51
|
Hsu CC, Chen SY, Lai PH, Hsiao YY, Tsai WC, Liu ZJ, Chung MC, Panaud O, Chen HH. Identification of high-copy number long terminal repeat retrotransposons and their expansion in Phalaenopsis orchids. BMC Genomics 2020; 21:807. [PMID: 33213366 PMCID: PMC7678294 DOI: 10.1186/s12864-020-07221-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are fragments of DNA that can insert into new chromosomal locations. They represent a great proportion of eukaryotic genomes. The identification and characterization of TEs facilitates understanding the transpositional activity of TEs with their effects on the orchid genome structure. RESULTS We combined the draft whole-genome sequences of Phalaenopsis equestris with BAC end sequences, Roche 454, and Illumina/Solexa, and identified long terminal repeat (LTR) retrotransposons in these genome sequences by using LTRfinder and classified by using Gepard software. Among the 10 families Gypsy-like retrotransposons, three families Gypsy1, Gypsy2, and Gypsy3, contained the most copies among these predicted elements. In addition, six high-copy retrotransposons were identified according to their reads in the sequenced raw data. The 12-kb Orchid-rt1 contains 18,000 copies representing 220 Mbp of the P. equestris genome. Southern blot and slot blot assays showed that these four retrotransposons Gypsy1, Gypsy2, Gypsy3, and Orchid-rt1 contained high copies in the large-genome-size/large-chromosome species P. violacea and P. bellina. Both Orchid-rt1 and Gypsy1 displayed various ratios of copy number for the LTR sequences versus coding sequences among four Phalaenopsis species, including P. violacea and P. bellina and small-genome-size/small-chromosome P. equestris and P. ahprodite subsp. formosana, which suggests that Orchid-rt1 and Gypsy1 have been through various mutations and homologous recombination events. FISH results showed amplification of Orchid-rt1 in the euchromatin regions among the four Phalaenopsis species. The expression levels of Peq018599 encoding copper transporter 1 is highly upregulated with the insertion of Orchid-rt1, while it is down regulated for Peq009948 and Peq014239 encoding for a 26S proteasome non-ATP regulatory subunit 4 homolog and auxin-responsive factor AUX/IAA-related. In addition, insertion of Orchid-rt1 in these three genes are all in their intron regions. CONCLUSION Orchid-rt1 and Gypsy1-3 have amplified within Phalaenopsis orchids concomitant with the expanded genome sizes, and Orchid-rt1 and Gypsy1 may have gone through various mutations and homologous recombination events. Insertion of Orchid-rt1 is in the introns and affects gene expression levels.
Collapse
Affiliation(s)
- Chia-Chi Hsu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Yun Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Han Lai
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mei-Chu Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Olivier Panaud
- Institute of Plant Genome and Development, University of Perpignan, Perpignan, France
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan. .,Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
52
|
Sun X, Zhu S, Li N, Cheng Y, Zhao J, Qiao X, Lu L, Liu S, Wang Y, Liu C, Li B, Guo W, Gao S, Yang Z, Li F, Zeng Z, Tang Q, Pan Y, Guan M, Zhao J, Lu X, Meng H, Han Z, Gao C, Jiang W, Zhao X, Tian S, Su J, Cheng Z, Liu T. A Chromosome-Level Genome Assembly of Garlic (Allium sativum) Provides Insights into Genome Evolution and Allicin Biosynthesis. MOLECULAR PLANT 2020; 13:1328-1339. [PMID: 32730994 DOI: 10.1016/j.molp.2020.07.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/26/2020] [Accepted: 07/27/2020] [Indexed: 05/21/2023]
Abstract
Garlic, an economically important vegetable, spice, and medicinal crop, produces highly enlarged bulbs and unique organosulfur compounds. Here, we report a chromosome-level genome assembly for garlic, with a total size of approximately 16.24 Gb, as well as the annotation of 57 561 predicted protein-coding genes, making garlic the first Allium species with a sequenced genome. Analysis of this garlic genome assembly reveals a recent burst of transposable elements, explaining the substantial expansion of the garlic genome. We examined the evolution of certain genes associated with the biosynthesis of allicin and inulin neoseries-type fructans, and provided new insights into the biosynthesis of these two compounds. Furthermore, a large-scale transcriptome was produced to characterize the expression patterns of garlic genes in different tissues and at various growth stages of enlarged bulbs. The reference genome and large-scale transcriptome data generated in this study provide valuable new resources for research on garlic biology and breeding.
