51
|
Huang Z, Yu K, Fang Y, Dai H, Cai H, Li Z, Kan B, Wei Q, Wang D. Comparative Genomics and Transcriptomics Analyses Reveal a Unique Environmental Adaptability of Vibrio fujianensis. Microorganisms 2020; 8:microorganisms8040555. [PMID: 32294952 PMCID: PMC7232310 DOI: 10.3390/microorganisms8040555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
The genus Vibrio is ubiquitous in marine environments and uses numerous evolutionary characteristics and survival strategies in order to occupy its niche. Here, a newly identified species, Vibrio fujianensis, was deeply explored to reveal a unique environmental adaptability. V. fujianensis type strain FJ201301T shared 817 core genes with the Vibrio species in the population genomic analysis, but possessed unique genes of its own. In addition, V. fujianensis FJ201301T was predicated to carry 106 virulence-related factors, several of which were mostly found in other pathogenic Vibrio species. Moreover, a comparative transcriptome analysis between the low-salt (1% NaCl) and high-salt (8% NaCl) condition was conducted to identify the genes involved in salt tolerance. A total of 913 unigenes were found to be differentially expressed. In a high-salt condition, 577 genes were significantly upregulated, whereas 336 unigenes were significantly downregulated. Notably, differentially expressed genes have a significant association with ribosome structural component and ribosome metabolism, which may play a role in salt tolerance. Transcriptional changes in ribosome genes indicate that V. fujianensis may have gained a predominant advantage in order to adapt to the changing environment. In conclusion, to survive in adversity, V. fujianensis has enhanced its environmental adaptability and developed various strategies to fill its niche.
Collapse
Affiliation(s)
- Zhenzhou Huang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Keyi Yu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Yujie Fang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Hang Dai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Hongyan Cai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Zhenpeng Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
| | - Qiang Wei
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
- Office of Laboratory Management, China CDC, Beijing 102206, China
- Correspondence: (Q.W.); (D.W.)
| | - Duochun Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
- Correspondence: (Q.W.); (D.W.)
| |
Collapse
|
52
|
Li H, Dai J, Qin J, Shang W, Chen J, Zhang L, Dai X, Klosterman SJ, Xu X, Subbarao KV, Fan S, Hu X. Genome Sequences of Verticillium dahliae Defoliating Strain XJ592 and Nondefoliating Strain XJ511. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:565-568. [PMID: 31958033 DOI: 10.1094/mpmi-11-19-0320-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Verticillium dahliae is a widely distributed soilborne pathogen that causes vascular wilt in more than 200 plant species. Defoliating and nondefoliating symptoms caused by the disease that result in either the loss or retention of leaves in infected plants, respectively, in hosts such as cotton, olive, and okra, divide the causal agent into defoliating and nondefoliating pathotypes. Our goal in this current work was to generate genome resources for the defoliating strain XJ592 and the nondefoliating strain XJ511 of V. dahliae isolated from cotton in China.
Collapse
Affiliation(s)
- Haiyuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jichen Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjing Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jieyin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Zhang
- The Key Laboratory of Prevention and Control for Oasis Crop Disease, Shihezi University, Shihezi 832003, China
| | - Xiaofeng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905, U.S.A
| | - Xiangming Xu
- Pest & Pathogen Ecology, NIAB EMR, East Malling, Kent ME19 6BJ, U.K
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California Davis, c/o United States Agricultural Research Station, Salinas, CA 93905, U.S.A
| | - Sanhong Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
53
|
