these phenomena. A classical concept based on cytogenetics and genetics is that Bs are selfish and abundant with DNA repeats and transposons, and in most cases, they do not carry any function. However, recently, the modern quantum development of high scale multi-omics techniques has shifted B research towards a new-born field that we call "B-omics". We review the recent literature and add novel perspectives to the B research, discussing the role of new technologies to understand the mechanistic perspectives of the molecular evolution and function of Bs. The modern view states that B chromosomes are enriched with genes for many significant biological functions, including but not limited to the interesting set of genes related to cell cycle and chromosome structure. Furthermore, the presence of B chromosomes could favor genomic rearrangements and influence the nuclear environment affecting the function of other chromatin regions. We hypothesize that B chromosomes might play a key function in driving their transmission and maintenance inside the cell, as well as offer an extra genomic compartment for evolution.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Department of Morphology, Institute of Biosciences at Botucatu, Sao Paulo State University (UNESP), CEP 18618689, Botucatu, SP, Brazil.
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences at Botucatu, Sao Paulo State University (UNESP), CEP 18618689, Botucatu, SP, Brazil.
| |
Collapse
|
55
|
Liu F, Zou Z, Fernando WGD. Characterization of Callose Deposition and Analysis of the Callose Synthase Gene Family of Brassica napus in Response to Leptosphaeria maculans. Int J Mol Sci 2018; 19:ijms19123769. [PMID: 30486431 PMCID: PMC6320764 DOI: 10.3390/ijms19123769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 11/16/2022] Open
Abstract
Callose plays a critical role in different biological processes including development as well as in the response to multiple biotic and abiotic stresses. In this study, we characterized the callose deposition in cotyledons of different Brassica napus varieties post-inoculated with different Leptosphaeria maculans isolates. Further, members of the callose synthase gene were identified from the whole genome of B. napus using the 12 Arabidopsis thaniana callose synthase protein sequences, and were then classified into three groups based on their phylogenetic relationships. Chromosomal location and duplication patterns indicated uneven distribution and segmental duplication patterns of BnCalS genes in the B. napus genome. Subsequently, gene structures, conserved domains analysis, and protein properties were analyzed for BnCalS genes. In addition, 12 B. napus orthologs of the AtCalS were selected for investigating the tissue expression pattern, indicating diverse expression patterns for these BnCalS genes. Responses of the selected 12 orthologs and all the BnCalS genes were characterized in the different types (AvrLm1-Rlm1, AvrLm4-Rlm4, AvrLepR1-LepR1) of B. napus–L. maculans interactions and B. napus-Leptosphaeria biglobosa interactions, implying their potential roles in response to Leptosphaeria infection.
Collapse
Affiliation(s)
- Fei Liu
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | | |
Collapse
|
56
|
Rincão MP, de Carvalho MCDCG, Nascimento LC, Lopes-Caitar VS, de Carvalho K, Darben LM, Yokoyama A, Carazzolle MF, Abdelnoor RV, Marcelino-Guimarães FC. New insights into Phakopsora pachyrhizi infection based on transcriptome analysis in planta. Genet Mol Biol 2018; 41:671-691. [PMID: 30235396 PMCID: PMC6136362 DOI: 10.1590/1678-4685-gmb-2017-0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/30/2022] Open
Abstract
Asian soybean rust (ASR) is one of the most destructive diseases affecting soybeans. The causative agent of ASR, the fungus Phakopsora pachyrhizi, presents characteristics that make it difficult to study in vitro, limiting our knowledge of plant-pathogen dynamics. Therefore, this work used leaf lesion laser microdissection associated with deep sequencing to determine the pathogen transcriptome during compatible and incompatible interactions with soybean. The 36,350 generated unisequences provided an overview of the main genes and biological pathways that were active in the fungus during the infection cycle. We also identified the most expressed transcripts, including sequences similar to other fungal virulence and signaling proteins. Enriched P. pachyrhizi transcripts in the resistant (PI561356) soybean genotype were related to extracellular matrix organization and metabolic signaling pathways and, among infection structures, in amino acid metabolism and intracellular transport. Unisequences were further grouped into gene families along predicted sequences from 15 other fungi and oomycetes, including rust fungi, allowing the identification of conserved multigenic families, as well as being specific to P. pachyrhizi. The results revealed important biological processes observed in P. pachyrhizi, contributing with information related to fungal biology and, consequently, a better understanding of ASR.
Collapse
Affiliation(s)
- Michelle Pires Rincão
- Programa de Pós-Graduação em Genétiva e Biologia Molecular, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR, Brazil
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
| | | | - Leandro Costa Nascimento
- Laboratory of Genomics and Expression (LGE), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | - Valéria S. Lopes-Caitar
- Programa de Pós-Graduação em Genétiva e Biologia Molecular, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR, Brazil
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
| | - Kenia de Carvalho
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
| | - Luana M. Darben
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
| | - Alessandra Yokoyama
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratory of Genomics and Expression (LGE), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | | | | |
Collapse
|
57
|
Bertazzoni S, Williams AH, Jones DA, Syme RA, Tan KC, Hane JK. Accessories Make the Outfit: Accessory Chromosomes and Other Dispensable DNA Regions in Plant-Pathogenic Fungi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:779-788. [PMID: 29664319 DOI: 10.1094/mpmi-06-17-0135-fi] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Fungal pathogen genomes can often be divided into core and accessory regions. Accessory regions ARs) may be comprised of either ARs (within core chromosomes (CCs) or wholly dispensable (accessory) chromosomes (ACs). Fungal ACs and ARs typically accumulate mutations and structural rearrangements more rapidly over time than CCs and many harbor genes relevant to host-pathogen interactions. These regions are of particular interest in plant pathology and include host-specific virulence factors and secondary metabolite synthesis gene clusters. This review outlines known ACs and ARs in fungal genomes, methods used for their detection, their common properties that differentiate them from the core genome, and what is currently known of their various roles in pathogenicity. Reports on the evolutionary processes generating and shaping AC and AR compartments are discussed, including repeat induced point mutation and breakage fusion bridge cycles. Previously ACs have been studied extensively within key genera, including Fusarium, Zymoseptoria, and Alternaria, but are growing in frequency of observation and perceived importance across a wider range of fungal species. Recent advances in sequencing technologies permit affordable genome assembly and resequencing of populations that will facilitate further discovery and routine screening of ACs.
Collapse
Affiliation(s)
- Stefania Bertazzoni
- 1 Centre for Crop & Disease Management, Curtin University, Perth, Western Australia, Australia; and
| | - Angela H Williams
- 1 Centre for Crop & Disease Management, Curtin University, Perth, Western Australia, Australia; and
| | - Darcy A Jones
- 1 Centre for Crop & Disease Management, Curtin University, Perth, Western Australia, Australia; and
| | - Robert A Syme
- 1 Centre for Crop & Disease Management, Curtin University, Perth, Western Australia, Australia; and
| | - Kar-Chun Tan
- 1 Centre for Crop & Disease Management, Curtin University, Perth, Western Australia, Australia; and
| | - James K Hane
- 1 Centre for Crop & Disease Management, Curtin University, Perth, Western Australia, Australia; and
- 2 Curtin Institute for Computation, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
58
|
Kumar V, Paillard S, Fopa-Fomeju B, Falentin C, Deniot G, Baron C, Vallée P, Manzanares-Dauleux MJ, Delourme R. Multi-year linkage and association mapping confirm the high number of genomic regions involved in oilseed rape quantitative resistance to blackleg. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1627-1643. [PMID: 29728747 DOI: 10.1007/s00122-018-3103-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/20/2018] [Indexed: 05/02/2023]
Abstract
A repertoire of the genomic regions involved in quantitative resistance to Leptosphaeria maculans in winter oilseed rape was established from combined linkage-based QTL and genome-wide association (GWA) mapping. Linkage-based mapping of quantitative trait loci (QTL) and genome-wide association studies are complementary approaches for deciphering the genomic architecture of complex agronomical traits. In oilseed rape, quantitative resistance to blackleg disease, caused by L. maculans, is highly polygenic and is greatly influenced by the environment. In this study, we took advantage of multi-year data available on three segregating populations derived from the resistant cv Darmor and multi-year data available on oilseed rape panels to obtain a wide overview of the genomic regions involved in quantitative resistance to this pathogen in oilseed rape. Sixteen QTL regions were common to at least two biparental populations, of which nine were the same as previously detected regions in a multi-parental design derived from different resistant parents. Eight regions were significantly associated with quantitative resistance, of which five on A06, A08, A09, C01 and C04 were located within QTL support intervals. Homoeologous Brassica napus genes were found in eight homoeologous QTL regions, which corresponded to 657 pairs of homoeologous genes. Potential candidate genes underlying this quantitative resistance were identified. Genomic predictions and breeding are also discussed, taking into account the highly polygenic nature of this resistance.
Collapse
Affiliation(s)
- Vinod Kumar
- IGEPP, AGROCAMPUS OUEST, INRA, Univ Rennes, 35650, Le Rheu, France
| | - Sophie Paillard
- IGEPP, AGROCAMPUS OUEST, INRA, Univ Rennes, 35650, Le Rheu, France
| | | | - Cyril Falentin
- IGEPP, AGROCAMPUS OUEST, INRA, Univ Rennes, 35650, Le Rheu, France
| | - Gwenaëlle Deniot
- IGEPP, AGROCAMPUS OUEST, INRA, Univ Rennes, 35650, Le Rheu, France
| | - Cécile Baron
- IGEPP, AGROCAMPUS OUEST, INRA, Univ Rennes, 35650, Le Rheu, France
| | - Patrick Vallée
- IGEPP, AGROCAMPUS OUEST, INRA, Univ Rennes, 35650, Le Rheu, France
| | | | - Régine Delourme
- IGEPP, AGROCAMPUS OUEST, INRA, Univ Rennes, 35650, Le Rheu, France.
| |
Collapse
|
59
|
Fikere M, Barbulescu DM, Malmberg MM, Shi F, Koh JCO, Slater AT, MacLeod IM, Bowman PJ, Salisbury PA, Spangenberg GC, Cogan NOI, Daetwyler HD. Genomic Prediction Using Prior Quantitative Trait Loci Information Reveals a Large Reservoir of Underutilised Blackleg Resistance in Diverse Canola ( Brassica napus L.) Lines. THE PLANT GENOME 2018; 11. [PMID: 30025024 DOI: 10.3835/plantgenome2017.11.0100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genomic prediction is becoming a popular plant breeding method to predict the genetic merit of lines. While some genomic prediction results have been reported in canola, none have been evaluated for blackleg disease. Here, we report genomic prediction for seedling emergence, survival rate, and internal infection), using 532 Spring and Winter canola lines. These lines were phenotyped in two replicated blackleg disease nurseries grown at Wickliffe and Green Lake, Victoria, Australia. A transcriptome genotyping-by-sequencing approach revealed 98,054 single nucleotide polymorphisms (SNPs) after quality control. We assessed various genomic prediction scenarios based on Genomic Best Linear Unbiased Prediction (GBLUP), BayesR and BayesRC, which can make use of prior quantitative trait loci information, via cross-validation. Clustering based on genomic relationships showed that Winter and Spring lines were genetically distinct, indicating limited gene flow between sets. Genetic correlations within traits between Spring and Winter lines ranged from 0.68 and 0.90 (mean = 0.76). Based on GBLUP in the whole population, moderate to high genomic prediction accuracies were achieved within environments (0.35-0.74) and were reduced across environments (0.28-0.58). Prediction accuracy within the Spring set ranged from 0.30-0.69, and from 0.19-0.71 within the Winter set. The BayesR model resulted in slightly lower accuracy to GBLUP. The proportion of genetic variance explained by known blackleg quantitative trait loci (QTL) was < 30%, indicating that there is a large reservoir of genetic variation in blackleg traits that remains to be discovered, but can be captured with genomic prediction. However, providing prior information of known QTL in the BayesRC method resulted in an increased prediction accuracy for survival and internal infection, particularly with Spring lines. Overall, these promising results indicate that genomic prediction will be a valuable tool to make use of all genetic variation to improve blackleg resistance in canola.