Collapse
Affiliation(s)
- Xiudong Sun
- Shandong Agricultural University, Tai'an 271018, China
| | - Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Ningyang Li
- Shandong Agricultural University, Tai'an 271018, China
| | - Yi Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Jing Zhao
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Xuguang Qiao
- Shandong Agricultural University, Tai'an 271018, China
| | - Li Lu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shiqi Liu
- Shandong Agricultural University, Tai'an 271018, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chan Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Benping Li
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Wu Guo
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Shuang Gao
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Fu Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Zheng Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yupeng Pan
- Northwest A&F University, Yangling 712100, China
| | - Mengjiao Guan
- Shandong Agricultural University, Tai'an 271018, China
| | - Jian Zhao
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Xiaoming Lu
- Shandong Agricultural University, Tai'an 271018, China
| | - Huanwen Meng
- Northwest A&F University, Yangling 712100, China
| | - Zhenlin Han
- Shandong Agricultural University, Tai'an 271018, China
| | - Chunsheng Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Xing Zhao
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Shilin Tian
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Zhihui Cheng
- Northwest A&F University, Yangling 712100, China.
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
53
|
Fan H, Cui M, Li N, Li X, Liang Y, Liu L, Cai Y, Lin Y. Genome-wide identification and expression analyses of R2R3-MYB transcription factor genes from two Orchid species. PeerJ 2020; 8:e9781. [PMID: 32953268 PMCID: PMC7473048 DOI: 10.7717/peerj.9781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Abstract
MYB transcription factors play important roles in different plant biological processes during plant growth, development and stress response. In this study, 101 (DoMYB1-101) and 99 (PaMYB1-99) R2R3-MYB genes were identified in the genomes of Dendrobium officinale and Phalaenopsis aphrodite, respectively. To classify the isolated candidate genes, the R2R3-MYB genes from A. thaliana were selected as references. As a result, all identified DoMYB and PaMYB genes were classified into 22 subfamilies. Phylogenetic analysis revealed that S21 had the largest number of members of all the subfamilies. The numbers of introns, exons and conserved sequences in all of the identified genes are different. In addition, 20 DoMYB genes from six subfamilies were selected for further analysis of tissue-specific expression and responses to various abiotic stresses treatments. The results showed that all of the DoMYB genes in S4 and S19 subfamilies exhibited the highest relative expression levels in flowers. And five DoMYB genes including DoMYB31, DoMYB40, DoMYB49, DoMYB52 and DoMYB54, responded to the stress response. These results may provide useful information for further studies of the R2R3-MYB gene family.
Collapse
Affiliation(s)
- Honghong Fan
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Manli Cui
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ninghong Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xujuan Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yuxuan Liang
- Faculty of Forestry, University of British Columbia, Vancouver, Canada
| | - Lin Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yi Lin
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
54
|
Ahn CH, Ramya M, An HR, Park PM, Kim YJ, Lee SY, Jang S. Progress and Challenges in the Improvement of Ornamental Plants by Genome Editing. PLANTS 2020; 9:plants9060687. [PMID: 32481726 PMCID: PMC7356337 DOI: 10.3390/plants9060687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023]
Abstract
Biotechnological approaches have been used to modify the floral color, size, and fragrance of ornamental plants, as well as to increase disease resistance and vase life. Together with the advancement of whole genome sequencing technologies, new plant breeding techniques have rapidly emerged in recent years. Compared to the early versions of gene editing tools, such as meganucleases (MNs), zinc fingers (ZFNs), and transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeat (CRISPR) is capable of altering a genome more efficiently and with higher accuracy. Most recently, new CRISPR systems, including base editors and prime editors, confer reduced off-target activity with improved DNA specificity and an expanded targeting scope. However, there are still controversial issues worldwide for the recognition of genome-edited plants, including whether genome-edited plants are genetically modified organisms and require a safety evaluation process. In the current review, we briefly summarize the current progress in gene editing systems and also introduce successful/representative cases of the CRISPR system application for the improvement of ornamental plants with desirable traits. Furthermore, potential challenges and future prospects in the use of genome-editing tools for ornamental plants are also discussed.
Collapse
Affiliation(s)
- Chang Ho Ahn
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (C.H.A.); (M.R.); (H.R.A.); (P.M.P.); (Y.-J.K.)
| | - Mummadireddy Ramya
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (C.H.A.); (M.R.); (H.R.A.); (P.M.P.); (Y.-J.K.)
| | - Hye Ryun An
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (C.H.A.); (M.R.); (H.R.A.); (P.M.P.); (Y.-J.K.)
| | - Pil Man Park
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (C.H.A.); (M.R.); (H.R.A.); (P.M.P.); (Y.-J.K.)
| | - Yae-Jin Kim
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (C.H.A.); (M.R.); (H.R.A.); (P.M.P.); (Y.-J.K.)
| | - Su Young Lee
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (C.H.A.); (M.R.); (H.R.A.); (P.M.P.); (Y.-J.K.)