Xiong XP, Sun SC, Zhang XY, Li YJ, Liu F, Zhu QH, Xue F, Sun J. GhWRKY70D13 Regulates Resistance to Verticillium dahliae in Cotton Through the Ethylene and Jasmonic Acid Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2020; 11:69. [PMID: 32158454 PMCID: PMC7052014 DOI: 10.3389/fpls.2020.00069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/17/2020] [Indexed: 05/05/2023]
Abstract
Verticillium wilt caused by Verticillium dahliae is a destructive cotton disease causing severe yield and quality losses worldwide. WRKY transcription factors play important roles in plant defense against pathogen infection. However, little has been reported on the functions of WRKYs in cotton's resistance to V. dahliae. Here, we identified 5, 5, and 10 WRKY70 genes in Gossypium arboreum, Gossypium raimondii, and Gossypium hirsutum, respectively, and investigated the expression profiles of all GhWRKY70 genes in various cotton tissues and in response to hormone treatment or V. dahliae infection. Reverse transcription-quantitative PCR analysis showed that GhWRKY70D13 was expressed higher in roots and stems than in other tissues, and up-regulated after V. dahliae inoculation. Knock-down of GhWRKY70D13 improved resistance to V. dahliae in both resistant and susceptible cotton cultivars. Comparative analysis of transcriptomes generated from wild-type and stable RNAi (RNA interference) plant with down-regulated GhWRKY70D13 showed that genes involved in ethylene (ET) and jasmonic acid (JA) biosynthesis and signaling were significantly upregulated in the GhWRKY70D13 RNAi plants. Consistently, the contents of 1-aminocyclopropane-1-carboxylic (ACC), JA, and JA-isoleucine levels were significantly higher in the GhWRKY70D13 RNAi plants than in wild-type. Following V. dahliae infection, the levels of ACC and JA decreased in the GhWRKY70D13 RNAi plants but still significantly higher (for ACC) than that in wild-type or at the same level (for JA) as in non-infected wild-type plants. Collectively, our results suggested that GhWRKY70D13 negatively regulates cotton's resistance to V. dahliae mainly through its effect on ET and JA biosynthesis and signaling pathways.
Collapse
Affiliation(s)
- Xian-Peng Xiong
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Shi-Chao Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Xin-Yu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yan-Jun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Qian-Hao Zhu
- Agriculture and Food, CSIRO, Canberra, ACT, Australia
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- *Correspondence: Fei Xue, ; Jie Sun,
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- *Correspondence: Fei Xue, ; Jie Sun,
| |
Collapse
|
54
|
Li JJ, Zhou L, Yin CM, Zhang DD, Klosterman SJ, Wang BL, Song J, Wang D, Hu XP, Subbarao KV, Chen JY, Dai XF. The Verticillium dahliae Sho1-MAPK pathway regulates melanin biosynthesis and is required for cotton infection. Environ Microbiol 2019; 21:4852-4874. [PMID: 31667948 PMCID: PMC6916341 DOI: 10.1111/1462-2920.14846] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
Abstract
Verticillium dahliae is a soil‐borne fungus that causes vascular wilt on numerous plants worldwide. The fungus survives in the soil for up to 14 years by producing melanized microsclerotia. The protective function of melanin in abiotic stresses is well documented. Here, we found that the V. dahliae tetraspan transmembrane protein VdSho1, a homolog of the Saccharomyces cerevisiae Sho1, acts as an osmosensor, and is required for plant penetration and melanin biosynthesis. The deletion mutant ΔSho1 was incubated on a cellophane membrane substrate that mimics the plant epidermis, revealing that the penetration of ΔSho1 strain was reduced compared to the wild‐type strain. Furthermore, VdSho1 regulates melanin biosynthesis by a signalling mechanism requiring a kinase‐kinase signalling module of Vst50‐Vst11‐Vst7. Strains, ΔVst50, ΔVst7 and ΔVst11 also displayed defective penetration and melanin production like the ΔSho1 strain. Defects in penetration and melanin production in ΔSho1 were restored by overexpression of Vst50, suggesting that Vst50 lies downstream of VdSho1 in the regulatory pathway governing penetration and melanin biosynthesis. Data analyses revealed that the transmembrane portion of VdSho1 was essential for both membrane penetration and melanin production. This study demonstrates that Vst50‐Vst11‐Vst7 module regulates VdSho1‐mediated plant penetration and melanin production in V. dahliae, contributing to virulence.
