51
|
Kamimura H, Ito S. Assessment of chimeric mice with humanized livers in new drug development: generation of pharmacokinetics, metabolism and toxicity data for selecting the final candidate compound. Xenobiotica 2015; 46:557-69. [DOI: 10.3109/00498254.2015.1091113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
52
|
Scheer N, Wilson ID. A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity. Drug Discov Today 2015; 21:250-63. [PMID: 26360054 DOI: 10.1016/j.drudis.2015.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022]
Abstract
Mice that have been genetically humanized for proteins involved in drug metabolism and toxicity and mice engrafted with human hepatocytes are emerging and promising in vivo models for an improved prediction of the pharmacokinetic, drug-drug interaction and safety characteristics of compounds in humans. The specific advantages and disadvantages of these models should be carefully considered when using them for studies in drug discovery and development. Here, an overview on the corresponding genetically humanized and chimeric liver humanized mouse models described to date is provided and illustrated with examples of their utility in drug metabolism and toxicity studies. We compare the strength and weaknesses of the two different approaches, give guidance for the selection of the appropriate model for various applications and discuss future trends and perspectives.
Collapse
Affiliation(s)
| | - Ian D Wilson
- Imperial College London, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
53
|
Tiered approach to metabolite quantification: regional practices reviewed by Japan Bioanalysis Forum discussion group. Bioanalysis 2015; 7:935-8. [DOI: 10.4155/bio.15.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
54
|
Lin C, Ballinger KR, Khetani SR. The application of engineered liver tissues for novel drug discovery. Expert Opin Drug Discov 2015; 10:519-40. [PMID: 25840592 DOI: 10.1517/17460441.2015.1032241] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Drug-induced liver injury remains a major cause of drug attrition. Furthermore, novel drugs are being developed for treating liver diseases. However, differences between animals and humans in liver pathways necessitate the use of human-relevant liver models to complement live animal testing during preclinical drug development. Microfabrication tools and synthetic biomaterials now allow for the creation of tissue subunits that display more physiologically relevant and long-term liver functions than possible with declining monolayers. AREAS COVERED The authors discuss acellular enzyme platforms, two-dimensional micropatterned co-cultures, three-dimensional spheroidal cultures, microfluidic perfusion, liver slices and humanized rodent models. They also present the use of cell lines, primary liver cells and induced pluripotent stem cell-derived human hepatocyte-like cells in the creation of cell-based models and discuss in silico approaches that allow integration and modeling of the datasets from these models. Finally, the authors describe the application of liver models for the discovery of novel therapeutics for liver diseases. EXPERT OPINION Engineered liver models with varying levels of in vivo-like complexities provide investigators with the opportunity to develop assays with sufficient complexity and required throughput. Control over cell-cell interactions and co-culture with stromal cells in both two dimension and three dimension are critical for enabling stable liver models. The validation of liver models with diverse sets of compounds for different applications, coupled with an analysis of cost:benefit ratio, is important for model adoption for routine screening. Ultimately, engineered liver models could significantly reduce drug development costs and enable the development of more efficacious and safer therapeutics for liver diseases.
Collapse
Affiliation(s)
- Christine Lin
- Colorado State University, School of Biomedical Engineering , 200 W. Lake St, 1301 Campus Delivery, Fort Collins, CO 80523-1374 , USA
| | | | | |
Collapse
|
55
|
Sanoh S, Naritomi Y, Fujimoto M, Sato K, Kawamura A, Horiguchi A, Sugihara K, Kotake Y, Ohshita H, Tateno C, Horie T, Kitamura S, Ohta S. Predictability of plasma concentration–time curves in humans using single-species allometric scaling of chimeric mice with humanized liver. Xenobiotica 2015; 45:605-14. [DOI: 10.3109/00498254.2015.1007112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
56
|
Sanoh S, Tayama Y, Sugihara K, Kitamura S, Ohta S. Significance of aldehyde oxidase during drug development: Effects on drug metabolism, pharmacokinetics, toxicity, and efficacy. Drug Metab Pharmacokinet 2015; 30:52-63. [DOI: 10.1016/j.dmpk.2014.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022]
|
57
|
Watanabe A, Watari R, Ogawa K, Shimizu R, Tanaka Y, Takai N, Nezasa KI, Yamaguchi Y. Using improved serial blood sampling method of mice to study pharmacokinetics and drug-drug interaction. J Pharm Sci 2014; 104:955-961. [PMID: 25452230 DOI: 10.1002/jps.24236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/22/2014] [Accepted: 10/08/2014] [Indexed: 11/06/2022]
Abstract
In pharmacokinetic evaluation of mice, using serial sampling methods rather than a terminal blood sampling method could reduce the number of animals needed and lead to more reliable data by excluding individual differences. In addition, using serial sampling methods can be valuable for evaluation of the drug-drug interaction (DDI) potential of drug candidates. In this study, we established an improved method for serially sampling the blood from one mouse by only one incision of the lateral tail vein, and investigated whether our method could be adapted to pharmacokinetic and DDI studies. After intravenous and oral administration of ibuprofen and fexofenadine (BCS class II and III), the plasma concentration and pharmacokinetic parameters were evaluated by our method and a terminal blood sampling method, with the result that both methods gave comparable results (ibuprofen: 63.8 ± 4.0% and 64.4%, fexofenadine: 6.5 ± 0.7% and 7.9%, respectively, in bioavailability). In addition, our method could be adapted to DDI study for cytochrome P450 and organic anion transporting polypeptide inhibition. These results demonstrate that our method can be useful for pharmacokinetic evaluation from the perspective of reliable data acquisition as well as easy handling and low stress to mice and improve the quality of pharmacokinetic and DDI studies.