Collapse
|
60
|
Ghanbarnia K, Ma L, Larkan NJ, Haddadi P, Fernando WGD, Borhan MH. Leptosphaeria maculans AvrLm9: a new player in the game of hide and seek with AvrLm4-7. MOLECULAR PLANT PATHOLOGY 2018; 19:1754-1764. [PMID: 29330918 PMCID: PMC6638032 DOI: 10.1111/mpp.12658] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 05/14/2023]
Abstract
Blackleg disease of Brassica napus caused by Leptosphaeria maculans (Lm) is largely controlled by the deployment of race-specific resistance (R) genes. However, selection pressure exerted by R genes causes Lm to adapt and give rise to new virulent strains through mutation and deletion of effector genes. Therefore, a knowledge of effector gene function is necessary for the effective management of the disease. Here, we report the cloning of Lm effector AvrLm9 which is recognized by the resistance gene Rlm9 in B. napus cultivar Goéland. AvrLm9 was mapped to scaffold 7 of the Lm genome, co-segregating with the previously reported AvrLm5 (previously known as AvrLmJ1). Comparison of AvrLm5 alleles amongst the 37 re-sequenced Lm isolates and transgenic complementation identified a single point mutation correlating with the AvrLm9 phenotype. Therefore, we renamed this gene as AvrLm5-9 to reflect the dual specificity of this locus. Avrlm5-9 transgenic isolates were avirulent when inoculated on the B. napus cultivar Goéland. The expression of AvrLm5-9 during infection was monitored by RNA sequencing. The recognition of AvrLm5-9 by Rlm9 is masked in the presence of AvrLm4-7, another Lm effector. AvrLm5-9 and AvrLm4-7 do not interact, and AvrLm5-9 is expressed in the presence of AvrLm4-7. AvrLm5-9 is the second Lm effector for which host recognition is masked by AvrLm4-7. An understanding of this complex interaction will provide new opportunities for the engineering of broad-spectrum recognition.
Collapse
Affiliation(s)
- Kaveh Ghanbarnia
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
- Department of Plant ScienceUniversity of ManitobaWinnipegMBCanada R3T 2N2
| | - Lisong Ma
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
| | - Nicholas J. Larkan
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
- Armatus Genetics Inc.SaskatoonSKCanada S7J 4M2
| | - Parham Haddadi
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
| | | | - Mohammad Hossein Borhan
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
| |
Collapse
|
61
|
Plaumann PL, Schmidpeter J, Dahl M, Taher L, Koch C. A Dispensable Chromosome Is Required for Virulence in the Hemibiotrophic Plant Pathogen Colletotrichum higginsianum. Front Microbiol 2018; 9:1005. [PMID: 29867895 PMCID: PMC5968395 DOI: 10.3389/fmicb.2018.01005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023] Open
Abstract
The hemibiotrophic plant pathogen Colletotrichum higginsianum infects Brassicaceae and in combination with Arabidopsis thaliana, represents an important model system to investigate various ecologically important fungal pathogens and their infection strategies. After penetration of plant cells by appressoria, C. higginsianum establishes large biotrophic primary hyphae in the first infected cell. Shortly thereafter, a switch to necrotrophic growth occurs leading to the invasion of neighboring cells by secondary hyphae. In a forward genetic screen for virulence mutants by insertional mutagenesis, we identified mutants that penetrate the plant but show a defect in the passage from biotrophy to necrotrophy. Genome sequencing and pulsed-field gel electrophoresis revealed that two mutants were lacking chromosome 11, encoding potential pathogenicity genes. We established a chromosome loss assay to verify that strains lacking this small chromosome abort infection during biotrophy, while their ability to grow on artificial media was not affected. C. higginsianum harbors a second small chromosome, which can be lost without effects on virulence or growth on agar plates. Furthermore, we found that chromosome 11 is required to suppress Arabidopsis thaliana plant defense mechanisms dependent on tryptophan derived secondary metabolites.
Collapse
Affiliation(s)
- Peter-Louis Plaumann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Schmidpeter
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marlis Dahl
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leila Taher
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Koch
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
62
|
Fernando WGD, Zhang X, Selin C, Zou Z, Liban SH, McLaren DL, Kubinec A, Parks PS, Rashid MH, Padmathilake KRE, Rong L, Yang C, Gnanesh BN, Huang S. A Six-Year Investigation of the Dynamics of Avirulence Allele Profiles, Blackleg Incidence, and Mating Type Alleles of Leptosphaeria maculans Populations Associated with Canola Crops in Manitoba, Canada. PLANT DISEASE 2018; 102:790-798. [PMID: 30673397 DOI: 10.1094/pdis-05-17-0630-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Blackleg, caused by the fungal pathogen Leptosphaeria maculans, is one of the most economically important diseases of canola (Brassica napus, oilseed rape) worldwide. This study assessed incidence of blackleg, the avirulence allele, and mating type distributions of L. maculans isolates collected in commercial canola fields in Manitoba, Canada, from 2010 to 2015. A total of 956 L. maculans isolates were collected from 2010 to 2015 to determine the presence of 12 avirulence alleles using differential canola cultivars and/or PCR assays specific for each avirulence allele. AvrLm2, AvrLm4, AvrLm5, AvrLm6, AvrLm7, AvrLm11, and AvrLmS were detected at frequencies ranging from 97 to 33%, where the AvrLm1, AvrLm3, AvrLm9, AvrLepR1, and AvrLepR2 alleles were the least abundant. When the race structure was examined, a total of 170 races were identified among the 956 isolates, with three major races, AvrLm-2-4-5-6-7-11, AvrLm-2-4-5-6-7-11-S, and Avr-1-4-5-6-7-11-(S) accounting for 15, 10, and 6% of the total fungal population, respectively. The distribution of the mating type alleles (MAT1-1 and MAT1-2) indicated that sexual reproduction was not inhibited in any of the nine Manitoba regions in any of the years L. maculans isolates were collected.
Collapse
Affiliation(s)
| | - Xuehua Zhang
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Carrie Selin
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Sakaria H Liban
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Debra L McLaren
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB, R7A 5Y3, Canada
| | - Anastasia Kubinec
- Crops Branch - Industry Development, Manitoba Agriculture, Carman, MB, R0G 0J0, Canada
| | - Paula S Parks
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - M Harunur Rashid
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | | - Lihua Rong
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Cunchun Yang
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
63
|
Plissonneau C, Rouxel T, Chèvre A, Van De Wouw AP, Balesdent M. One gene-one name: the AvrLmJ1 avirulence gene of Leptosphaeria maculans is AvrLm5. MOLECULAR PLANT PATHOLOGY 2018; 19:1012-1016. [PMID: 28661570 PMCID: PMC6638039 DOI: 10.1111/mpp.12574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 05/05/2023]
Abstract
Leptosphaeria maculans, the causal agent of blackleg disease, interacts with Brassica napus (oilseed rape, canola) and other Brassica hosts in a gene-for-gene manner. The avirulence gene AvrLmJ1 has been cloned previously and shown to interact with an unidentified Brassica juncea resistance gene. In this study, we show that the AvrLmJ1 gene maps to the same position as the AvrLm5 locus. Furthermore, isolates complemented with the AvrLmJ1 locus confer avirulence towards B. juncea genotypes harbouring Rlm5. These findings demonstrate that AvrLmJ1 is AvrLm5 and highlight the need for shared resources to characterize accurately avirulence and/or resistance genes.
Collapse
Affiliation(s)
- Clémence Plissonneau
- UMR Bioger, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, Thiverval‐GrignonF‐78850France
| | - Thierry Rouxel
- UMR Bioger, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, Thiverval‐GrignonF‐78850France
| | | | | | - Marie‐Hélène Balesdent
- UMR Bioger, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, Thiverval‐GrignonF‐78850France
| |
Collapse
|
64
|
Soyer JL, Balesdent MH, Rouxel T, Dean RA. To B or not to B: a tale of unorthodox chromosomes. Curr Opin Microbiol 2018; 46:50-57. [PMID: 29579575 DOI: 10.1016/j.mib.2018.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Jessica L Soyer
- UMR BIOGER, INRA, AgroParisTech, Paris-Saclay University, Thiverval-Grignon, France
| | | | - Thierry Rouxel
- UMR BIOGER, INRA, AgroParisTech, Paris-Saclay University, Thiverval-Grignon, France
| | - Ralph A Dean
- Center for Integrated Fungal Research, North Carolina State University & Department of Entomology and Plant Pathology, North Carolina State University, United States.
| |
Collapse
|
65
|
Molano EPL, Cabrera OG, Jose J, do Nascimento LC, Carazzolle MF, Teixeira PJPL, Alvarez JC, Tiburcio RA, Tokimatu Filho PM, de Lima GMA, Guido RVC, Corrêa TLR, Leme AFP, Mieczkowski P, Pereira GAG. Ceratocystis cacaofunesta genome analysis reveals a large expansion of extracellular phosphatidylinositol-specific phospholipase-C genes (PI-PLC). BMC Genomics 2018; 19:58. [PMID: 29343217 PMCID: PMC5773145 DOI: 10.1186/s12864-018-4440-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The Ceratocystis genus harbors a large number of phytopathogenic fungi that cause xylem parenchyma degradation and vascular destruction on a broad range of economically important plants. Ceratocystis cacaofunesta is a necrotrophic fungus responsible for lethal wilt disease in cacao. The aim of this work is to analyze the genome of C. cacaofunesta through a comparative approach with genomes of other Sordariomycetes in order to better understand the molecular basis of pathogenicity in the Ceratocystis genus. RESULTS We present an analysis of the C. cacaofunesta genome focusing on secreted proteins that might constitute pathogenicity factors. Comparative genome analyses among five Ceratocystidaceae species and 23 other Sordariomycetes fungi showed a strong reduction in gene content of the Ceratocystis genus. However, some gene families displayed a remarkable expansion, in particular, the Phosphatidylinositol specific phospholipases-C (PI-PLC) family. Also, evolutionary rate calculations suggest that the evolution process of this family was guided by positive selection. Interestingly, among the 82 PI-PLCs genes identified in the C. cacaofunesta genome, 70 genes encoding extracellular PI-PLCs are grouped in eight small scaffolds surrounded by transposon fragments and scars that could be involved in the rapid evolution of the PI-PLC family. Experimental secretome using LC-MS/MS validated 24% (86 proteins) of the total predicted secretome (342 proteins), including four PI-PLCs and other important pathogenicity factors. CONCLUSION Analysis of the Ceratocystis cacaofunesta genome provides evidence that PI-PLCs may play a role in pathogenicity. Subsequent functional studies will be aimed at evaluating this hypothesis. The observed genetic arsenals, together with the analysis of the PI-PLC family shown in this work, reveal significant differences in the Ceratocystis genome compared to the classical vascular fungi, Verticillium and Fusarium. Altogether, our analyses provide new insights into the evolution and the molecular basis of plant pathogenicity.