Collapse
Affiliation(s)
- Jun-Jiao Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| | - Chun-Mei Yin
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station, Salinas, California, 93905, USA
| | - Bao-Li Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Song
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Ping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Krishna V Subbarao
- United States Department of Agriculture, Agricultural Research Service, Salinas, California, 93905, USA
| | - Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| |
Collapse
|
55
|
Hu J, Zhou Y, Geng J, Dai Y, Ren H, Lamour K. A new dollar spot disease of turfgrass caused by Clarireedia paspali. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01526-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
56
|
Li J, Pei J, Liu Y, Xia W, Cheng F, Tian W, Lin Z, Zhu J, Wang A. Transcriptome sequencing of Verticillium dahliae from a cotton farm reveals positive correlation between virulence and tolerance of sugar-induced hyperosmosis. PeerJ 2019; 7:e8035. [PMID: 31737452 PMCID: PMC6855202 DOI: 10.7717/peerj.8035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022] Open
Abstract
Verticillium dahliae causes disease symptoms in its host plants; however, due to its rapid variability, V. dahliae is difficult to control. To analyze the reason for this pathogenic differentiation, 22 V. dahliae strains with different virulence were isolated from a cotton farm. The genetic diversity of cotton varieties make cotton cultivars have different Verticillium wilt resistance, so the Xinluzao 7 (susceptible to V. dahliae), Zhongmian 35 (tolerant), and Xinluzao 33 (resistant) were used to investigate the pathogenicity of the strains in a green house. Vegetative compatibility groups (VCGs) assays, Internal Transcribed Spacer (ITS) PCR, and pathogenicity analysis showed that SHZ-4, SHZ-5, and SHZ-9 had close kinship and significantly different pathogenicity. Transcriptome sequencing of the three strains identified 19 of 146 unigenes in SHZ-4_vs_ SHZ-5, SHZ-5_vs_ SHZ-9, and SHZ-4_vs_ SHZ-9. In these unigenes, three proteinase and four polysaccharide degrading hydrolases were found to be associated with the pathogenicity. However, due to a number of differentially expressed genes in the transport, these unigenes not only played a role in nutrition absorption but might also contribute to the resistance of sugar-induced hyperosmosis. Moreover, the tolerance ability was positively related to the pathogenicity of V. dahliae. This resistance to sugar-induced hyperosmosis might help V. dahliae to access the nutrition of the host. The pathogenicity of V. dahliae correlated with the resistance of sugar-induced-hyperosmosis, which provides clues for the cultivation of V. dahliae resistant varieties.
Collapse
Affiliation(s)
- Jin Li
- College of Life Science, Shihezi University, Shihezi, China
| | - Juan Pei
- College of Life Science, Shihezi University, Shihezi, China
| | - Yuanyuan Liu
- College of Life Science, Shihezi University, Shihezi, China
| | - Wenwen Xia
- College of Life Science, Shihezi University, Shihezi, China
| | - Fengfeng Cheng
- College of Life Science, Shihezi University, Shihezi, China
| | - Wenhui Tian
- College of Life Science, Shihezi University, Shihezi, China
| | - Zhongping Lin
- College of Life Sciences, Peking University, Beijing, China
| | - Jianbo Zhu
- College of Life Science, Shihezi University, Shihezi, China
| | - Aiying Wang
- College of Life Science, Shihezi University, Shihezi, China
| |
Collapse
|
57
|
Zhao JH, Guo HS. Trans-kingdom RNA interactions drive the evolutionary arms race between hosts and pathogens. Curr Opin Genet Dev 2019; 58-59:62-69. [PMID: 31472442 DOI: 10.1016/j.gde.2019.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
Trans-kingdom RNA plays a key role in host-parasite interactions. Hosts export specific endogenous microRNAs (miRNAs) into pathogens to target pathogen virulence genes and inhibit their invasion. In addition, trans-kingdom sRNAs produced by parasites may function as RNA effectors to suppress host immunity. Here, we summarize recent, important findings regarding trans-kingdom RNA and focus on the roles of trans-kingdom RNA in driving an evolutionary arms race between host and pathogen. We suggest that trans-kingdom RNA is a new platform for such arms races. Furthermore, we conjecture that trans-kingdom RNA contributes to horizontal gene transfer (HGT) involved in host-pathogen interactions. In addition, we propose that trans-kingdom RNA exchange and RNA driven HGT can have a great impact on the evolutionary ecology of interacting species.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
58
|
