51
|
Rane J, Singh AK, Kumar M, Boraiah KM, Meena KK, Pradhan A, Prasad PVV. The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. Int J Mol Sci 2021; 22:12970. [PMID: 34884769 PMCID: PMC8657814 DOI: 10.3390/ijms222312970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023] Open
Abstract
Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are the major constraints in crop production. These abiotic stresses are likely to be amplified by climate change with varying temporal and spatial dimensions across the globe. The knowledge about the effects of abiotic stressors on major cereal and legume crops is essential for effective management in unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits associated with tolerance in plants, in addition to the molecular control of stress-responsive genes. Some of these studies have paved the way for new opportunities to address the molecular basis of stress responses in plants and identify novel traits and associated genes for the genetic improvement of crop plants. The present review examines the responses of crops under abiotic stresses in terms of changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops. It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes associated with stress tolerance.
Collapse
Affiliation(s)
- Jagadish Rane
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Ajay Kumar Singh
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Mahesh Kumar
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Karnar M. Boraiah
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Kamlesh K. Meena
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Aliza Pradhan
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
52
|
Yang X, Liu D, Lu H, Weston DJ, Chen JG, Muchero W, Martin S, Liu Y, Hassan MM, Yuan G, Kalluri UC, Tschaplinski TJ, Mitchell JC, Wullschleger SD, Tuskan GA. Biological Parts for Plant Biodesign to Enhance Land-Based Carbon Dioxide Removal. BIODESIGN RESEARCH 2021; 2021:9798714. [PMID: 37849951 PMCID: PMC10521660 DOI: 10.34133/2021/9798714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2023] Open
Abstract
A grand challenge facing society is climate change caused mainly by rising CO2 concentration in Earth's atmosphere. Terrestrial plants are linchpins in global carbon cycling, with a unique capability of capturing CO2 via photosynthesis and translocating captured carbon to stems, roots, and soils for long-term storage. However, many researchers postulate that existing land plants cannot meet the ambitious requirement for CO2 removal to mitigate climate change in the future due to low photosynthetic efficiency, limited carbon allocation for long-term storage, and low suitability for the bioeconomy. To address these limitations, there is an urgent need for genetic improvement of existing plants or construction of novel plant systems through biosystems design (or biodesign). Here, we summarize validated biological parts (e.g., protein-encoding genes and noncoding RNAs) for biological engineering of carbon dioxide removal (CDR) traits in terrestrial plants to accelerate land-based decarbonization in bioenergy plantations and agricultural settings and promote a vibrant bioeconomy. Specifically, we first summarize the framework of plant-based CDR (e.g., CO2 capture, translocation, storage, and conversion to value-added products). Then, we highlight some representative biological parts, with experimental evidence, in this framework. Finally, we discuss challenges and strategies for the identification and curation of biological parts for CDR engineering in plants.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics, and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Haiwei Lu
- Department of Academic Education, Central Community College-Hastings, Hastings, NE 68902USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stanton Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Julie C. Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stan D. Wullschleger
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
53
|
Verma V, Vishal B, Kohli A, Kumar PP. Systems-based rice improvement approaches for sustainable food and nutritional security. PLANT CELL REPORTS 2021; 40:2021-2036. [PMID: 34591154 DOI: 10.1007/s00299-021-02790-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
An integrated research approach to ensure sustainable rice yield increase of a crop grown by 25% of the world's farmers in 10% of cropland is essential for global food security. Rice, being a global staple crop, feeds about 56% of the world population and sustains 40% of the world's poor. At ~ $200 billion, it also accounts for 13% of the annual crop value. With hunger and malnutrition rampant among the poor, rice research for development is unique in global food and nutrition security. A systems-based, sustainable increase in rice quantity and quality is imperative for environmental and biodiversity benefits. Upstream 'discovery' through biotechnology, midstream 'development' through breeding and agronomy, downstream 'dissemination and deployment' must be 'demand-driven' for 'distinct socio-economic transformational impacts'. Local agro-ecology and livelihood nexus must drive the research agenda for targeted benefits. This necessitates sustained long-term investments by government, non-government and private sectors to secure the future food, nutrition, environment, prosperity and equity status.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India.
| | - Bhushan Vishal
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Republic of Singapore
| | - Ajay Kohli
- Strategic Innovation Platform, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Prakash P Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore.