Collapse
Affiliation(s)
- Eddy Patricia Lopez Molano
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Odalys García Cabrera
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Juliana Jose
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | | | - Marcelo Falsarella Carazzolle
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil.,Centro Nacional de Processamento de Alto Desempenho, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo José Pereira Lima Teixeira
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil.,Present Address: Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Javier Correa Alvarez
- Departamento de Ciencias Biológicas, Escuela de Ciencias, Universidad EAFIT, Medellın, Colombia
| | - Ricardo Augusto Tiburcio
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Paulo Massanari Tokimatu Filho
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Gustavo Machado Alvares de Lima
- Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Victório Carvalho Guido
- Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, Brazil
| | - Thamy Lívia Ribeiro Corrêa
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | | | - Piotr Mieczkowski
- High-Throughput Sequencing Facility, University of North Carolina, Chapel Hill, NC, USA
| | - Gonçalo Amarante Guimarães Pereira
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
66
|
Neik TX, Barbetti MJ, Batley J. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 8:1788. [PMID: 29163558 PMCID: PMC5681527 DOI: 10.3389/fpls.2017.01788] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/02/2017] [Indexed: 05/18/2023]
Abstract
Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R) genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae), Blackleg (Leptosphaeria maculans and L. biglobosa), Sclerotinia Stem Rot (Sclerotinia sclerotiorum), and Downy Mildew (Hyaloperonospora parasitica). We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus.
Collapse
Affiliation(s)
- Ting Xiang Neik
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Martin J. Barbetti
- School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
67
|
Gervais J, Plissonneau C, Linglin J, Meyer M, Labadie K, Cruaud C, Fudal I, Rouxel T, Balesdent M. Different waves of effector genes with contrasted genomic location are expressed by Leptosphaeria maculans during cotyledon and stem colonization of oilseed rape. MOLECULAR PLANT PATHOLOGY 2017; 18:1113-1126. [PMID: 27474899 PMCID: PMC6638281 DOI: 10.1111/mpp.12464] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Leptosphaeria maculans, the causal agent of stem canker disease, colonizes oilseed rape (Brassica napus) in two stages: a short and early colonization stage corresponding to cotyledon or leaf colonization, and a late colonization stage during which the fungus colonizes systemically and symptomlessly the plant during several months before stem canker appears. To date, the determinants of the late colonization stage are poorly understood; L. maculans may either successfully escape plant defences, leading to stem canker development, or the plant may develop an 'adult-stage' resistance reducing canker incidence. To obtain an insight into these determinants, we performed an RNA-sequencing (RNA-seq) pilot project comparing fungal gene expression in infected cotyledons and in symptomless or necrotic stems. Despite the low fraction of fungal material in infected stems, sufficient fungal transcripts were detected and a large number of fungal genes were expressed, thus validating the feasibility of the approach. Our analysis showed that all avirulence genes previously identified are under-expressed during stem colonization compared with cotyledon colonization. A validation RNA-seq experiment was then performed to investigate the expression of candidate effector genes during systemic colonization. Three hundred and seven 'late' effector candidates, under-expressed in the early colonization stage and over-expressed in the infected stems, were identified. Finally, our analysis revealed a link between the regulation of expression of effectors and their genomic location: the 'late' effector candidates, putatively involved in systemic colonization, are located in gene-rich genomic regions, whereas the 'early' effector genes, over-expressed in the early colonization stage, are located in gene-poor regions of the genome.
Collapse
Affiliation(s)
- Julie Gervais
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Clémence Plissonneau
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Juliette Linglin
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Michel Meyer
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Karine Labadie
- CEA‐Institut de Génomique, GENOSCOPECentre National de SéquençageEvry CedexFrance
| | - Corinne Cruaud
- CEA‐Institut de Génomique, GENOSCOPECentre National de SéquençageEvry CedexFrance
| | - Isabelle Fudal
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Thierry Rouxel
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Marie‐Hélène Balesdent
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| |
Collapse
|
68
|
Dallery JF, Lapalu N, Zampounis A, Pigné S, Luyten I, Amselem J, Wittenberg AHJ, Zhou S, de Queiroz MV, Robin GP, Auger A, Hainaut M, Henrissat B, Kim KT, Lee YH, Lespinet O, Schwartz DC, Thon MR, O’Connell RJ. Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters. BMC Genomics 2017; 18:667. [PMID: 28851275 PMCID: PMC5576322 DOI: 10.1186/s12864-017-4083-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/21/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. RESULTS Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. CONCLUSION The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.
Collapse
Affiliation(s)
- Jean-Félix Dallery
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Nicolas Lapalu
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Antonios Zampounis
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
- Present Address: Department of Deciduous Fruit Trees, Institute of Plant Breeding and Plant Genetic Resources, Hellenic Agricultural Organization ‘Demeter’, Naoussa, Greece
| | - Sandrine Pigné
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | | | | | | | - Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Marisa V. de Queiroz
- Laboratório de Genética Molecular de Fungos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Guillaume P. Robin
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Annie Auger
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Matthieu Hainaut
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Seoul National University, Seoul, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Seoul National University, Seoul, Korea
| | - Olivier Lespinet
- Laboratoire de Recherche en Informatique, CNRS, Université Paris-Sud, Orsay, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Orsay, France
| | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Michael R. Thon
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Richard J. O’Connell
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| |
Collapse
|
69
|
Mehrabi R, Mirzadi Gohari A, Kema GHJ. Karyotype Variability in Plant-Pathogenic Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:483-503. [PMID: 28777924 DOI: 10.1146/annurev-phyto-080615-095928] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent advances in genetic and molecular technologies gradually paved the way for the transition from traditional fungal karyotyping to more comprehensive chromosome biology studies. Extensive chromosomal polymorphisms largely resulting from chromosomal rearrangements (CRs) are widely documented in fungal genomes. These extraordinary CRs in fungi generate substantial genome plasticity compared to other eukaryotic organisms. Here, we review the most recent findings on fungal CRs and their underlying mechanisms and discuss the functional consequences of CRs for adaptation, fungal evolution, host range, and pathogenicity of fungal plant pathogens in the context of chromosome biology. In addition to a complement of permanent chromosomes called core chromosomes, the genomes of many fungal pathogens comprise distinct unstable chromosomes called dispensable chromosomes (DCs) that also contribute to chromosome polymorphisms. Compared to the core chromosomes, the structural features of DCs usually differ for gene density, GC content, housekeeping genes, and recombination frequency. Despite their dispensability for normal growth and development, DCs have important biological roles with respect to pathogenicity in some fungi but not in others. Therefore, their evolutionary origin is also reviewed in relation to overall fungal physiology and pathogenicity.
Collapse
Affiliation(s)
- Rahim Mehrabi
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Amir Mirzadi Gohari
- Department of Plant Pathology, Faculty of Agricultural Sciences and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Wageningen Plant Research, Wageningen University and Research, 6700AA Wageningen, The Netherlands;
| | - Gert H J Kema
- Wageningen Plant Research, Wageningen University and Research, 6700AA Wageningen, The Netherlands;
| |
Collapse
|
70
|
Stajich JE. Fungal Genomes and Insights into the Evolution of the Kingdom. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0055-2016. [PMID: 28820125 PMCID: PMC6078396 DOI: 10.1128/microbiolspec.funk-0055-2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 12/23/2022] Open
Abstract
The kingdom Fungi comprises species that inhabit nearly all ecosystems. Fungi exist as both free-living and symbiotic unicellular and multicellular organisms with diverse morphologies. The genomes of fungi encode genes that enable them to thrive in diverse environments, invade plant and animal cells, and participate in nutrient cycling in terrestrial and aquatic ecosystems. The continuously expanding databases of fungal genome sequences have been generated by individual and large-scale efforts such as Génolevures, Broad Institute's Fungal Genome Initiative, and the 1000 Fungal Genomes Project (http://1000.fungalgenomes.org). These efforts have produced a catalog of fungal genes and genomic organization. The genomic datasets can be utilized to better understand how fungi have adapted to their lifestyles and ecological niches. Large datasets of fungal genomic and transcriptomic data have enabled the use of novel methodologies and improved the study of fungal evolution from a molecular sequence perspective. Combined with microscopes, petri dishes, and woodland forays, genome sequencing supports bioinformatics and comparative genomics approaches as important tools in the study of the biology and evolution of fungi.
Collapse
Affiliation(s)
- Jason E Stajich
- Department of Plant Pathology and Microbiology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| |
Collapse
|
71
|
Rouxel T, Balesdent MH. Life, death and rebirth of avirulence effectors in a fungal pathogen of Brassica crops, Leptosphaeria maculans. THE NEW PHYTOLOGIST 2017; 214:526-532. [PMID: 28084619 DOI: 10.1111/nph.14411] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/21/2016] [Indexed: 05/18/2023]
Abstract
Contents 526 I. 526 II. 527 III. 527 IV. 529 V. 529 VI. 530 VII. 530 531 References 531 SUMMARY: In agricultural systems, major (R) genes for resistance in plants exert strong selection pressure on cognate/corresponding avirulence effector genes of phytopathogens. However, a complex interplay often exists between trade-offs linked to effector function and the need to escape R gene recognition. Here, using the Leptosphaeria maculans-oilseed rape pathosystem we review evolution of effectors submitted to multiple resistance gene selection. Characteristics of this pathosystem include a crop in which resistance genes have been deployed intensively resulting in 'boom and bust' cycles; a fungal pathogen with a high adaptive potential in which seven avirulence genes are cloned and for which population surveys have been coupled with molecular analysis of events responsible for virulence. The mode of evolution of avirulence genes, all located in dispensable parts of the 'two-speed' genome, is a highly dynamic gene-specific process. In some instances, avirulence genes are readily deleted under selection. However, others, even when located in the most plastic genome regions, undergo only limited point mutations or their avirulence phenotype is 'camouflaged' by another avirulence gene. Thus, while hundreds of effector genes are present, some effectors are likely to have an important and nonredundant function, suggesting functional redundancy and dispensability of effectors might not be the rule.
Collapse
Affiliation(s)
- Thierry Rouxel
- UMR Bioger, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| | - Marie-Hélène Balesdent
- UMR Bioger, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| |
Collapse
|
72
|
Abstract
Effectors are molecules used by microbial pathogens to facilitate infection via effector-triggered susceptibility or tissue necrosis in their host. Much research has been focussed on the identification and elucidating the function of fungal effectors during plant pathogenesis. By comparison, knowledge of how phytopathogenic fungi regulate the expression of effector genes has been lagging. Several recent studies have illustrated the role of various transcription factors, chromosome-based control, effector epistasis, and mobilisation of endosomes within the fungal hyphae in regulating effector expression and virulence on the host plant. Improved knowledge of effector regulation is likely to assist in improving novel crop protection strategies.