Li X, Su X, Lu G, Sun G, Zhang Z, Guo H, Guo N, Cheng H. VdOGDH is involved in energy metabolism and required for virulence of Verticillium dahliae. Curr Genet 2019; 66:345-359. [PMID: 31422448 DOI: 10.1007/s00294-019-01025-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/28/2019] [Accepted: 08/08/2019] [Indexed: 01/21/2023]
Abstract
Verticillium dahliae, a soil-borne fungus, can invade plant vascular tissue and cause Verticillium wilt. The enzyme α-oxoglutarate dehydrogenase (OGDH), catalyzing the oxidation of α-oxoglutarate in the tricarboxylic acid cycle (TCA), is vital for energy metabolism in the fungi. Here, we identified the OGDH gene in V. dahliae (VdOGDH, VDAG_10018) and investigated its function in virulence by generating gene deletion mutants (ΔVdOGDH) and complementary mutants (ΔVdOGDH-C). When the ΔVdOGDH mutants were supplemented with different carbon sources, vegetative growth on Czapek Dox medium was significantly impaired, suggesting that VdOGDH is crucial for vegetative growth and carbon utilization. Conidia of the ΔVdOGDH mutants were atypically rounded or spherical, and hyphae were irregularly branched and lacked typical whorled branches. Mutants ΔVdOGDH-1 and ΔVdOGDH-2 were highly sensitive to H2O2 in the medium plates and had higher intracellular ROS levels. ΔVdOGDH mutants also had elevated expression of oxidative response-related genes, indicating that VdOGDH is involved in response to oxidative stress. In addition, the disruption of VdOGDH caused a significant increase in the expression of energy metabolism-related genes VdICL, VdICDH, VdMDH, and VdPDH and melanin-related genes Vayg1, VdSCD, VdLAC, VT4HR, and VaflM in the ΔVdOGDH mutants; thus, VdOGDH is also important for energy metabolism and melanin accumulation. Cotton plants inoculated with ΔVdOGDH mutants exhibited mild leaf chlorosis and the disease index was lower compared with wild type and ΔVdOGDH-C strains. These results together show that VdOGDH involved in energy metabolism of V. dahliae, is also essential for full virulence by regulating multiple fungal developmental factors.
Collapse
Affiliation(s)
- Xiaokang Li
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China.,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoqing Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhuo Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ning Guo
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China.
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
59
|
Li TG, Wang BL, Yin CM, Zhang DD, Wang D, Song J, Zhou L, Kong ZQ, Klosterman SJ, Li JJ, Adamu S, Liu TL, Subbarao KV, Chen JY, Dai XF. The Gossypium hirsutum TIR-NBS-LRR gene GhDSC1 mediates resistance against Verticillium wilt. MOLECULAR PLANT PATHOLOGY 2019; 20:857-876. [PMID: 30957942 DOI: 10.5897/ajmr11.781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Improving genetic resistance is a preferred method to manage Verticillium wilt of cotton and other hosts. Identifying host resistance is difficult because of the dearth of resistance genes against this pathogen. Previously, a novel candidate gene involved in Verticillium wilt resistance was identified by a genome-wide association study using a panel of Gossypium hirsutum accessions. In this study, we cloned the candidate resistance gene from cotton that encodes a protein sharing homology with the TIR-NBS-LRR receptor-like defence protein DSC1 in Arabidopsis thaliana (hereafter named GhDSC1). GhDSC1 expressed at higher levels in response to Verticillium wilt and jasmonic acid (JA) treatment in resistant cotton cultivars as compared to susceptible cultivars and its product was localized to nucleus. The transfer of GhDSC1 to Arabidopsis conferred Verticillium resistance in an A. thaliana dsc1 mutant. This resistance response was associated with reactive oxygen species (ROS) accumulation and increased expression of JA-signalling-related genes. Furthermore, the expression of GhDSC1 in response to Verticillium wilt and JA signalling in A. thaliana displayed expression patterns similar to GhCAMTA3 in cotton under identical conditions, suggesting a coordinated DSC1 and CAMTA3 response in A. thaliana to Verticillium wilt. Analyses of GhDSC1 sequence polymorphism revealed a single nucleotide polymorphism (SNP) difference between resistant and susceptible cotton accessions, within the P-loop motif encoded by GhDSC1. This SNP difference causes ineffective activation of defence response in susceptible cultivars. These results demonstrated that GhDSC1 confers Verticillium resistance in the model plant system of A. thaliana, and therefore represents a suitable candidate for the genetic engineering of Verticillium wilt resistance in cotton.