| |
Collapse
|
54
|
Krishnamurthy P, Vishal B, Bhal A, Kumar PP. WRKY9 transcription factor regulates cytochrome P450 genes CYP94B3 and CYP86B1, leading to increased root suberin and salt tolerance in Arabidopsis. PHYSIOLOGIA PLANTARUM 2021; 172:1673-1687. [PMID: 33619745 DOI: 10.1111/ppl.13371] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 02/12/2021] [Indexed: 05/27/2023]
Abstract
Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants (atcyp94b3 and atcyp86b1) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na+ accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas-chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C-16 ω-hydroxy acids, C-16 α, ω-dicarboxylic acids and C-20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1, leading to salt tolerance. Our data can be used for generating salt-tolerant crop plants in the future.
Collapse
Affiliation(s)
- Pannaga Krishnamurthy
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore
| | - Bhushan Vishal
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Amrit Bhal
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore
| |
Collapse
|
55
|
Panda S, Majhi PK, Anandan A, Mahender A, Veludandi S, Bastia D, Guttala SB, Singh SK, Saha S, Ali J. Proofing Direct-Seeded Rice with Better Root Plasticity and Architecture. Int J Mol Sci 2021; 22:6058. [PMID: 34199720 PMCID: PMC8199995 DOI: 10.3390/ijms22116058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
The underground reserve (root) has been an uncharted research territory with its untapped genetic variation yet to be exploited. Identifying ideal traits and breeding new rice varieties with efficient root system architecture (RSA) has great potential to increase resource-use efficiency and grain yield, especially under direct-seeded rice, by adapting to aerobic soil conditions. In this review, we tried to mine the available research information on the direct-seeded rice (DSR) root system to highlight the requirements of different root traits such as root architecture, length, number, density, thickness, diameter, and angle that play a pivotal role in determining the uptake of nutrients and moisture at different stages of plant growth. RSA also faces several stresses, due to excess or deficiency of moisture and nutrients, low or high temperature, or saline conditions. To counteract these hindrances, adaptation in response to stress becomes essential. Candidate genes such as early root growth enhancer PSTOL1, surface rooting QTL qSOR1, deep rooting gene DRO1, and numerous transporters for their respective nutrients and stress-responsive factors have been identified and validated under different circumstances. Identifying the desired QTLs and transporters underlying these traits and then designing an ideal root architecture can help in developing a suitable DSR cultivar and aid in further advancement in this direction.
Collapse
Affiliation(s)
- Siddharth Panda
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India;
| | - Prasanta Kumar Majhi
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University (B.H.U.), Varanasi 221005, Uttar Pradesh, India; (P.K.M.); (S.K.S.)
| | - Annamalai Anandan
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
| | - Anumalla Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines;
| | - Sumanth Veludandi
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
| | - Debendranath Bastia
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India;
| | - Suresh Babu Guttala
- Department of Genetics and Plant Breeding, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj 211007, Uttar Pradesh, India;
| | - Shravan Kumar Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University (B.H.U.), Varanasi 221005, Uttar Pradesh, India; (P.K.M.); (S.K.S.)
| | - Sanjoy Saha
- Crop Production Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India;
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines;
| |
Collapse
|
56
|
Zhang S, Quartararo A, Betz OK, Madahhosseini S, Heringer AS, Le T, Shao Y, Caruso T, Ferguson L, Jernstedt J, Wilkop T, Drakakaki G. Root vacuolar sequestration and suberization are prominent responses of Pistacia spp. rootstocks during salinity stress. PLANT DIRECT 2021; 5:e00315. [PMID: 34027297 PMCID: PMC8133763 DOI: 10.1002/pld3.315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 05/11/2023]
Abstract
Understanding the mechanisms of stress tolerance in diverse species is needed to enhance crop performance under conditions such as high salinity. Plant roots, in particular in grafted agricultural crops, can function as a boundary against external stresses in order to maintain plant fitness. However, limited information exists for salinity stress responses of woody species and their rootstocks. Pistachio (Pistacia spp.) is a tree nut crop with relatively high salinity tolerance as well as high genetic heterogeneity. In this study, we used a microscopy-based approach to investigate the cellular and structural responses to salinity stress in the roots of two pistachio rootstocks, Pistacia integerrima (PGI) and a hybrid, P. atlantica x P. integerrima (UCB1). We analyzed root sections via fluorescence microscopy across a developmental gradient, defined by xylem development, for sodium localization and for cellular barrier differentiation via suberin deposition. Our cumulative data suggest that the salinity response in pistachio rootstock species is associated with both vacuolar sodium ion (Na+) sequestration in the root cortex and increased suberin deposition at apoplastic barriers. Furthermore, both vacuolar sequestration and suberin deposition correlate with the root developmental gradient. We observed a higher rate of Na+ vacuolar sequestration and reduced salt-induced leaf damage in UCB1 when compared to P. integerrima. In addition, UCB1 displayed higher basal levels of suberization, in both the exodermis and endodermis, compared to P. integerrima. This difference was enhanced after salinity stress. These cellular characteristics are phenotypes that can be taken into account during screening for sodium-mediated salinity tolerance in woody plant species.