Collapse
Affiliation(s)
- Kar-Chun Tan
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | - Richard P. Oliver
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
73
|
Plissonneau C, Blaise F, Ollivier B, Leflon M, Carpezat J, Rouxel T, Balesdent MH. Unusual evolutionary mechanisms to escape effector-triggered immunity in the fungal phytopathogen Leptosphaeria maculans. Mol Ecol 2017; 26:2183-2198. [PMID: 28160497 DOI: 10.1111/mec.14046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/16/2016] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
Abstract
Leptosphaeria maculans is the fungus responsible for the stem canker disease of oilseed rape (Brassica napus). AvrLm3 and AvrLm4-7, two avirulence effector genes of L. maculans, are involved in an unusual relationship: AvrLm4-7 suppresses the Rlm3-mediated resistance. Here, we assessed AvrLm3 polymorphism in a collection of 235 L. maculans isolates. No field isolates exhibited deletion or inactivating mutations in AvrLm3, as observed for other L. maculans avirulence genes. Eleven isoforms of the AvrLm3 protein were found. In isolates virulent towards both Rlm3 and Rlm7 (a3a7), the loss of the Rlm3-mediated resistance response was due to two distinct mechanisms. First, when AvrLm4-7 was inactivated (deletion or inactivating mutations), amino acid substitutions in AvrLm3 generated virulent isoforms of the protein. Second, when only point mutations were observed in AvrLm4-7, a3a7 isolates still contained an avirulent allele of AvrLm3. Directed mutagenesis confirmed that some point mutations in AvrLm4-7 were sufficient for the fungus to escape Rlm7-mediated resistance while maintaining the suppression of the AvrLm3 phenotype. Signatures of positive selection were also identified in AvrLm3. The complex evolutionary mechanisms enabling L. maculans to escape Rlm3-mediated resistance while preserving AvrLm3 integrity, along with observed reduced aggressiveness of isolates silenced for AvrLm3, serves to emphasize the importance of this effector in pathogenicity towards B. napus. While the common response to resistance gene pressure is local selection of isolates depleted in the cognate avirulence gene, this example contributes to complexify the gene-for-gene concept of plant-pathogen evolution with a 'camouflaged' model allowing retention of nondispensable avirulence effectors.
Collapse
Affiliation(s)
- C Plissonneau
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France.,Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - F Blaise
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - B Ollivier
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - M Leflon
- Terres Inovia, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - J Carpezat
- Terres Inovia, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - T Rouxel
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - M-H Balesdent
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| |
Collapse
|
74
|
Meyer M, Bourras S, Gervais J, Labadie K, Cruaud C, Balesdent MH, Rouxel T. Impact of biotic and abiotic factors on the expression of fungal effector-encoding genes in axenic growth conditions. Fungal Genet Biol 2016; 99:1-12. [PMID: 28034799 DOI: 10.1016/j.fgb.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/15/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022]
Abstract
In phytopathogenic fungi, the expression of hundreds of small secreted protein (SSP)-encoding genes is induced upon primary infection of plants while no or a low level of expression is observed during vegetative growth. In some species such as Leptosphaeria maculans, this coordinated in-planta upregulation of SSP-encoding genes expression relies on an epigenetic control but the signals triggering gene expression in-planta are unknown. In the present study, biotic and abiotic factors that may relieve suppression of SSP-encoding gene expression during axenic growth of L. maculans were investigated. Some abiotic factors (temperature, pH) could have a limited effect on SSP gene expression. In contrast, two types of cellular stresses induced by antibiotics (cycloheximide, phleomycin) activated strongly the transcription of SSP genes. A transcriptomic analysis to cycloheximide exposure revealed that biological processes such as ribosome biosynthesis and rRNA processing were induced whereas important metabolic pathways such as glycogen and nitrogen metabolism, glycolysis and tricarboxylic acid cycle activity were down-regulated. A quantitatively different expression of SSP-encoding genes compared to plant infection was also detected. Interestingly, the same physico-chemical parameters as those identified here for L. maculans effectors were identified to regulate positively or negatively the expression of bacterial effectors. This suggests that apoplastic phytopathogens may react to similar physiological parameters for regulation of their effector genes.
Collapse
Affiliation(s)
- Michel Meyer
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France.
| | - Salim Bourras
- Université Paris-Sud, 91400 Orsay, France; Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Julie Gervais
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Karine Labadie
- Centre National de Séquençage, CEA-Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry Cedex, France
| | - Corinne Cruaud
- Centre National de Séquençage, CEA-Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry Cedex, France
| | - Marie-Hélène Balesdent
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Thierry Rouxel
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| |
Collapse
|
75
|
Vlaardingerbroek I, Beerens B, Schmidt SM, Cornelissen BJC, Rep M. Dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici. MOLECULAR PLANT PATHOLOGY 2016; 17:1455-1466. [PMID: 27271322 PMCID: PMC6638487 DOI: 10.1111/mpp.12440] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 05/23/2023]
Abstract
The genomes of many filamentous fungi consist of a 'core' part containing conserved genes essential for normal development as well as conditionally dispensable (CD) or lineage-specific (LS) chromosomes. In the plant-pathogenic fungus Fusarium oxysporum f. sp. lycopersici, one LS chromosome harbours effector genes that contribute to pathogenicity. We employed flow cytometry to select for events of spontaneous (partial) loss of either the two smallest LS chromosomes or two different core chromosomes. We determined the rate of spontaneous loss of the 'effector' LS chromosome in vitro at around 1 in 35 000 spores. In addition, a viable strain was obtained lacking chromosome 12, which is considered to be a part of the core genome. We also isolated strains carrying approximately 1-Mb deletions in the LS chromosomes and in the dispensable core chromosome. The large core chromosome 1 was never observed to sustain deletions over 200 kb. Whole-genome sequencing revealed that some of the sites at which the deletions occurred were the same in several independent strains obtained for the two chromosomes tested, indicating the existence of deletion hotspots. For the core chromosome, this deletion hotspot was the site of insertion of the marker used to select for loss events. Loss of the core chromosome did not affect pathogenicity, whereas loss of the effector chromosome led to a complete loss of pathogenicity.
Collapse
Affiliation(s)
- Ido Vlaardingerbroek
- Molecular Plant PathologyUniversity of AmsterdamAmsterdam1098 XH, the Netherlands
| | - Bas Beerens
- Molecular Plant PathologyUniversity of AmsterdamAmsterdam1098 XH, the Netherlands
| | - Sarah M. Schmidt
- Molecular Plant PathologyUniversity of AmsterdamAmsterdam1098 XH, the Netherlands
| | | | - Martijn Rep
- Molecular Plant PathologyUniversity of AmsterdamAmsterdam1098 XH, the Netherlands
| |
Collapse
|
76
|
Larkan NJ, Yu F, Lydiate DJ, Rimmer SR, Borhan MH. Single R Gene Introgression Lines for Accurate Dissection of the Brassica - Leptosphaeria Pathosystem. FRONTIERS IN PLANT SCIENCE 2016; 7:1771. [PMID: 27965684 PMCID: PMC5124708 DOI: 10.3389/fpls.2016.01771] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/10/2016] [Indexed: 05/18/2023]
Abstract
Seven blackleg resistance (R) genes (Rlm1, Rlm2, Rlm3, Rlm4, LepR1, LepR2 & LepR3) were each introgressed into a common susceptible B. napus doubled-haploid (DH) line through reciprocal back-crossing, producing single-R gene introgression lines (ILs) for use in the pathological and molecular study of Brassica-Leptosphaeria interactions. The genomic positions of the R genes were defined through molecular mapping and analysis with transgenic L. maculans isolates was used to confirm the identity of the introgressed genes where possible. Using L. maculans isolates of contrasting avirulence gene (Avr) profiles, we preformed extensive differential pathology for phenotypic comparison of the ILs to other B. napus varieties, demonstrating the ILs can provide for the accurate assessment of Avr-R gene interactions by avoiding non-Avr dependant alterations to resistance responses which can occur in some commonly used B. napus varieties. Whole-genome SNP-based assessment allowed us to define the donor parent introgressions in each IL and provide a strong basis for comparative molecular dissection of the pathosystem.
Collapse
Affiliation(s)
- Nicholas J. Larkan
- Saskatoon Research Centre, Agriculture and Agri-Food CanadaSaskatoon, SK, Canada
- Armatus Genetics Inc.Saskatoon, SK, Canada
| | - Fengqun Yu
- Saskatoon Research Centre, Agriculture and Agri-Food CanadaSaskatoon, SK, Canada
| | - Derek J. Lydiate
- Saskatoon Research Centre, Agriculture and Agri-Food CanadaSaskatoon, SK, Canada
| | - S. Roger Rimmer
- Saskatoon Research Centre, Agriculture and Agri-Food CanadaSaskatoon, SK, Canada
| | - M. Hossein Borhan
- Saskatoon Research Centre, Agriculture and Agri-Food CanadaSaskatoon, SK, Canada
| |
Collapse
|
77
|
Raman H, Raman R, Coombes N, Song J, Diffey S, Kilian A, Lindbeck K, Barbulescu DM, Batley J, Edwards D, Salisbury PA, Marcroft S. Genome-wide Association Study Identifies New Loci for Resistance to Leptosphaeria maculans in Canola. FRONTIERS IN PLANT SCIENCE 2016; 7:1513. [PMID: 27822217 PMCID: PMC5075532 DOI: 10.3389/fpls.2016.01513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/23/2016] [Indexed: 05/18/2023]
Abstract
Key message "We identified both quantitative and quantitative resistance loci to Leptosphaeria maculans, a fungal pathogen, causing blackleg disease in canola. Several genome-wide significant associations were detected at known and new loci for blackleg resistance. We further validated statistically significant associations in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance in canola." Blackleg, caused by Leptosphaeria maculans, is a significant disease which affects the sustainable production of canola (Brassica napus). This study reports a genome-wide association study based on 18,804 polymorphic SNPs to identify loci associated with qualitative and quantitative resistance to L. maculans. Genomic regions delimited with 694 significant SNP markers, that are associated with resistance evaluated using 12 single spore isolates and pathotypes from four canola stubble were identified. Several significant associations were detected at known disease resistance loci including in the vicinity of recently cloned Rlm2/LepR3 genes, and at new loci on chromosomes A01/C01, A02/C02, A03/C03, A05/C05, A06, A08, and A09. In addition, we validated statistically significant associations on A01, A07, and A10 in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance and mapped within 13.2 kb from Arabidopsis R gene of TIR-NBS class. We showed that resistance loci are located in the vicinity of R genes of Arabidopsis thaliana and Brassica napus on the sequenced genome of B. napus cv. Darmor-bzh. Significantly associated SNP markers provide a valuable tool to enrich germplasm for favorable alleles in order to improve the level of resistance to L. maculans in canola.