Collapse
Affiliation(s)
- Ting-Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bao-Li Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chun-Mei Yin
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| | - Dan Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Song
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| | - Zhi-Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, California, USA
| | - Jun-Jiao Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Sabiu Adamu
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ting-Li Liu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station, Salinas, California, USA
| | - Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| |
Collapse
|
60
|
Li T, Wang B, Yin C, Zhang D, Wang D, Song J, Zhou L, Kong Z, Klosterman SJ, Li J, Adamu S, Liu T, Subbarao KV, Chen J, Dai X. The Gossypium hirsutum TIR-NBS-LRR gene GhDSC1 mediates resistance against Verticillium wilt. MOLECULAR PLANT PATHOLOGY 2019; 20:857-876. [PMID: 30957942 PMCID: PMC6637886 DOI: 10.1111/mpp.12797] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Improving genetic resistance is a preferred method to manage Verticillium wilt of cotton and other hosts. Identifying host resistance is difficult because of the dearth of resistance genes against this pathogen. Previously, a novel candidate gene involved in Verticillium wilt resistance was identified by a genome-wide association study using a panel of Gossypium hirsutum accessions. In this study, we cloned the candidate resistance gene from cotton that encodes a protein sharing homology with the TIR-NBS-LRR receptor-like defence protein DSC1 in Arabidopsis thaliana (hereafter named GhDSC1). GhDSC1 expressed at higher levels in response to Verticillium wilt and jasmonic acid (JA) treatment in resistant cotton cultivars as compared to susceptible cultivars and its product was localized to nucleus. The transfer of GhDSC1 to Arabidopsis conferred Verticillium resistance in an A. thaliana dsc1 mutant. This resistance response was associated with reactive oxygen species (ROS) accumulation and increased expression of JA-signalling-related genes. Furthermore, the expression of GhDSC1 in response to Verticillium wilt and JA signalling in A. thaliana displayed expression patterns similar to GhCAMTA3 in cotton under identical conditions, suggesting a coordinated DSC1 and CAMTA3 response in A. thaliana to Verticillium wilt. Analyses of GhDSC1 sequence polymorphism revealed a single nucleotide polymorphism (SNP) difference between resistant and susceptible cotton accessions, within the P-loop motif encoded by GhDSC1. This SNP difference causes ineffective activation of defence response in susceptible cultivars. These results demonstrated that GhDSC1 confers Verticillium resistance in the model plant system of A. thaliana, and therefore represents a suitable candidate for the genetic engineering of Verticillium wilt resistance in cotton.
Collapse
Affiliation(s)
- Ting‐Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Bao‐Li Wang
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Chun‐Mei Yin
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Dan‐Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process, Ministry of AgricultureBeijing100193China
| | - Dan Wang
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Jian Song
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process, Ministry of AgricultureBeijing100193China
| | - Zhi‐Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Steven J. Klosterman
- United States Department of AgricultureAgricultural Research ServiceSalinasCaliforniaUSA
| | - Jun‐Jiao Li
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Sabiu Adamu
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Ting‐Li Liu
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingJiangsu210014China
| | - Krishna V. Subbarao
- Department of Plant PathologyUniversity of California, Davis, c/o United States Agricultural Research StationSalinasCaliforniaUSA
| | - Jie‐Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process, Ministry of AgricultureBeijing100193China
| | - Xiao‐Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process, Ministry of AgricultureBeijing100193China
| |
Collapse
|
61
|
Zhang D, Wang J, Wang D, Kong Z, Zhou L, Zhang G, Gui Y, Li J, Huang J, Wang B, Liu C, Yin C, Li R, Li T, Wang J, Short DPG, Klosterman SJ, Bostock RM, Subbarao KV, Chen J, Dai X. Population genomics demystifies the defoliation phenotype in the plant pathogen Verticillium dahliae. THE NEW PHYTOLOGIST 2019; 222:1012-1029. [PMID: 30609067 PMCID: PMC6594092 DOI: 10.1111/nph.15672] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/18/2018] [Indexed: 05/19/2023]
Abstract
Verticillium dahliae is a broad host-range pathogen that causes vascular wilts in plants. Interactions between three hosts and specific V. dahliae genotypes result in severe defoliation. The underlying mechanisms of defoliation are unresolved. Genome resequencing, gene deletion and complementation, gene expression analysis, sequence divergence, defoliating phenotype identification, virulence analysis, and quantification of V. dahliae secondary metabolites were performed. Population genomics previously revealed that G-LSR2 was horizontally transferred from the fungus Fusarium oxysporum f. sp. vasinfectum to V. dahliae and is exclusively found in the genomes of defoliating (D) strains. Deletion of seven genes within G-LSR2, designated as VdDf genes, produced the nondefoliation phenotype on cotton, olive, and okra but complementation of two genes restored the defoliation phenotype. Genes VdDf5 and VdDf6 associated with defoliation shared homology with polyketide synthases involved in secondary metabolism, whereas VdDf7 shared homology with proteins involved in the biosynthesis of N-lauroylethanolamine (N-acylethanolamine (NAE) 12:0), a compound that induces defoliation. NAE overbiosynthesis by D strains also appears to disrupt NAE metabolism in cotton by inducing overexpression of fatty acid amide hydrolase. The VdDfs modulate the synthesis and overproduction of secondary metabolites, such as NAE 12:0, that cause defoliation either by altering abscisic acid sensitivity, hormone disruption, or sensitivity to the pathogen.