Collapse
Affiliation(s)
- Shuxiao Zhang
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Alessandra Quartararo
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Oliver Karl Betz
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Shahab Madahhosseini
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Genetic and Plant Production DepartmentVali‐e‐Asr University of RafsanjanRafsanjanIran
| | - Angelo Schuabb Heringer
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Unidade de Biologia IntegrativaSetor de Genômica e ProteômicaUENFRio de JaneiroRJBrazil
| | - Thu Le
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Yuhang Shao
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of AgricultureNanjing Agricultural UniversityNanjingJiangsu ProvinceP. R. China
| | - Tiziano Caruso
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Louise Ferguson
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Judy Jernstedt
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Thomas Wilkop
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Light Microscopy CoreDepartment of PhysiologyUniversity of KentuckyLexingtonKYUSA
| | - Georgia Drakakaki
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| |
Collapse
|
57
|
Ponce KS, Guo L, Leng Y, Meng L, Ye G. Advances in Sensing, Response and Regulation Mechanism of Salt Tolerance in Rice. Int J Mol Sci 2021; 22:ijms22052254. [PMID: 33668247 PMCID: PMC7956267 DOI: 10.3390/ijms22052254] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 01/06/2023] Open
Abstract
Soil salinity is a serious menace in rice production threatening global food security. Rice responses to salt stress involve a series of biological processes, including antioxidation, osmoregulation or osmoprotection, and ion homeostasis, which are regulated by different genes. Understanding these adaptive mechanisms and the key genes involved are crucial in developing highly salt-tolerant cultivars. In this review, we discuss the molecular mechanisms of salt tolerance in rice—from sensing to transcriptional regulation of key genes—based on the current knowledge. Furthermore, we highlight the functionally validated salt-responsive genes in rice.
Collapse
Affiliation(s)
- Kimberly S. Ponce
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
- Correspondence: (Y.L.); (L.G.); Tel.: +86-514-8797-4757 (Y.L.); +86-571-6337-0136 (L.G.)
| | - Yujia Leng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.L.); (L.G.); Tel.: +86-514-8797-4757 (Y.L.); +86-571-6337-0136 (L.G.)
| | - Lijun Meng
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (L.M.); (G.Y.)
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (L.M.); (G.Y.)
- Strategic Innovation Platform, International Rice Research Institute, DAPO BOX 7777, Metro Manila 1301, Philippines
| |
Collapse
|
58
|
Yang Z, Yang X, Dong S, Ge Y, Zhang X, Zhao X, Han N. Overexpression of β-Ketoacyl-CoA Synthase From Vitis vinifera L. Improves Salt Tolerance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:564385. [PMID: 33281839 PMCID: PMC7688582 DOI: 10.3389/fpls.2020.564385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/09/2020] [Indexed: 05/05/2023]
Abstract
Grape (Vitis vinifera L.) is a fruit tree with high salt tolerance and high nutritional value, medicinal value, and economic value. Suberin in roots is characterized by long-chain fatty acids and is thought to be related to the salt tolerance of grape. The key enzyme in the fatty acid elongation process is β-ketoacyl-CoA synthase (KCS). The function and the regulatory mechanism of VvKCS in response to salt stress in grape are unclear. In this study, VvKCS was isolated from V. vinifera L. A real-time quantitative polymerase chain reaction analysis showed that salt stress enhanced VvKCS transcription levels in grapes. Overexpression of VvKCS increased the tolerance to salt stress in Arabidopsis during the germination and seedling stages. The improved salt tolerance was the result of the combined contributions of multiple mechanisms including the regulation of expression of ion transporters and channels, accumulation of osmotic regulating substances, and maintenance of membrane stability. The results of this study are valuable information on plant salt tolerance and provide a theoretical basis for the molecular mechanism of grape salt tolerance.