Collapse
Affiliation(s)
- Harsh Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga WaggaNSW, Australia
| | - Rosy Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga WaggaNSW, Australia
| | - Neil Coombes
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga WaggaNSW, Australia
| | - Jie Song
- Diversity Array Technology P/L, University of Canberra, CanberraACT, Australia
| | - Simon Diffey
- Centre for Bioinformatics and Biometrics, University of Wollongong, WollongongNSW, Australia
| | - Andrzej Kilian
- Diversity Array Technology P/L, University of Canberra, CanberraACT, Australia
| | - Kurt Lindbeck
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga WaggaNSW, Australia
| | - Denise M. Barbulescu
- Department of Economic Development, Jobs, Transport and Resources, HorshamVIC, Australia
| | - Jacqueline Batley
- School of Plant Biology, University of Western Australia, CrawleyWA, Australia
| | - David Edwards
- School of Plant Biology, University of Western Australia, CrawleyWA, Australia
- Institute of Agriculture, University of Western Australia, CrawleyWA, Australia
| | - Phil A. Salisbury
- Department of Economic Development, Jobs, Transport and Resources, HorshamVIC, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, ParkvilleVIC, Australia
| | | |
Collapse
|
78
|
Gibriel HAY, Thomma BPHJ, Seidl MF. The Age of Effectors: Genome-Based Discovery and Applications. PHYTOPATHOLOGY 2016; 106:1206-1212. [PMID: 27050568 DOI: 10.1094/phyto-02-16-0110-fi] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microbial pathogens cause devastating diseases on economically and ecologically important plant species, threatening global food security, and causing billions of dollars of losses annually. During the infection process, pathogens secrete so-called effectors that support host colonization, often by deregulating host immune responses. Over the last decades, much of the research on molecular plant-microbe interactions has focused on the identification and functional characterization of such effectors. The increasing availability of sequenced plant pathogen genomes has enabled genomics-based discovery of effector candidates. Nevertheless, identification of full plant pathogen effector repertoires is often hampered by erroneous gene annotation and the localization effector genes in genomic regions that are notoriously difficult to assemble. Here, we argue that recent advances in genome sequencing technologies, genome assembly, gene annotation, as well as effector identification methods hold promise to disclose complete and correct effector repertoires. This allows to exploit complete effector repertoires, and knowledge of their diversity within pathogen populations, to develop durable and sustainable resistance breeding strategies, disease control, and management of plant pathogens.
Collapse
Affiliation(s)
- Hesham A Y Gibriel
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
79
|
Haddadi P, Ma L, Wang H, Borhan MH. Genome-wide transcriptomic analyses provide insights into the lifestyle transition and effector repertoire of Leptosphaeria maculans during the colonization of Brassica napus seedlings. MOLECULAR PLANT PATHOLOGY 2016; 17:1196-210. [PMID: 26679637 PMCID: PMC6638455 DOI: 10.1111/mpp.12356] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/18/2015] [Accepted: 12/11/2015] [Indexed: 05/08/2023]
Abstract
Molecular interaction between the causal agent of blackleg disease, Leptosphaeria maculans (Lm), and its host, Brassica napus, is largely unknown. We applied a deep RNA-sequencing approach to gain insight into the pathogenicity mechanisms of Lm and the defence response of B. napus. RNA from the infected susceptible B. napus cultivar Topas DH16516, sampled at 2-day intervals (0-8 days), was sequenced and used for gene expression profiling. Patterns of gene expression regulation in B. napus showed multifaceted defence responses evident by the differential expression of genes encoding the pattern recognition receptor CERK1 (chitin elicitor receptor kinase 1), receptor like proteins and WRKY transcription factors. The up-regulation of genes related to salicylic acid and jasmonic acid at the initial and late stages of infection, respectively, provided evidence for the biotrophic and necrotrophic life stages of Lm during the infection of B. napus cotyledons. Lm transition from biotrophy to necrotropy was also supported by the expression function of Lm necrosis and ethylene-inducing (Nep-1)-like peptide. Genes encoding polyketide synthases and non-ribosomal peptide synthetases, with potential roles in pathogenicity, were up-regulated at 6-8 days after inoculation. Among other plant defence-related genes differentially regulated in response to Lm infection were genes involved in the reinforcement of the cell wall and the production of glucosinolates. Dual RNA-sequencing allowed us to define the Lm candidate effectors expressed during the infection of B. napus. Several candidate effectors suppressed Bax-induced cell death when transiently expressed in Nicotiana benthamaina leaves.
Collapse
Affiliation(s)
- Parham Haddadi
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2
| | - Lisong Ma
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2
| | - Haiyan Wang
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Agricultural University of Hebei, Baoding, China, 071001
| | - M Hossein Borhan
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2.
| |
Collapse
|
80
|
Nováková M, Šašek V, Trdá L, Krutinová H, Mongin T, Valentová O, Balesdent MH, Rouxel T, Burketová L. Leptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2 O2 ) accumulation in Brassica napus. MOLECULAR PLANT PATHOLOGY 2016; 17:818-31. [PMID: 26575525 PMCID: PMC6638468 DOI: 10.1111/mpp.12332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 05/03/2023]
Abstract
To achieve host colonization, successful pathogens need to overcome plant basal defences. For this, (hemi)biotrophic pathogens secrete effectors that interfere with a range of physiological processes of the host plant. AvrLm4-7 is one of the cloned effectors from the hemibiotrophic fungus Leptosphaeria maculans 'brassicaceae' infecting mainly oilseed rape (Brassica napus). Although its mode of action is still unknown, AvrLm4-7 is strongly involved in L. maculans virulence. Here, we investigated the effect of AvrLm4-7 on plant defence responses in a susceptible cultivar of B. napus. Using two isogenic L. maculans isolates differing in the presence of a functional AvrLm4-7 allele [absence ('a4a7') and presence ('A4A7') of the allele], the plant hormone concentrations, defence-related gene transcription and reactive oxygen species (ROS) accumulation were analysed in infected B. napus cotyledons. Various components of the plant immune system were affected. Infection with the 'A4A7' isolate caused suppression of salicylic acid- and ethylene-dependent signalling, the pathways regulating an effective defence against L. maculans infection. Furthermore, ROS accumulation was decreased in cotyledons infected with the 'A4A7' isolate. Treatment with an antioxidant agent, ascorbic acid, increased the aggressiveness of the 'a4a7' L. maculans isolate, but not that of the 'A4A7' isolate. Together, our results suggest that the increased aggressiveness of the 'A4A7' L. maculans isolate could be caused by defects in ROS-dependent defence and/or linked to suppressed SA and ET signalling. This is the first study to provide insights into the manipulation of B. napus defence responses by an effector of L. maculans.
Collapse
Affiliation(s)
- Miroslava Nováková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Vladimír Šašek
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lucie Trdá
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Krutinová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Thomas Mongin
- INRA, UMR INRA-AgroParisTech 1290 Bioger, Avenue Lucien Brétignières, Thiverval-Grignon, France
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Marie-HelEne Balesdent
- INRA, UMR INRA-AgroParisTech 1290 Bioger, Avenue Lucien Brétignières, Thiverval-Grignon, France
| | - Thierry Rouxel
- INRA, UMR INRA-AgroParisTech 1290 Bioger, Avenue Lucien Brétignières, Thiverval-Grignon, France
| | - Lenka Burketová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
81
|
Selin C, de Kievit TR, Belmonte MF, Fernando WGD. Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges. Front Microbiol 2016; 7:600. [PMID: 27199930 PMCID: PMC4846801 DOI: 10.3389/fmicb.2016.00600] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as “effectors” is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR/Cas9 technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function.
Collapse
Affiliation(s)
- Carrie Selin
- Department of Plant Science, University of Manitoba Winnipeg, MB, Canada
| | | | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba Winnipeg, MB, Canada
| | | |
Collapse
|
82
|
Williams AH, Sharma M, Thatcher LF, Azam S, Hane JK, Sperschneider J, Kidd BN, Anderson JP, Ghosh R, Garg G, Lichtenzveig J, Kistler HC, Shea T, Young S, Buck SAG, Kamphuis LG, Saxena R, Pande S, Ma LJ, Varshney RK, Singh KB. Comparative genomics and prediction of conditionally dispensable sequences in legume-infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genomics 2016; 17:191. [PMID: 26945779 PMCID: PMC4779268 DOI: 10.1186/s12864-016-2486-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/17/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and compare draft genome assemblies for three legume-infecting formae speciales (ff. spp.): F. oxysporum f. sp. ciceris (Foc-38-1) and f. sp. pisi (Fop-37622), significant pathogens of chickpea and pea respectively, the world's second and third most important grain legumes, and lastly f. sp. medicaginis (Fom-5190a) for which we developed a model legume pathosystem utilising Medicago truncatula. RESULTS Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the newly sequenced legume-infecting isolates. Dispensable chromosomes are not essential for growth and in Fusarium species are known to be enriched in host-specificity and pathogenicity-associated genes. Comparative genomics of the publicly available Fusarium species revealed differential patterns of sequence conservation across F. oxysporum formae speciales, with legume-pathogenic formae speciales not exhibiting greater sequence conservation between them relative to non-legume-infecting formae speciales, possibly indicating the lack of a common ancestral source for legume pathogenicity. Combining predicted dispensable gene content with in planta expression in the model legume-infecting isolate, we identified small conserved regions and candidate effectors, four of which shared greatest similarity to proteins from another legume-infecting ff. spp. CONCLUSIONS We demonstrate that distinction of core and potential dispensable genomic regions of novel F. oxysporum genomes is an effective tool to facilitate effector discovery and the identification of gene content possibly linked to host specificity. While the legume-infecting isolates didn't share large genomic regions of pathogenicity-related content, smaller regions and candidate effector proteins were highly conserved, suggesting that they may play specific roles in inducing disease on legume hosts.
Collapse
Affiliation(s)
- Angela H Williams
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Mamta Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - Louise F Thatcher
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Sarwar Azam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - James K Hane
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
- Department of Environment and Agriculture, Curtin Institute for Computation, and CCDM Bioinformatics, Centre for Crop and Disease Management, Curtin University, Perth, WA, 6102, Australia.
| | - Jana Sperschneider
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Brendan N Kidd
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Jonathan P Anderson
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Raju Ghosh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - Gagan Garg
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Judith Lichtenzveig
- Department of Environment and Agriculture, Pulse Pathology and Genetics, Centre for Crop and Disease Management and Curtin Institute for Computation, Curtin University, Perth, WA, 6102, Australia.
| | - H Corby Kistler
- USDA-ARS, Cereal Disease Laboratory, University of Minnesota, St Paul, MN, 55108, USA.
| | | | - Sarah Young
- The Broad Institute, Cambridge, MA, 02141, USA.
| | - Sally-Anne G Buck
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Lars G Kamphuis
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Rachit Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - Suresh Pande
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Rajeev K Varshney
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - Karam B Singh
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| |
Collapse
|
83
|
Plissonneau C, Daverdin G, Ollivier B, Blaise F, Degrave A, Fudal I, Rouxel T, Balesdent MH. A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in Leptosphaeria maculans. THE NEW PHYTOLOGIST 2016; 209:1613-24. [PMID: 26592855 DOI: 10.1111/nph.13736] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/27/2015] [Indexed: 05/02/2023]
Abstract
Extending the durability of plant resistance genes towards fungal pathogens is a major challenge. We identified and investigated the relationship between two avirulence genes of Leptosphaeria maculans, AvrLm3 and AvrLm4-7. When an isolate possesses both genes, the Rlm3-mediated resistance of oilseed rape (Brassica napus) is not expressed due to the presence of AvrLm4-7 but virulent isolates toward Rlm7 recover the AvrLm3 phenotype. Combining genetic and genomic approaches (genetic mapping, RNA-seq, BAC (bacterial artificial chromosome) clone sequencing and de novo assembly) we cloned AvrLm3, a telomeric avirulence gene of L. maculans. AvrLm3 is located in a gap of the L. maculans reference genome assembly, is surrounded by repeated elements, encodes for a small secreted cysteine-rich protein and is highly expressed at early infection stages. Complementation and silencing assays validated the masking effect of AvrLm4-7 on AvrLm3 recognition by Rlm3 and we showed that the presence of AvrLm4-7 does not impede AvrLm3 expression in planta. Y2H assays suggest the absence of physical interaction between the two avirulence proteins. This unusual interaction is the basis for field experiments aiming to evaluate strategies that increase Rlm7 durability.