Collapse
Affiliation(s)
- Dan‐Dan Zhang
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Jie Wang
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Dan Wang
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Zhi‐Qiang Kong
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Lei Zhou
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | | | - Yue‐Jing Gui
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Jun‐Jiao Li
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | | | - Bao‐Li Wang
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Chun Liu
- GenomicsBGI‐ShenzhenShenzhen518083China
| | - Chun‐Mei Yin
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Rui‐Xing Li
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Ting‐Gang Li
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Jin‐Long Wang
- Department of BiologyDuke UniversityDurhamNC27708USA
| | - Dylan P. G. Short
- Department of Plant PathologyUniversity of California, Davisc/o US Agricultural Research StationSalinasCA93905USA
| | - Steven J. Klosterman
- United States Department of AgricultureAgricultural Research ServiceCrop Improvement and Protection Research UnitSalinasCA93905USA
| | | | - Krishna V. Subbarao
- Department of Plant PathologyUniversity of California, Davisc/o US Agricultural Research StationSalinasCA93905USA
| | - Jie‐Yin Chen
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Xiao‐Feng Dai
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
62
|
Li L, Zhu T, Song Y, Luo X, Feng L, Zhuo F, Li F, Ren M. Functional Characterization of Target of Rapamycin Signaling in Verticillium dahliae. Front Microbiol 2019; 10:501. [PMID: 30918504 PMCID: PMC6424901 DOI: 10.3389/fmicb.2019.00501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
More than 200 plants have been suffering from Verticillium wilt caused by Verticillium dahliae (V. dahliae) across the world. The target of rapamycin (TOR) is a lethal gene and controls cell growth and development in various eukaryotes, but little is known about TOR signaling in V. dahliae. Here, we found that V. dahliae strain is hypersensitive to rapamycin in the presence of rapamycin binding protein VdFKBP12 while the deletion mutant aaavdfkbp12 is insensitive to rapamycin. Heterologous expressing VdFKBP12 in Arabidopsis conferred rapamycin sensitivity, indicating that VdFKBP12 can bridge the interaction between rapamycin and TOR across species. The key across species of TOR complex 1 (TORC1) and TORC2 have been identified in V. dahliae, suggesting that TOR signaling pathway is evolutionarily conserved in eukaryotic species. Furthermore, the RNA-seq analysis showed that ribosomal biogenesis, RNA polymerase II transcription factors and many metabolic processes were significantly suppressed in rapamycin treated cells of V. dahliae. Importantly, transcript levels of genes associated with cell wall degrading enzymes (CWEDs) were dramatically down-regulated in TOR-inhibited cells. Further infection assay showed that the pathogenicity of V. dahliae and occurrence of Verticillium wilt can be blocked in the presence of rapamycin. These observations suggested that VdTOR is a key target of V. dahliae for controlling and preventing Verticillium wilt in plants.