Collapse
Affiliation(s)
- Zhen Yang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xue Yang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, China
| | - Shujia Dong
- School of Biology and Food Engineering, Bozhou University, Bozhou, China
| | - Yao Ge
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xuenan Zhang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xinjie Zhao
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ning Han
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
59
|
Paul MJ, Watson A, Griffiths CA. Trehalose 6-phosphate signalling and impact on crop yield. Biochem Soc Trans 2020; 48:2127-2137. [PMID: 33005918 PMCID: PMC7609034 DOI: 10.1042/bst20200286] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023]
Abstract
The domestication and breeding of crops has been a major achievement for mankind enabling the development of stable societies and civilisation. Crops have become more productive per unit area of cultivated land over the course of domestication supporting a current global population of 7.8 billion. Food security crops such as wheat and maize have seen large changes compared with early progenitors. Amongst processes that have been altered in these crops, is the allocation of carbon resources to support larger grain yield (grain number and size). In wheat, reduction in stem height has enabled diversion of resources from stems to ears. This has freed up carbon to support greater grain yield. Green revolution genes responsible for reductions in stem height are known, but a unifying mechanism for the active regulation of carbon resource allocation towards and within sinks has however been lacking. The trehalose 6-phosphate (T6P) signalling system has emerged as a mechanism of resource allocation and has been implicated in several crop traits including assimilate partitioning and improvement of yield in different environments. Understanding the mode of action of T6P through the SnRK1 protein kinase regulatory system is providing a basis for a unifying mechanism controlling whole-plant resource allocation and source-sink interactions in crops. Latest results show it is likely that the T6P/SnRK1 pathway can be harnessed for further improvements such as grain number and grain filling traits and abiotic stress resilience through targeted gene editing, breeding and chemical approaches.
Collapse
Affiliation(s)
- Matthew J. Paul
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K
| | - Amy Watson
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K
| | - Cara A. Griffiths
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K
| |
Collapse
|
60
|
Yang Y, Ma K, Zhang T, Li L, Wang J, Cheng T, Zhang Q. Characteristics and Expression Analyses of Trehalose-6-Phosphate Synthase Family in Prunus mume Reveal Genes Involved in Trehalose Biosynthesis and Drought Response. Biomolecules 2020; 10:biom10101358. [PMID: 32977584 PMCID: PMC7598203 DOI: 10.3390/biom10101358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022] Open
Abstract
Trehalose and its key synthase (trehalose-6-phosphate synthase, TPS) can improve the drought tolerance of plants. However, little is known about the roles of trehalose and the TPS family in Prunus mume response to drought. In our study, we discovered that the trehalose content in leaf, root, and stem tissues significantly increased in P. mume in response to drought. Therefore, the characteristics and functions of the TPS family are worth investigating in P. mume. We identified nine TPS family members in P. mume, which were divided into two sub-families and characterized by gene structure, promoter elements, protein conserved domains, and protein motifs. We found that the Hydrolase_3 domain and several motifs were highly conserved in Group II instead of Group I. The distinctions between the two groups may result from selective constraints, which we estimated by the dN/dS (ω) ratio. The ω values of all the PmTPS family gene pairs were evaluated as less than 1, indicating that purity selection facilitated their divergence. A phylogenetic tree was constructed using 92 TPSs from 10 Rosaceae species, which were further divided into five clusters. Based on evolutionary analyses, the five clusters of TPS family proteins mainly underwent varied purity selection. The expression patterns of PmTPSs under drought suggested that the TPS family played an important role in the drought tolerance of P. mume. Combining the expression patterns of PmTPSs and the trehalose content changes in leaf, stem, and root tissues under normal conditions and drought stress, we found that the PmTPS2 and PmTPS6 mainly function in the trehalose biosynthesis in P. mume. Our findings not only provide valuable information about the functions of trehalose and TPSs in the drought response of P. mume, but they also contribute to the future drought breeding of P. mume.