Collapse
Affiliation(s)
- Clémence Plissonneau
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Guillaume Daverdin
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Bénédicte Ollivier
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Françoise Blaise
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Alexandre Degrave
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Isabelle Fudal
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Thierry Rouxel
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Marie-Hélène Balesdent
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| |
Collapse
|
84
|
Sonah H, Zhang X, Deshmukh RK, Borhan MH, Fernando WGD, Bélanger RR. Comparative Transcriptomic Analysis of Virulence Factors in Leptosphaeria maculans during Compatible and Incompatible Interactions with Canola. FRONTIERS IN PLANT SCIENCE 2016; 7:1784. [PMID: 27990146 PMCID: PMC5131014 DOI: 10.3389/fpls.2016.01784] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 11/11/2016] [Indexed: 05/08/2023]
Abstract
Leptosphaeria maculans is a hemibiotrophic fungus that causes blackleg of canola (Brassica napus), one of the most devastating diseases of this crop. In the present study, transcriptome profiling of L. maculans was performed in an effort to understand and define the pathogenicity genes that govern both the biotrophic and the necrotrophic phase of the fungus, as well as those that separate a compatible from an incompatible interaction. For this purpose, comparative RNA-seq analyses were performed on L. maculans isolate D5 at four different time points following inoculation on susceptible cultivar Topas-DH16516 or resistant introgression line Topas-Rlm2. Analysis of 1.6 billion Illumina reads readily identified differentially expressed genes that were over represented by candidate secretory effector proteins, CAZymes, and other pathogenicity genes. Comparisons between the compatible and incompatible interactions led to the identification of 28 effector proteins whose chronology and level of expression suggested a role in the establishment and maintenance of biotrophy with the plant. These included all known Avr genes of isolate D5 along with eight newly characterized effectors. In addition, another 15 effector proteins were found to be exclusively expressed during the necrotrophic phase of the fungus, which supports the concept that L. maculans has a separate and distinct arsenal contributing to each phase. As for CAZymes, they were often highly expressed at 3 dpi but with no difference in expression between the compatible and incompatible interactions, indicating that other factors were necessary to determine the outcome of the interaction. However, their significantly higher expression at 11 dpi in the compatible interaction confirmed that they contributed to the necrotrophic phase of the fungus. A notable exception was LysM genes whose high expression was singularly observed on the susceptible host at 7 dpi. In the case of TFs, their higher expression at 7 and 11 dpi on susceptible Topas support an important role in regulating the genes involved in the different pathogenic phases of L. maculans. In conclusion, comparison of the transcriptome of L. maculans during compatible and incompatible interactions has led to the identification of key pathogenicity genes that regulate not only the fate of the interaction but also lifestyle transitions of the fungus.
Collapse
Affiliation(s)
- Humira Sonah
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université LavalQuébec QC, Canada
| | - Xuehua Zhang
- Department of Plant Science, University of Manitoba WinnipegWinnipeg, MB, Canada
| | - Rupesh K. Deshmukh
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université LavalQuébec QC, Canada
| | | | | | - Richard R. Bélanger
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université LavalQuébec QC, Canada
- *Correspondence: Richard R. Bélanger
| |
Collapse
|
85
|
Soyer JL, Hamiot A, Ollivier B, Balesdent MH, Rouxel T, Fudal I. The APSES transcription factor LmStuA is required for sporulation, pathogenic development and effector gene expression in Leptosphaeria maculans. MOLECULAR PLANT PATHOLOGY 2015; 16:1000-5. [PMID: 25727237 PMCID: PMC6638475 DOI: 10.1111/mpp.12249] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Leptosphaeria maculans causes stem canker of oilseed rape (Brassica napus). The APSES transcription factor StuA is a key developmental regulator of fungi, involved in morphogenesis, conidia production and also more recently described as required for secondary metabolite production and for effector gene expression in phytopathogenic fungi. We investigated the involvement of the orthologue of StuA in L. maculans, LmStuA, in morphogenesis, pathogenicity and effector gene expression. LmStuA is induced during mycelial growth and at 14 days after infection, corresponding to the development of pycnidia on oilseed rape leaves, consistent with the function of StuA described so far. We set up the functional characterization of LmStuA using an RNA interference approach. Silenced LmStuA transformants showed typical phenotypic defects of StuA mutants with altered growth in axenic culture and impaired conidia production and perithecia formation. Silencing of LmStuA abolished the pathogenicity of L. maculans on oilseed rape leaves and also resulted in a drastic decrease in expression of at least three effector genes during in planta infection, suggesting either that LmStuA regulates, directly or indirectly, the expression of several effector genes in L. maculans or that the infection stage in which effectors are expressed is not reached when LmStuA expression is silenced.
Collapse
Affiliation(s)
- Jessica L Soyer
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Audrey Hamiot
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Bénédicte Ollivier
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Marie-Hélène Balesdent
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Thierry Rouxel
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Isabelle Fudal
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| |
Collapse
|
86
|
Mirzadi Gohari A, Ware SB, Wittenberg AHJ, Mehrabi R, Ben M'Barek S, Verstappen ECP, van der Lee TAJ, Robert O, Schouten HJ, de Wit PPJGM, Kema GHJ. Effector discovery in the fungal wheat pathogen Zymoseptoria tritici. MOLECULAR PLANT PATHOLOGY 2015; 16:931-45. [PMID: 25727413 PMCID: PMC6638447 DOI: 10.1111/mpp.12251] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Fungal plant pathogens, such as Zymoseptoria tritici (formerly known as Mycosphaerella graminicola), secrete repertoires of effectors to facilitate infection or trigger host defence mechanisms. The discovery and functional characterization of effectors provides valuable knowledge that can contribute to the design of new and effective disease management strategies. Here, we combined bioinformatics approaches with expression profiling during pathogenesis to identify candidate effectors of Z. tritici. In addition, a genetic approach was conducted to map quantitative trait loci (QTLs) carrying putative effectors, enabling the validation of both complementary strategies for effector discovery. In planta expression profiling revealed that candidate effectors were up-regulated in successive waves corresponding to consecutive stages of pathogenesis, contrary to candidates identified by QTL mapping that were, overall, expressed at low levels. Functional analyses of two top candidate effectors (SSP15 and SSP18) showed their dispensability for Z. tritici pathogenesis. These analyses reveal that generally adopted criteria, such as protein size, cysteine residues and expression during pathogenesis, may preclude an unbiased effector discovery. Indeed, genetic mapping of genomic regions involved in specificity render alternative effector candidates that do not match the aforementioned criteria, but should nevertheless be considered as promising new leads for effectors that are crucial for the Z. tritici-wheat pathosystem.
Collapse
Affiliation(s)
- Amir Mirzadi Gohari
- Wageningen University and Research Centre, Plant Research International, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
- Department of Plant Protection, College of Agriculture, University of Tehran, Plant Pathology Building, Karaj, Iran
| | - Sarah B Ware
- Wageningen University and Research Centre, Plant Research International, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Alexander H J Wittenberg
- Laboratory of Plant Breeding, Department of Plant Sciences, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Rahim Mehrabi
- Cereal Research Department, Seed and Plant Improvement Institute, PO Box 31585-4119, Karaj, Iran
| | - Sarrah Ben M'Barek
- Wageningen University and Research Centre, Plant Research International, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
- Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif, 2050, Tunisia
| | - Els C P Verstappen
- Wageningen University and Research Centre, Plant Research International, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Theo A J van der Lee
- Wageningen University and Research Centre, Plant Research International, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Olivier Robert
- Bioplante, Florimond Desprez, BP41, 59242, Cappelle-en-Pévèle, France
| | - Henk J Schouten
- Laboratory of Plant Breeding, Department of Plant Sciences, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Pierre P J G M de Wit
- Wageningen University and Research Centre, Laboratory of Phytopathology, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Gert H J Kema
- Wageningen University and Research Centre, Plant Research International, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| |
Collapse
|
87
|
Shiller J, Van de Wouw AP, Taranto AP, Bowen JK, Dubois D, Robinson A, Deng CH, Plummer KM. A Large Family of AvrLm6-like Genes in the Apple and Pear Scab Pathogens, Venturia inaequalis and Venturia pirina. FRONTIERS IN PLANT SCIENCE 2015; 6:980. [PMID: 26635823 PMCID: PMC4646964 DOI: 10.3389/fpls.2015.00980] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/26/2015] [Indexed: 05/19/2023]
Abstract
Venturia inaequalis and V. pirina are Dothideomycete fungi that cause apple scab and pear scab disease, respectively. Whole genome sequencing of V. inaequalis and V. pirina isolates has revealed predicted proteins with sequence similarity to AvrLm6, a Leptosphaeria maculans effector that triggers a resistance response in Brassica napus and B. juncea carrying the resistance gene, Rlm6. AvrLm6-like genes are present as large families (>15 members) in all sequenced strains of V. inaequalis and V. pirina, while in L. maculans, only AvrLm6 and a single paralog have been identified. The Venturia AvrLm6-like genes are located in gene-poor regions of the genomes, and mostly in close proximity to transposable elements, which may explain the expansion of these gene families. An AvrLm6-like gene from V. inaequalis with the highest sequence identity to AvrLm6 was unable to trigger a resistance response in Rlm6-carrying B. juncea. RNA-seq and qRT-PCR gene expression analyses, of in planta- and in vitro-grown V. inaequalis, has revealed that many of the AvrLm6-like genes are expressed during infection. An AvrLm6 homolog from V. inaequalis that is up-regulated during infection was shown (using an eYFP-fusion protein construct) to be localized to the sub-cuticular stroma during biotrophic infection of apple hypocotyls.