- Correspondence: (S.Y.L.); (S.J.); Tel.: +82-238-6840 (S.Y.L.); +82-63-238-6677 (S.J.)
| | - Seonghoe Jang
- World Vegetable Center Korea Office (WKO), Wanju-gun, Jellabuk-do 55365, Korea
- Correspondence: (S.Y.L.); (S.J.); Tel.: +82-238-6840 (S.Y.L.); +82-63-238-6677 (S.J.)
| |
Collapse
|
55
|
Tong C, Wu F, Yuan Y, Chen Y, Lin C. High-efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:889-891. [PMID: 31553827 PMCID: PMC7061860 DOI: 10.1111/pbi.13264] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 05/05/2023]
Affiliation(s)
- Chii‐Gong Tong
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Fu‐Hui Wu
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Yu‐Hsuan Yuan
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Yan‐Ru Chen
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Choun‐Sea Lin
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| |
Collapse
|
56
|
Ko SS, Kanno A, Sánchez-Pérez R, Yeh HH, Hohe A, Mondragón-Palomino M. Editorial: From Functional Genomics to Biotechnology in Ornamental Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:463. [PMID: 31057575 PMCID: PMC6477082 DOI: 10.3389/fpls.2019.00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Affiliation(s)
| | - Akira Kanno
- Graduate School of Life Sciences, Tohoku University, Aoba-Ku, Sendai, Japan
| | | | | | - Annette Hohe
- Faculty of Landscaping, Horticulture and Forestry, University of Applied Sciences Erfurt, Erfurt, Germany
| | | |
Collapse
|
57
|
Susek K, Bielski W, Czyż KB, Hasterok R, Jackson SA, Wolko B, Naganowska B. Impact of Chromosomal Rearrangements on the Interpretation of Lupin Karyotype Evolution. Genes (Basel) 2019; 10:genes10040259. [PMID: 30939837 PMCID: PMC6523792 DOI: 10.3390/genes10040259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Plant genome evolution can be very complex and challenging to describe, even within a genus. Mechanisms that underlie genome variation are complex and can include whole-genome duplications, gene duplication and/or loss, and, importantly, multiple chromosomal rearrangements. Lupins (Lupinus) diverged from other legumes approximately 60 mya. In contrast to New World lupins, Old World lupins show high variability not only for chromosome numbers (2n = 32–52), but also for the basic chromosome number (x = 5–9, 13) and genome size. The evolutionary basis that underlies the karyotype evolution in lupins remains unknown, as it has so far been impossible to identify individual chromosomes. To shed light on chromosome changes and evolution, we used comparative chromosome mapping among 11 Old World lupins, with Lupinus angustifolius as the reference species. We applied set of L. angustifolius-derived bacterial artificial chromosome clones for fluorescence in situ hybridization. We demonstrate that chromosome variations in the species analyzed might have arisen from multiple changes in chromosome structure and number. We hypothesize about lupin karyotype evolution through polyploidy and subsequent aneuploidy. Additionally, we have established a cytogenomic map of L. angustifolius along with chromosome markers that can be used for related species to further improve comparative studies of crops and wild lupins.
Collapse
Affiliation(s)
- Karolina Susek
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Wojciech Bielski
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Katarzyna B Czyż
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA.
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| |
Collapse
|
58
|
The MADS-box genes expressed in the inflorescence of Orchis italica (Orchidaceae). PLoS One 2019; 14:e0213185. [PMID: 30822337 PMCID: PMC6396907 DOI: 10.1371/journal.pone.0213185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/15/2019] [Indexed: 11/21/2022] Open
Abstract
The Orchidaceae family, which is one of the most species-rich flowering plant families, includes species with highly diversified and specialized flower shapes. The aim of this study was to analyze the MADS-box genes expressed in the inflorescence of Orchis italica, a wild Mediterranean orchid species. MADS-box proteins are transcription factors involved in various plant biological processes, including flower development. In the floral tissues of O. italica, 29 MADS-box genes are expressed that are classified as both class I and II. Class I MADS-box genes include one Mβ-type gene, thereby confirming the presence of this type of MADS-box genes in orchids. The class II MIKC* gene is highly expressed in the column, which is consistent with the conserved function of the MIKC* genes in gametophyte development. In addition, homologs of the SOC, SVP, ANR1, AGL12 and OsMADS32 genes are expressed. Compared with previous knowledge on class II MIKCC genes of O. italica involved in the ABCDE model of flower development, the number of class B and D genes has been confirmed. In addition, 4 class A (AP1/FUL) transcripts, 2 class E (SEP) transcripts, 2 new class C (AG) transcripts and 1 new AGL6 transcript have been identified. Within the AP1/FUL genes, the sequence divergence, relaxation of purifying selection and expression profiles suggest a possible functional diversification within these orchid genes. The detection of only two SEP transcripts in O. italica, in contrast with the 4 genes found in other orchids, suggests that only two SEP genes could be present in the subfamily Orchidoideae. The expression pattern of the MIKCC genes of O. italica indicates that low levels at the boundary of the domain of a given MADS-box gene can overlap with the expression of genes belonging to a different functional A-E class in the adjacent domain, thereby following a “fading borders” model.