Collapse
Affiliation(s)
- Yongjuan Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (Y.Y.); (T.Z.); (L.L.)
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing 100083, China; (K.M.); (J.W.); (T.C.)
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Kaifeng Ma
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing 100083, China; (K.M.); (J.W.); (T.C.)
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tengxun Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (Y.Y.); (T.Z.); (L.L.)
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing 100083, China; (K.M.); (J.W.); (T.C.)
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Lulu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (Y.Y.); (T.Z.); (L.L.)
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing 100083, China; (K.M.); (J.W.); (T.C.)
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing 100083, China; (K.M.); (J.W.); (T.C.)
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing 100083, China; (K.M.); (J.W.); (T.C.)
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (Y.Y.); (T.Z.); (L.L.)
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing 100083, China; (K.M.); (J.W.); (T.C.)
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-6233-8005
| |
Collapse
|
61
|
Yang Z, An W, Liu S, Huang Y, Xie C, Huang S, Zheng X. Mining of candidate genes involved in the biosynthesis of dextrorotatory borneol in Cinnamomum burmannii by transcriptomic analysis on three chemotypes. PeerJ 2020; 8:e9311. [PMID: 32566406 PMCID: PMC7293187 DOI: 10.7717/peerj.9311] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Dextrorotatory borneol (D-borneol), a cyclic monoterpene, is widely used in traditional Chinese medicine as an efficient topical analgesic drug. Fresh leaves of Cinnamomum trees, e.g., C. burmannii and C. camphor, are the main sources from which D-borneol is extracted by steam distillation, yet with low yields. Insufficient supply of D-borneol has hampered its clinical use and production of patent remedies for a long time. Biological synthesis of D-borneol offers an additional approach; however, mechanisms of D-borneol biosynthesis remain mostly unresolved. Hence, it is important and necessary to elucidate the biosynthetic pathway of D-borneol. Results Comparative analysis on the gene expression patterns of different D-borneol production C. burmannii samples facilitates elucidation on the underlying biosynthetic pathway of D-borneol. Herein, we collected three different chemotypes of C. burmannii, which harbor different contents of D-borneol.A total of 100,218 unigenes with an N50 of 1,128 bp were assembled de novo using Trinity from a total of 21.21 Gb clean bases. We used BLASTx analysis against several public databases to annotate 45,485 unigenes (45.38%) to at least one database, among which 82 unigenes were assigned to terpenoid biosynthesis pathways by KEGG annotation. In addition, we defined 8,860 unigenes as differentially expressed genes (DEGs), among which 13 DEGs were associated with terpenoid biosynthesis pathways. One 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and two monoterpene synthase, designated as CbDXS9, CbTPS2 and CbTPS3, were up-regulated in the high-borneol group compared to the low-borneol and borneol-free groups, and might be vital to biosynthesis of D-borneol in C. burmannii. In addition, we identified one WRKY, two BHLH, one AP2/ERF and three MYB candidate genes, which exhibited the same expression patterns as CbTPS2 and CbTPS3, suggesting that these transcription factors might potentially regulate D-borneol biosynthesis. Finally, quantitative real-time PCR was conducted to detect the actual expression level of those candidate genes related to the D-borneol biosynthesis pathway, and the result showed that the expression patterns of the candidate genes related to D-borneol biosynthesis were basically consistent with those revealed by transcriptome analysis. Conclusions We used transcriptome sequencing to analyze three different chemotypes of C. burmannii, identifying three candidate structural genes (one DXS, two monoterpene synthases) and seven potential transcription factor candidates (one WRKY, two BHLH, one AP2/ERF and three MYB) involved in D-borneol biosynthesis. These results provide new insight into our understanding of the production and accumulation of D-borneol in C. burmannii.