Collapse
Affiliation(s)
- Jason Shiller
- Animal, Plant and Soil Sciences Department, AgriBio, AgriBiosciences Research Centre, La Trobe University, MelbourneVIC, Australia
| | | | - Adam P. Taranto
- Animal, Plant and Soil Sciences Department, AgriBio, AgriBiosciences Research Centre, La Trobe University, MelbourneVIC, Australia
- Plant Sciences Division, Research School of Biology, The Australian National University, CanberraACT, Australia
| | - Joanna K. Bowen
- The New Zealand Institute for Plant and Food Research LimitedAuckland, New Zealand
| | - David Dubois
- School of BioSciences, University of Melbourne, ParkvilleVIC, Australia
| | - Andrew Robinson
- Animal, Plant and Soil Sciences Department, AgriBio, AgriBiosciences Research Centre, La Trobe University, MelbourneVIC, Australia
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, MelbourneVIC, Australia
| | - Cecilia H. Deng
- The New Zealand Institute for Plant and Food Research LimitedAuckland, New Zealand
| | - Kim M. Plummer
- Animal, Plant and Soil Sciences Department, AgriBio, AgriBiosciences Research Centre, La Trobe University, MelbourneVIC, Australia
| |
Collapse
|
88
|
A Novel Type Pathway-Specific Regulator and Dynamic Genome Environments of a Solanapyrone Biosynthesis Gene Cluster in the Fungus Ascochyta rabiei. EUKARYOTIC CELL 2015; 14:1102-13. [PMID: 26342019 PMCID: PMC4621316 DOI: 10.1128/ec.00084-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/31/2015] [Indexed: 01/07/2023]
Abstract
Secondary metabolite genes are often clustered together and situated in particular genomic regions, like the subtelomere, that can facilitate niche adaptation in fungi. Solanapyrones are toxic secondary metabolites produced by fungi occupying different ecological niches. Full-genome sequencing of the ascomycete Ascochyta rabiei revealed a solanapyrone biosynthesis gene cluster embedded in an AT-rich region proximal to a telomere end and surrounded by Tc1/Mariner-type transposable elements. The highly AT-rich environment of the solanapyrone cluster is likely the product of repeat-induced point mutations. Several secondary metabolism-related genes were found in the flanking regions of the solanapyrone cluster. Although the solanapyrone cluster appears to be resistant to repeat-induced point mutations, a P450 monooxygenase gene adjacent to the cluster has been degraded by such mutations. Among the six solanapyrone cluster genes (sol1 to sol6), sol4 encodes a novel type of Zn(II)2Cys6 zinc cluster transcription factor. Deletion of sol4 resulted in the complete loss of solanapyrone production but did not compromise growth, sporulation, or virulence. Gene expression studies with the sol4 deletion and sol4-overexpressing mutants delimited the boundaries of the solanapyrone gene cluster and revealed that sol4 is likely a specific regulator of solanapyrone biosynthesis and appears to be necessary and sufficient for induction of the solanapyrone cluster genes. Despite the dynamic surrounding genomic regions, the solanapyrone gene cluster has maintained its integrity, suggesting important roles of solanapyrones in fungal biology.
Collapse
|
89
|
Schotanus K, Soyer JL, Connolly LR, Grandaubert J, Happel P, Smith KM, Freitag M, Stukenbrock EH. Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes. Epigenetics Chromatin 2015; 8:41. [PMID: 26430472 PMCID: PMC4589918 DOI: 10.1186/s13072-015-0033-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Supernumerary chromosomes have been found in many organisms. In fungi, these "accessory" or "dispensable" chromosomes are present at different frequencies in populations and are usually characterized by higher repetitive DNA content and lower gene density when compared to the core chromosomes. In the reference strain of the wheat pathogen, Zymoseptoria tritici, eight discrete accessory chromosomes have been found. So far, no functional role has been assigned to these chromosomes; however, they have existed as separate entities in the karyotypes of Zymoseptoria species over evolutionary time. In this study, we addressed what-if anything-distinguishes the chromatin of accessory chromosomes from core chromosomes. We used chromatin immunoprecipitation combined with high-throughput sequencing ("ChIP-seq") of DNA associated with the centromere-specific histone H3, CENP-A (CenH3), to identify centromeric DNA, and ChIP-seq with antibodies against dimethylated H3K4, trimethylated H3K9 and trimethylated H3K27 to determine the relative distribution and proportion of euchromatin, obligate and facultative heterochromatin, respectively. RESULTS Centromeres of the eight accessory chromosomes have the same sequence composition and structure as centromeres of the 13 core chromosomes and they are of similar length. Unlike those of most other fungi, Z. tritici centromeres are not composed entirely of repetitive DNA; some centromeres contain only unique DNA sequences, and bona fide expressed genes are located in regions enriched with CenH3. By fluorescence microscopy, we showed that centromeres of Z. tritici do not cluster into a single chromocenter during interphase. We found dramatically higher enrichment of H3K9me3 and H3K27me3 on the accessory chromosomes, consistent with the twofold higher proportion of repetitive DNA and poorly transcribed genes. In contrast, no single histone modification tested here correlated with the distribution of centromeric nucleosomes. CONCLUSIONS All centromeres are similar in length and composed of a mixture of unique and repeat DNA, and most contain actively transcribed genes. Centromeres, subtelomeric regions or telomere repeat length cannot account for the differences in transfer fidelity between core and accessory chromosomes, but accessory chromosomes are greatly enriched in nucleosomes with H3K27 trimethylation. Genes on accessory chromosomes appear to be silenced by trimethylation of H3K9 and H3K27.
Collapse
Affiliation(s)
- Klaas Schotanus
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany ; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7303 USA ; Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 9-11, 24118 Kiel, Germany ; Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Jessica L Soyer
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany ; INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, Thiverval-Grignon, 78850 France ; Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 9-11, 24118 Kiel, Germany ; Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Lanelle R Connolly
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7303 USA
| | - Jonathan Grandaubert
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany ; Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 9-11, 24118 Kiel, Germany ; Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Petra Happel
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany
| | - Kristina M Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7303 USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7303 USA
| | - Eva H Stukenbrock
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany ; Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 9-11, 24118 Kiel, Germany ; Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| |
Collapse
|
90
|
Fopa Fomeju B, Falentin C, Lassalle G, Manzanares-Dauleux MJ, Delourme R. Comparative genomic analysis of duplicated homoeologous regions involved in the resistance of Brassica napus to stem canker. FRONTIERS IN PLANT SCIENCE 2015; 6:772. [PMID: 26442081 PMCID: PMC4585320 DOI: 10.3389/fpls.2015.00772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/08/2015] [Indexed: 05/18/2023]
Abstract
All crop species are current or ancient polyploids. Following whole genome duplication, structural and functional modifications result in differential gene content or regulation in the duplicated regions, which can play a fundamental role in the diversification of genes underlying complex traits. We have investigated this issue in Brassica napus, a species with a highly duplicated genome, with the aim of studying the structural and functional organization of duplicated regions involved in quantitative resistance to stem canker, a disease caused by the fungal pathogen Leptosphaeria maculans. Genome-wide association analysis on two oilseed rape panels confirmed that duplicated regions of ancestral blocks E, J, R, U, and W were involved in resistance to stem canker. The structural analysis of the duplicated genomic regions showed a higher gene density on the A genome than on the C genome and a better collinearity between homoeologous regions than paralogous regions, as overall in the whole B. napus genome. The three ancestral sub-genomes were involved in the resistance to stem canker and the fractionation profile of the duplicated regions corresponded to what was expected from results on the B. napus progenitors. About 60% of the genes identified in these duplicated regions were single-copy genes while less than 5% were retained in all the duplicated copies of a given ancestral block. Genes retained in several copies were mainly involved in response to stress, signaling, or transcription regulation. Genes with resistance-associated markers were mainly retained in more than two copies. These results suggested that some genes underlying quantitative resistance to stem canker might be duplicated genes. Genes with a hydrolase activity that were retained in one copy or R-like genes might also account for resistance in some regions. Further analyses need to be conducted to indicate to what extent duplicated genes contribute to the expression of the resistance phenotype.
Collapse
Affiliation(s)
| | - Cyril Falentin
- Institut National de la Recherche Agronomique, UMR1349 IGEPPLe Rheu, France
| | - Gilles Lassalle
- Institut National de la Recherche Agronomique, UMR1349 IGEPPLe Rheu, France
| | | | - Régine Delourme
- Institut National de la Recherche Agronomique, UMR1349 IGEPPLe Rheu, France
| |
Collapse
|
91
|
Mind the gap; seven reasons to close fragmented genome assemblies. Fungal Genet Biol 2015; 90:24-30. [PMID: 26342853 DOI: 10.1016/j.fgb.2015.08.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
Abstract
Like other domains of life, research into the biology of filamentous microbes has greatly benefited from the advent of whole-genome sequencing. Next-generation sequencing (NGS) technologies have revolutionized sequencing, making genomic sciences accessible to many academic laboratories including those that study non-model organisms. Thus, hundreds of fungal genomes have been sequenced and are publically available today, although these initiatives have typically yielded considerably fragmented genome assemblies that often lack large contiguous genomic regions. Many important genomic features are contained in intergenic DNA that is often missing in current genome assemblies, and recent studies underscore the significance of non-coding regions and repetitive elements for the life style, adaptability and evolution of many organisms. The study of particular types of genetic elements, such as telomeres, centromeres, repetitive elements, effectors, and clusters of co-regulated genes, but also of phenomena such as structural rearrangements, genome compartmentalization and epigenetics, greatly benefits from having a contiguous and high-quality, preferably even complete and gapless, genome assembly. Here we discuss a number of important reasons to produce gapless, finished, genome assemblies to help answer important biological questions.
Collapse
|
92
|
Ghanbarnia K, Fudal I, Larkan NJ, Links MG, Balesdent MH, Profotova B, Fernando WGD, Rouxel T, Borhan MH. Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach. MOLECULAR PLANT PATHOLOGY 2015; 16:699-709. [PMID: 25492575 PMCID: PMC6638346 DOI: 10.1111/mpp.12228] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Five avirulence genes from Leptosphaeria maculans, the causal agent of blackleg of canola (Brassica napus), have been identified previously through map-based cloning. In this study, a comparative genomic approach was used to clone the previously mapped AvrLm2. Given the lack of a presence-absence gene polymorphism coincident with the AvrLm2 phenotype, 36 L. maculans isolates were resequenced and analysed for single-nucleotide polymorphisms (SNPs) in predicted small secreted protein-encoding genes present within the map interval. Three SNPs coincident with the AvrLm2 phenotype were identified within LmCys1, previously identified as a putative effector-coding gene. Complementation of a virulent isolate with LmCys1, as the candidate AvrLm2 allele, restored the avirulent phenotype on Rlm2-containing B. napus lines. AvrLm2 encodes a small cysteine-rich protein with low similarity to other proteins in the public databases. Unlike other avirulence genes, AvrLm2 resides in a small GC island within an AT-rich isochore of the genome, and was never found to be deleted completely in virulent isolates.
Collapse
Affiliation(s)
- Kaveh Ghanbarnia
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | | | - Nicholas J Larkan
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
| | - Matthew G Links
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5C9
| | | | | | | | | | - M Hossein Borhan
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
| |
Collapse
|
93
|
Larkan NJ, Ma L, Borhan MH. The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:983-92. [PMID: 25644479 DOI: 10.1111/pbi.12341] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 05/02/2023]
Abstract
Leucine-rich repeat receptor-like proteins (LRR-RLPs) are highly adaptable parts of the signalling apparatus for extracellular detection of plant pathogens. Resistance to blackleg disease of Brassica spp. caused by Leptosphaeria maculans is largely governed by host race-specific R-genes, including the LRR-RLP gene LepR3. The blackleg resistance gene Rlm2 was previously mapped to the same genetic interval as LepR3. In this study, the LepR3 locus of the Rlm2 Brassica napus line 'Glacier DH24287' was cloned, and B. napus transformants were analysed for recovery of the Rlm2 phenotype. Multiple B. napus, B. rapa and B. juncea lines were assessed for sequence variation at the locus. Rlm2 was found to be an allelic variant of the LepR3 LRR-RLP locus, conveying race-specific resistance to L. maculans isolates harbouring AvrLm2. Several defence-related LRR-RLPs have previously been shown to associate with the RLK SOBIR1 to facilitate defence signalling. Bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation of RLM2-SOBIR1 studies revealed that RLM2 interacts with SOBIR1 of Arabidopsis thaliana when co-expressed in Nicotiana benthamiana. The interaction of RLM2 with AtSOBIR1 is suggestive of a conserved defence signalling pathway between B. napus and its close relative A. thaliana.