Collapse
Affiliation(s)
- Linxuan Li
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Tingting Zhu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yun Song
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiumei Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Li Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Fengping Zhuo
- School of Life Sciences, Chongqing University, Chongqing, China.,School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
63
|
Kale SD. PenSeq: coverage you can count on. THE NEW PHYTOLOGIST 2019; 221:1177-1179. [PMID: 30644579 DOI: 10.1111/nph.15608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Shiv D Kale
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA, 24060, USA
| |
Collapse
|
64
|
Sánchez-Vallet A, Fouché S, Fudal I, Hartmann FE, Soyer JL, Tellier A, Croll D. The Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:21-40. [PMID: 29768136 DOI: 10.1146/annurev-phyto-080516-035303] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Filamentous pathogens, including fungi and oomycetes, pose major threats to global food security. Crop pathogens cause damage by secreting effectors that manipulate the host to the pathogen's advantage. Genes encoding such effectors are among the most rapidly evolving genes in pathogen genomes. Here, we review how the major characteristics of the emergence, function, and regulation of effector genes are tightly linked to the genomic compartments where these genes are located in pathogen genomes. The presence of repetitive elements in these compartments is associated with elevated rates of point mutations and sequence rearrangements with a major impact on effector diversification. The expression of many effectors converges on an epigenetic control mediated by the presence of repetitive elements. Population genomics analyses showed that rapidly evolving pathogens show high rates of turnover at effector loci and display a mosaic in effector presence-absence polymorphism among strains. We conclude that effective pathogen containment strategies require a thorough understanding of the effector genome biology and the pathogen's potential for rapid adaptation.
Collapse
Affiliation(s)
- Andrea Sánchez-Vallet
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Simone Fouché
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Isabelle Fudal
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Fanny E Hartmann
- Ecologie Systématique Evolution, AgroParisTech, Université Paris-Sud, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Jessica L Soyer
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Aurélien Tellier
- Section of Population Genetics, Technical University of Munich, 85354 Freising, Germany
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland;
| |
Collapse
|
65
|
Wang J, Tian L, Zhang DD, Short DPG, Zhou L, Song SS, Liu Y, Wang D, Kong ZQ, Cui WY, Ma XF, Klosterman SJ, Subbarao KV, Chen JY, Dai XF. SNARE-Encoding Genes VdSec22 and VdSso1 Mediate Protein Secretion Required for Full Virulence in Verticillium dahliae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:651-664. [PMID: 29419372 DOI: 10.1094/mpmi-12-17-0289-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Proteins that mediate cellular and subcellular membrane fusion are key factors in vesicular trafficking in all eukaryotic cells, including the secretion and transport of plant pathogen virulence factors. In this study, we identified vesicle-fusion components that included 22 soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), four Sec1/Munc18 (SM) family proteins, and 10 Rab GTPases encoded in the genome of the vascular wilt pathogen Verticillium dahliae Vd991. Targeted deletion of two SNARE-encoding genes in V. dahliae, VdSec22 and VdSso1, significantly reduced virulence of both mutants on cotton, relative to the wild-type Vd991 strain. Comparative analyses of the secreted protein content (exoproteome) revealed that many enzymes involved in carbohydrate hydrolysis were regulated by VdSec22 or VdSso1. Consistent with a role of these enzymes in plant cell-wall degradation, pectin, cellulose, and xylan utilization were reduced in the VdSec22 or VdSso1 mutant strains along with a loss of exoproteome cytotoxic activity on cotton leaves. Comparisons with a pathogenicity-related exoproteome revealed that several known virulence factors were not regulated by VdSec22 or VdSso1, but some of the proteins regulated by VdSec22 or VdSso1 displayed different characteristics, including the lack of a typical signal peptide, suggesting that V. dahliae employs more than one secretory route to transport proteins to extracellular sites during infection.