Collapse
Affiliation(s)
- Zerui Yang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenli An
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shanshan Liu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuying Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chunzhu Xie
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Song Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiasheng Zheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
62
|
Baena-González E, Lunn JE. SnRK1 and trehalose 6-phosphate - two ancient pathways converge to regulate plant metabolism and growth. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:52-59. [PMID: 32259743 DOI: 10.1016/j.pbi.2020.01.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 05/02/2023]
Abstract
SUCROSE-NON-FERMENTING1-RELATED KINASE1 (SnRK1) belongs to a family of protein kinases that originated in the earliest eukaryotes and plays a central role in energy and metabolic homeostasis. Trehalose 6-phosphate (Tre6P) is the intermediate of trehalose biosynthesis, and has even more ancient roots, being found in all three domains of life - Archaea, Bacteria and Eukarya. In plants, the function of SnRK1 has diverged from its orthologues in fungi and animals, evolving new roles in signalling of nutrient status and abiotic stress. Tre6P has also acquired a novel function in plants as a signal and homeostatic regulator of sucrose, the dominant sugar in plant metabolism. These two ancient pathways have converged in a unique way in plants, enabling them to coordinate their metabolism, growth, and development with their environment, which is essential for their autotrophic and sessile lifestyle.
Collapse
Affiliation(s)
- Elena Baena-González
- Plant Stress Signaling, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
63
|
Paul MJ, Watson A, Griffiths CA. Linking fundamental science to crop improvement through understanding source and sink traits and their integration for yield enhancement. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2270-2280. [PMID: 31665486 PMCID: PMC7134924 DOI: 10.1093/jxb/erz480] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/11/2019] [Indexed: 05/19/2023]
Abstract
Understanding processes in sources and sinks that contribute to crop yields has taken years of painstaking research. For crop yield improvement, processes need to be understood as standalone mechanisms in addition to how these mechanisms perform at the crop level; currently there is often a chasm between the two. Fundamental mechanisms need to be considered in the context of crop ideotypes and the agricultural environment which is often more water limited than carbon limited. Different approaches for improvement should be considered, namely is there genetic variation? Or if not, could genetic modification, genome editing, or alternative approaches be utilized? Currently, there are few examples where genetic modification has improved intrinsic yield in the field for commercial application in a major crop. Genome editing, particularly of negative yield regulators as a first step, is providing new opportunities. Here we highlight key mechanisms in source and sink, arguing that for large yield increases integration of key processes is likely to produce the biggest successes within the framework of crop ideotypes with optimized phenology. We highlight a plethora of recent papers that show breakthroughs in fundamental science and the promise of the trehalose 6-phosphate signalling pathway, which regulates carbohydrate allocation which is key for many crop traits.
Collapse
Affiliation(s)
- Matthew J Paul
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire, UK
- Correspondence:
| | - Amy Watson
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Cara A Griffiths
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire, UK
| |
Collapse
|
64
|
Yang Y, Guo Y, Zhong J, Zhang T, Li D, Ba T, Xu T, Chang L, Zhang Q, Sun M. Root Physiological Traits and Transcriptome Analyses Reveal that Root Zone Water Retention Confers Drought Tolerance to Opisthopappus taihangensis. Sci Rep 2020; 10:2627. [PMID: 32060321 PMCID: PMC7021704 DOI: 10.1038/s41598-020-59399-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022] Open
Abstract
Opisthopappus taihangensis (Ling) Shih, as a relative of chrysanthemum, mainly survives on the cracks of steep slopes and cliffs. Due to the harsh environment in which O. taihangensis lives, it has evolved strong adaptive traits to drought stress. The root system first perceives soil water deficiency, triggering a multi-pronged response mechanism to maintain water potential; however, the drought tolerance mechanism of O. taihangensis roots remains unclear. Therefore, roots were selected as materials to explore the physiological and molecular responsive mechanisms. We found that the roots had a stronger water retention capacity than the leaves. This result was attributed to ABA accumulation, which promoted an increased accumulation of proline and trehalose to maintain cell osmotic pressure, activated SOD and POD to scavenge ROS to protect root cell membrane structure and induced suberin depositions to minimize water backflow to dry soil. Transcriptome sequencing analyses further confirmed that O. taihangensis strongly activated genes involved in the ABA signalling pathway, osmolyte metabolism, antioxidant enzyme activity and biosynthesis of suberin monomer. Overall, these results not only will provide new insights into the drought response mechanisms of O. taihangensis but also will be helpful for future drought breeding programmes of chrysanthemum.