Collapse
Affiliation(s)
- Nicholas J Larkan
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Lisong Ma
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | | |
Collapse
|
94
|
Soyer JL, Rouxel T, Fudal I. Chromatin-based control of effector gene expression in plant-associated fungi. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:51-6. [PMID: 26116976 DOI: 10.1016/j.pbi.2015.05.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 05/08/2023]
Abstract
Plant-associated fungi often present in their genome areas enriched in repeat sequences and effector genes, the latter being specifically induced in planta. The location of effector genes in regions enriched in repeats has been shown to have an impact on adaptability of fungi but could also provide for tight control of effector gene expression through chromatin-based regulation. The distribution of two repressive histone marks was shown to be an important regulatory layer in two fungal species with different lifestyles. Chromatin-based control of effector gene expression is likely to provide an evolutionary advantage by preventing the expression of genes not needed during vegetative growth and allow for a massive concerted expression at particular time-points of plant infection.
Collapse
Affiliation(s)
- Jessica L Soyer
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850 Thiverval-Grignon, France; Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany; Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Thierry Rouxel
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850 Thiverval-Grignon, France
| | - Isabelle Fudal
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850 Thiverval-Grignon, France.
| |
Collapse
|
95
|
Blondeau K, Blaise F, Graille M, Kale SD, Linglin J, Ollivier B, Labarde A, Lazar N, Daverdin G, Balesdent MH, Choi DHY, Tyler BM, Rouxel T, van Tilbeurgh H, Fudal I. Crystal structure of the effector AvrLm4-7 of Leptosphaeria maculans reveals insights into its translocation into plant cells and recognition by resistance proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:610-24. [PMID: 26082394 DOI: 10.1111/tpj.12913] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 05/13/2023]
Abstract
The avirulence gene AvrLm4-7 of Leptosphaeria maculans, the causal agent of stem canker in Brassica napus (oilseed rape), confers a dual specificity of recognition by two resistance genes (Rlm4 and Rlm7) and is strongly involved in fungal fitness. In order to elucidate the biological function of AvrLm4-7 and understand the specificity of recognition by Rlm4 and Rlm7, the AvrLm4-7 protein was produced in Pichia pastoris and its crystal structure was determined. It revealed the presence of four disulfide bridges, but no close structural analogs could be identified. A short stretch of amino acids in the C terminus of the protein, (R/N)(Y/F)(R/S)E(F/W), was well-conserved among AvrLm4-7 homologs. Loss of recognition of AvrLm4-7 by Rlm4 is caused by the mutation of a single glycine to an arginine residue located in a loop of the protein. Loss of recognition by Rlm7 is governed by more complex mutational patterns, including gene loss or drastic modifications of the protein structure. Three point mutations altered residues in the well-conserved C-terminal motif or close to the glycine involved in Rlm4-mediated recognition, resulting in the loss of Rlm7-mediated recognition. Transient expression in Nicotiana benthamiana (tobacco) and particle bombardment experiments on leaves from oilseed rape suggested that AvrLm4-7 interacts with its cognate R proteins inside the plant cell, and can be translocated into plant cells in the absence of the pathogen. Translocation of AvrLm4-7 into oilseed rape leaves is likely to require the (R/N)(Y/F)(R/S)E(F/W) motif as well as an RAWG motif located in a nearby loop that together form a positively charged region.
Collapse
Affiliation(s)
- Karine Blondeau
- I2BC, Université Paris-Saclay, CEA, CNRS, Université Paris Sud, UMR9198, Bât 430, F-91405, Orsay, France
| | - Françoise Blaise
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Marc Graille
- I2BC, Université Paris-Saclay, CEA, CNRS, Université Paris Sud, UMR9198, Bât 430, F-91405, Orsay, France
| | - Shiv D Kale
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Juliette Linglin
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Bénédicte Ollivier
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Audrey Labarde
- I2BC, Université Paris-Saclay, CEA, CNRS, Université Paris Sud, UMR9198, Bât 430, F-91405, Orsay, France
| | - Noureddine Lazar
- I2BC, Université Paris-Saclay, CEA, CNRS, Université Paris Sud, UMR9198, Bât 430, F-91405, Orsay, France
| | - Guillaume Daverdin
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Marie-Hélène Balesdent
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Danielle H Y Choi
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | - Brett M Tyler
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | - Thierry Rouxel
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Herman van Tilbeurgh
- I2BC, Université Paris-Saclay, CEA, CNRS, Université Paris Sud, UMR9198, Bât 430, F-91405, Orsay, France
| | - Isabelle Fudal
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| |
Collapse
|
96
|
Howlett BJ, Lowe RGT, Marcroft SJ, van de Wouw AP. Evolution of virulence in fungal plant pathogens: exploiting fungal genomics to control plant disease. Mycologia 2015; 107:441-51. [PMID: 25725000 DOI: 10.3852/14-317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/25/2015] [Indexed: 11/10/2022]
Abstract
The propensity of a fungal pathogen to evolve virulence depends on features of its biology (e.g. mode of reproduction) and of its genome (e.g. amount of repetitive DNA). Populations of Leptosphaeria maculans, a pathogen of Brassica napus (canola), can evolve and overcome disease resistance bred into canola within three years of commercial release of a cultivar. Avirulence effector genes are key fungal genes that are complementary to resistance genes. In L. maculans these genes are embedded within inactivated transposable elements in genomic regions where they are readily mutated or deleted. The risk of resistance breakdown in the field can be minimised by monitoring disease severity of canola cultivars and virulence of fungal populations using high throughput molecular assays and by sowing canola cultivars with different resistance genes in subsequent years. This strategy has been exploited to avert yield losses due to blackleg disease in Australia.
Collapse
Affiliation(s)
| | - Rohan G T Lowe
- School of Botany, University of Melbourne, VIC 3010, Australia
| | - Stephen J Marcroft
- Marcroft Grains Pathology, Grains Innovation Park, Horsham, VIC 3400, Australia
| | | |
Collapse
|
97
|
Hane JK, Williams AH, Taranto AP, Solomon PS, Oliver RP. Repeat-Induced Point Mutation: A Fungal-Specific, Endogenous Mutagenesis Process. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10503-1_4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
98
|
Transposable element-assisted evolution and adaptation to host plant within the Leptosphaeria maculans-Leptosphaeria biglobosa species complex of fungal pathogens. BMC Genomics 2014; 15:891. [PMID: 25306241 PMCID: PMC4210507 DOI: 10.1186/1471-2164-15-891] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 09/26/2014] [Indexed: 12/21/2022] Open
Abstract
Background Many plant-pathogenic fungi have a tendency towards genome size expansion, mostly driven by increasing content of transposable elements (TEs). Through comparative and evolutionary genomics, five members of the Leptosphaeria maculans-Leptosphaeria biglobosa species complex (class Dothideomycetes, order Pleosporales), having different host ranges and pathogenic abilities towards cruciferous plants, were studied to infer the role of TEs on genome shaping, speciation, and on the rise of better adapted pathogens. Results L. maculans ‘brassicae’, the most damaging species on oilseed rape, is the only member of the species complex to have a TE-invaded genome (32.5%) compared to the other members genomes (<4%). These TEs had an impact at the structural level by creating large TE-rich regions and are suspected to have been instrumental in chromosomal rearrangements possibly leading to speciation. TEs, associated with species-specific genes involved in disease process, also possibly had an incidence on evolution of pathogenicity by promoting translocations of effector genes to highly dynamic regions and thus tuning the regulation of effector gene expression in planta. Conclusions Invasion of L. maculans ‘brassicae’ genome by TEs followed by bursts of TE activity allowed this species to evolve and to better adapt to its host, making this genome species a peculiarity within its own species complex as well as in the Pleosporales lineage. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-891) contains supplementary material, which is available to authorized users.
Collapse
|
99
|
Stotz HU, Mitrousia GK, de Wit PJGM, Fitt BDL. Effector-triggered defence against apoplastic fungal pathogens. TRENDS IN PLANT SCIENCE 2014; 19:491-500. [PMID: 24856287 PMCID: PMC4123193 DOI: 10.1016/j.tplants.2014.04.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/07/2014] [Accepted: 04/23/2014] [Indexed: 05/18/2023]
Abstract
R gene-mediated host resistance against apoplastic fungal pathogens is not adequately explained by the terms pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) or effector-triggered immunity (ETI). Therefore, it is proposed that this type of resistance is termed 'effector-triggered defence' (ETD). Unlike PTI and ETI, ETD is mediated by R genes encoding cell surface-localised receptor-like proteins (RLPs) that engage the receptor-like kinase SOBIR1. In contrast to this extracellular recognition, ETI is initiated by intracellular detection of pathogen effectors. ETI is usually associated with fast, hypersensitive host cell death, whereas ETD often triggers host cell death only after an elapsed period of endophytic pathogen growth. In this opinion, we focus on ETD responses against foliar fungal pathogens of crops.
Collapse
Affiliation(s)
- Henrik U Stotz
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Georgia K Mitrousia
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Pierre J G M de Wit
- Wageningen University and Research Centre, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Bruce D L Fitt
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| |
Collapse
|
100
|
Kaczmarek J, Latunde-Dada AO, Irzykowski W, Cools HJ, Stonard JF, Brachaczek A, Jedryczka M. Molecular screening for avirulence alleles AvrLm1 and AvrLm6 in airborne inoculum of Leptosphaeria maculans and winter oilseed rape (Brassica napus) plants from Poland and the UK. J Appl Genet 2014; 55:529-39. [PMID: 25081837 PMCID: PMC4185106 DOI: 10.1007/s13353-014-0235-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 12/19/2022]
Abstract
A combination of staining, light microscopy and SYBR green- and dual-labelled fluorescent probe-based qPCR chemistries with species- and gene-specific primers was employed to evaluate fluctuations in the aerial biomass of Leptosphaeria maculans spores captured by volumetric spore trappings in Poznan, Poland (2006, 2008) and Harpenden, UK (2002, 2006). Arising from these surveys, DNA samples extracted from Burkard spore-trap tapes were screened for fluctuation patterns in the frequencies of AvrLm1 and AvrLm6, the most prominent of the 15 genes that code for avirulence effectors in this Dothideomycete cause of the destructive phoma stem canker disease of oilseed rape worldwide. In Poznan, very low frequencies of AvrLm1 allele were found in the autumn of both 2006 and 2008, reflecting significantly increased cultivation of rape seed with Rlm1-based resistance. In contrast, at least six folds-higher frequencies of AvrLm6, which were also confirmed by end-point PCR bioassays on phoma-infected leaves from the same region of Poland, were obtained during both years. In the UK, however, relatively higher AvrLm1 allele titres were found in L. maculans spores captured in air samples from the autumn of 2002 on the experimental fields of Rothamsted Research, Harpenden, that were historically sown to genetically heterogeneous B. napus cultivars. In the 2006 screen these levels had plummeted, to a 1:4 ratio, in favour of frequencies of the AvrLm6 allele. Patterns of fluctuations in erg11 (CYP51) fragments coding for sterol 14α-demethylase suggest October as the month with the most viable wind-dispersed L. maculans propagules of each season of the screens.
Collapse
Affiliation(s)
- Joanna Kaczmarek
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|