Collapse
|
59
|
New Insights into the Symbiotic Relationship between Orchids and Fungi. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030585] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mycorrhizas play an important role in plant growth and development. In mycorrhizal symbioses, fungi supply soil mineral nutrients, such as nitrogen and phosphorus, to their host plants in exchange for carbon resources. Plants gain as much as 80% of mineral nutrient requirements from mycorrhizal fungi, which form associations with the roots of over 90% of all plant species. Orchid seeds lack endosperms and contain very limited storage reserves. Therefore, the symbiosis with mycorrhizal fungi that form endomycorrhizas is essential for orchid seed germination and protocorm development under natural conditions. The rapid advancement of next-generation sequencing contributes to identifying the orchid and fungal genes involved in the orchid mycorrhizal symbiosis and unraveling the molecular mechanisms regulating the symbiosis. We aim to update and summarize the current understanding of the mechanisms on orchid-fungus symbiosis, and the main focus will be on the nutrient exchange between orchids and their fungal partners.
Collapse
|
60
|
Chuang YC, Hung YC, Tsai WC, Chen WH, Chen HH. PbbHLH4 regulates floral monoterpene biosynthesis in Phalaenopsis orchids. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4363-4377. [PMID: 29982590 PMCID: PMC6093345 DOI: 10.1093/jxb/ery246] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/20/2018] [Indexed: 05/22/2023]
Abstract
Floral scent is an important factor in attracting pollinators and repelling florivores. In Phalaenopsis bellina (Orchidaceae), the major floral scent components are monoterpenoids. Previously, we determined that expression of GERANYL DIPHOSPHATE SYNTHASE (PbGDPS) is highly correlated with monoterpene biosynthesis in Phalaenosis orchids. Here, we found that both cis- and trans-regulation were present on the GDPS promoters, with trans-regulation playing a key role. To investigate the regulation of biosynthesis of floral scent, we compared the transcriptomic data of two Phalaenopsis orchids with contrasting scent phenotypes. Eight transcription factors (TFs) that exhibited sequential elevation in abundance through floral development in P. bellina were identified, and their transcript levels were higher in the scented orchid than the scentless one. Five of these TFs transactivated several structural genes involved in monoterpene biosynthesis including PbbHLH4, PbbHLH6, PbbZIP4, PbERF1, and PbNAC1. Ectopic transient expression of each of these TFs in scentless orchids resulted in stimulation of terpenoid biosynthesis. PbbHLH4 most profoundly induced monoterpene biosynthesis, with a 950-fold increase of monoterpenoid production in the scentless orchid. In conclusion, we determined that biosynthesis of orchid floral monoterpenes was sequentially regulated, with PbbHLH4 playing a crucial role for monoterpene biosynthesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chu Hung
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Huei Chen
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
- Correspondence:
| |
Collapse
|
61
|
Chuang YC, Hung YC, Tsai WC, Chen WH, Chen HH. PbbHLH4 regulates floral monoterpene biosynthesis in Phalaenopsis orchids. JOURNAL OF EXPERIMENTAL BOTANY 2018. [PMID: 29982590 DOI: 10.5061/dryad.kt056q7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Floral scent is an important factor in attracting pollinators and repelling florivores. In Phalaenopsis bellina (Orchidaceae), the major floral scent components are monoterpenoids. Previously, we determined that expression of GERANYL DIPHOSPHATE SYNTHASE (PbGDPS) is highly correlated with monoterpene biosynthesis in Phalaenosis orchids. Here, we found that both cis- and trans-regulation were present on the GDPS promoters, with trans-regulation playing a key role. To investigate the regulation of biosynthesis of floral scent, we compared the transcriptomic data of two Phalaenopsis orchids with contrasting scent phenotypes. Eight transcription factors (TFs) that exhibited sequential elevation in abundance through floral development in P. bellina were identified, and their transcript levels were higher in the scented orchid than the scentless one. Five of these TFs transactivated several structural genes involved in monoterpene biosynthesis including PbbHLH4, PbbHLH6, PbbZIP4, PbERF1, and PbNAC1. Ectopic transient expression of each of these TFs in scentless orchids resulted in stimulation of terpenoid biosynthesis. PbbHLH4 most profoundly induced monoterpene biosynthesis, with a 950-fold increase of monoterpenoid production in the scentless orchid. In conclusion, we determined that biosynthesis of orchid floral monoterpenes was sequentially regulated, with PbbHLH4 playing a crucial role for monoterpene biosynthesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chu Hung
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Huei Chen
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|