Collapse
Affiliation(s)
- Jie Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Tian
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Dan-Dan Zhang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dylan P G Short
- 2 Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, U.S.A
| | - Lei Zhou
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuang-Shuang Song
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Yan Liu
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Dan Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhi-Qiang Kong
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei-Ye Cui
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue-Feng Ma
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- 4 United States Department of Agriculture, Agricultural Research Service, Salinas, CA, U.S.A
| | - Krishna V Subbarao
- 2 Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, U.S.A
| | - Jie-Yin Chen
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Feng Dai
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
66
|
Li N, ma X, Short DPG, Li T, Zhou L, Gui Y, Kong Z, Zhang D, Zhang W, Li J, Subbarao KV, Chen J, Dai X. The island cotton NBS-LRR gene GbaNA1 confers resistance to the non-race 1 Verticillium dahliae isolate Vd991. MOLECULAR PLANT PATHOLOGY 2018; 19:1466-1479. [PMID: 29052967 PMCID: PMC6638185 DOI: 10.1111/mpp.12630] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/06/2017] [Accepted: 10/14/2017] [Indexed: 05/21/2023]
Abstract
Wilt caused by Verticillium dahliae significantly reduces cotton yields, as host resistance in commercially cultivated Gossypium species is lacking. Understanding the molecular basis of disease resistance in non-commercial Gossypium species could galvanize the development of Verticillium wilt resistance in cultivated species. Nucleotide-binding site leucine-rich repeat (NBS-LRR) proteins play a central role in plant defence against pathogens. In this study, we focused on the relationship between a locus enriched with eight NBS-LRR genes and Verticillium wilt resistance in G. barbadense. Independent virus-induced gene silencing of each of the eight NBS-LRR genes in G. barbadense cultivar Hai 7124 revealed that silencing of GbaNA1 alone compromised the resistance of G. barbadense to V. dahliae isolate Vd991. In cultivar Hai 7124, GbaNA1 could be induced by V. dahliae isolate Vd991 and by ethylene, jasmonic acid and salicylic acid. Nuclear protein localization of GbaNA1 was demonstrated by transient expression. Sequencing of the GbaNA1 orthologue in nine G. hirsutum accessions revealed that all carried a non-functional allele, caused by a premature peptide truncation. In addition, all 10 G. barbadense and nine G. hirsutum accessions tested carried a full-length (∼1140 amino acids) homologue of the V. dahliae race 1 resistance gene Gbve1, although some sequence polymorphisms were observed. Verticillium dahliae Vd991 is a non-race 1 isolate that lacks the Ave1 gene. Thus, the resistance imparted by GbaNA1 appears to be mediated by a mechanism distinct from recognition of the fungal effector Ave1.
Collapse
Affiliation(s)
- Nan‐Yang Li
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Xue‐Feng ma
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Dylan P. G. Short
- Department of Plant PathologyUniversity of CaliforniaDavisCA 95616USA
| | - Ting‐Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Yue‐Jing Gui
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Zhi‐Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Dan‐Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Wen‐Qi Zhang
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Jun‐Jiao Li
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | | | - Jie‐Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| | - Xiao‐Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing 100193China
| |
Collapse
|
67
|
Gui YJ, Zhang WQ, Zhang DD, Zhou L, Short DPG, Wang J, Ma XF, Li TG, Kong ZQ, Wang BL, Wang D, Li NY, Subbarao KV, Chen JY, Dai XF. A Verticillium dahliae Extracellular Cutinase Modulates Plant Immune Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:260-273. [PMID: 29068240 DOI: 10.1094/mpmi-06-17-0136-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cutinases have been implicated as important enzymes during the process of fungal infection of aerial plant organs. The function of cutinases in the disease cycle of fungal pathogens that invade plants through the roots has been less studied. Here, functional analysis of 13 cutinase (carbohydrate esterase family 5 domain-containing) genes (VdCUTs) in the highly virulent vascular wilt pathogen Verticillium dahliae Vd991 was performed. Significant sequence divergence in cutinase family members was observed in the genome of V. dahliae Vd991. Functional analyses demonstrated that only VdCUT11, as purified protein, induced cell death and triggered defense responses in Nicotiana benthamiana, cotton, and tomato plants. Virus-induced gene silencing showed that VdCUT11 induces plant defense responses in Nicotiana benthamania in a BAK1 and SOBIR-dependent manner. Furthermore, coinfiltration assays revealed that the carbohydrate-binding module family 1 protein (VdCBM1) suppressed VdCUT11-induced cell death and other defense responses in N. benthamiana. Targeted deletion of VdCUT11 in V. dahliae significantly compromised virulence on cotton plants. The cutinase VdCUT11 is an important secreted enzyme and virulence factor that elicits plant defense responses in the absence of VdCBM1.
Collapse
Affiliation(s)
- Yue-Jing Gui
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Wen-Qi Zhang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Dan-Dan Zhang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Lei Zhou
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Dylan P G Short
- 2 Department of Plant Pathology, University of California, Davis, U.S.A
| | - Jie Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Xue-Feng Ma
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Ting-Gang Li
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Zhi-Qiang Kong
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Bao-Li Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Dan Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Nan-Yang Li
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | | | - Jie-Yin Chen
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Xiao-Feng Dai
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| |
Collapse
|