Collapse
Affiliation(s)
- Yongjuan Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yanhong Guo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jian Zhong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tengxun Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Dawei Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tingting Ba
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Ting Xu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Lina Chang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Ming Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
65
|
Qiu L, Wei XY, Wang SJ, Wang JJ. Characterization of trehalose-6-phosphate phosphatase in trehalose biosynthesis, asexual development, stress resistance and virulence of an insect mycopathogen. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:185-192. [PMID: 31973856 DOI: 10.1016/j.pestbp.2019.11.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Biological control potential of entomopathogenic fungi depending on conidiation capacity, conidial stress tolerance and virulence can be improved through genetic engineering. To explore a possible role of trehalose biosynthesis pathway in improving fungal pest-control potential, we characterized biological functions of trehalose-6-phosphate phosphatase (BbTPP) in Beauveria bassiana, an insect mycopathogen that serves as a main source of fungal insecticides. Deletion of BbTPP resulted in abolished trehalose biosynthesis, reduced conidiation capacity, decreases in conidial thermotolerance and UV-B resistance, increased hyphal sensitivities to chemical stresses, and attenuated virulence. By contrast, over-expression of BbTPP led to increased trehalose accumulation, decreased T6P accumulation, and enhanced stress tolerance and virulence despite little impact on growth and conidiation under normal conditions. These results indicate that BbTPP serves as not only a key player in control of trehalose biosynthesis required for multiple cellular functions but also a potential candidate to be exploited for genetic improvement of fungal potential against insect pests.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Xiao-Yu Wei
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Shou-Juan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
66
|
Tian L, Xie Z, Lu C, Hao X, Wu S, Huang Y, Li D, Chen L. The trehalose-6-phosphate synthase TPS5 negatively regulates ABA signaling in Arabidopsis thaliana. PLANT CELL REPORTS 2019; 38:869-882. [PMID: 30963238 DOI: 10.1007/s00299-019-02408-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/27/2019] [Indexed: 05/29/2023]
Abstract
The TPS5 negatively regulates ABA signaling by mediating ROS level and NR activity during seed germination and stomatal closure in Arabidopsis thaliana. Trehalose metabolism is important in plant growth and development and in abiotic stress response. Eleven TPS genes were identified in Arabidopsis, divided into Class I (TPS1-TPS4) and Class II (TPS5-TPS11). Although Class I has been shown to have TPS activity, the function of most members of Class II remains enigmatic. Here, we characterized the biological function of the trehalose-6-phosphate synthase TPS5 in ABA signaling in Arabidopsis. TPS5 expression was induced by ABA and abiotic stress, and expression in epidermal and guard cells was dramatically increased after ABA treatment. Loss-of-function analysis revealed that tps5 mutants (tps5-1 and tps5-cas9) are more sensitive to ABA during seed germination and ABA-mediated stomatal closure. Furthermore, the H2O2 level increased in the tps5-1 and tps5-cas9 mutants, which was consistent with the changes in the expression of RbohD and RbohF, key genes responsible for H2O2 production. Further, TPS5 knockout reduced the amounts of trehalose and other soluble carbohydrates as well as nitrate reductase (NR) activity. In vitro, trehalose and other soluble carbohydrates promoted NR activity, which was blocked by the tricarboxylic acid cycle inhibitor iodoacetic acid. Thus, this study identified that TPS5 functions as a negative regulator of ABA signaling and is involved in altering the trehalose content and NR activity.
Collapse
Affiliation(s)
- Lianfu Tian
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, No. 36, Lushan Road, Yuelu District, Changsha City, 410081, Hunan Province, China
| | - Zijing Xie
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, No. 36, Lushan Road, Yuelu District, Changsha City, 410081, Hunan Province, China
| | - Changqing Lu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, No. 36, Lushan Road, Yuelu District, Changsha City, 410081, Hunan Province, China
| | - Xiaohua Hao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, No. 36, Lushan Road, Yuelu District, Changsha City, 410081, Hunan Province, China
| | - Sha Wu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, No. 36, Lushan Road, Yuelu District, Changsha City, 410081, Hunan Province, China
| | - Yuan Huang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, No. 36, Lushan Road, Yuelu District, Changsha City, 410081, Hunan Province, China
| | - Dongping Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, No. 36, Lushan Road, Yuelu District, Changsha City, 410081, Hunan Province, China.
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, No. 36, Lushan Road, Yuelu District, Changsha City, 410081, Hunan Province, China.
| |
Collapse
|