Collapse
Affiliation(s)
- Ayahisa Watanabe
- Drug Metabolism and Pharmacokinetics, Research Laboratory for Development, Shionogi & Co., Ltd. Toyonaka, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Wilson EM, Bial J, Tarlow B, Bial G, Jensen B, Greiner DL, Brehm MA, Grompe M. Extensive double humanization of both liver and hematopoiesis in FRGN mice. Stem Cell Res 2014; 13:404-12. [PMID: 25310256 PMCID: PMC7275629 DOI: 10.1016/j.scr.2014.08.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 11/21/2022] Open
Abstract
Preclinical research in animals often fails to adequately predict the outcomes observed in human patients. Chimeric animals bearing individual human tissues have been developed to provide improved models of human-specific cellular processes. Mice transplanted with human hematopoietic stem cells can be used to study human immune responses, infections of blood cells and processes of hematopoiesis. Animals with humanized livers are useful for modeling hepatotropic infections as well as drug metabolism and hepatotoxicity. However, many pathophysiologic processes involve both the liver and the hematolymphoid system. Examples include hepatitis C/HIV co-infection, immune mediated liver diseases, liver injuries with inflammation such as steatohepatitis and alcoholic liver disease. We developed a robust protocol enabling the concurrent double-humanization of mice with mature hepatocytes and human blood. Immune-deficient, fumarylacetoacetate hydrolase (Fah−/−), Rag2−/− and Il2rg−/− deficient animals on the NOD-strain background (FRGN) were simultaneously co-transplanted with adult human hepatocytes and hematopoietic stem cells after busulfan and Ad:uPA pre-conditioning. Four months after transplantation the average human liver repopulation exceeded 80% and hematopoietic chimerism also was high (40–80% in bone marrow). Importantly, human macrophages (Kupffer cells) were present in the chimeric livers. Double-chimeric FRGN mice will serve as a new model for disease processes that involve interactions between hepatocytes and hematolymphoid cells.
Collapse
Affiliation(s)
| | - J Bial
- Yecuris Corp., Tigard, OR, USA
| | | | - G Bial
- Yecuris Corp., Tigard, OR, USA
| | | | - D L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - M A Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
59
|
Fan J, de Lannoy IA. Pharmacokinetics. Biochem Pharmacol 2014; 87:93-120. [DOI: 10.1016/j.bcp.2013.09.007] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 11/29/2022]
|
60
|
Takahashi Y, Ando M, Nishikawa M, Hiraga N, Imamura M, Chayama K, Takakura Y. Long-term elimination of hepatitis C virus from human hepatocyte chimeric mice after interferon-γ gene transfer. HUM GENE THER CL DEV 2013; 25:28-39. [PMID: 24279674 DOI: 10.1089/humc.2013.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a leading cause of cirrhosis, liver failure, and hepatocellular carcinoma. Although the combination therapy employing pegylated interferon (IFN)-α and ribavirin is effective, this treatment is effective in only approximately 50% patients with genotype 1 HCV infection. IFN-γ is a potent anti-HCV agent that exhibits its antiviral action through a receptor distinct from that for IFN-α. Therefore, IFN-γ application might provide an alternative approach to IFN-α-based therapies. However, recombinant IFN-γ protein exhibits a poor pharmacokinetic property, that is, a very short half-life. It is our hypothesis that sustained IFN-γ serum concentrations produced by gene transfer could effectively eliminate HCV in vivo. We examined the in vivo antiviral activity in human hepatocyte chimeric mice infected with genotype 1b HCV at high HCV RNA titers (10(5)-10(7) copies/ml). The human IFN-γ-expressing plasmid vector pCpG-huIFNγ exhibited prolonged transgene expression in mice compared with the plasmid vector pCMV-huIFNγ. Moreover, the gene transfer of pCpG-huIFNγ eliminated HCV from the liver of the chimeric mice for a sustained period. On the contrary, administration of pCMV-huIFNγ could not eliminate HCV. In conclusion, we found that a single pCpG-huIFNγ injection resulted in long-term elimination of HCV RNA in chimeric mice, providing, for the first time, direct evidence that chronic infection with high titer HCV in vivo can be treated by sustained IFN-γ treatment.
Collapse
Affiliation(s)
- Yuki Takahashi
- 1 Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University , Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
61
|
Kitamura S, Sugihara K. Current status of prediction of drug disposition and toxicity in humans using chimeric mice with humanized liver. Xenobiotica 2013; 44:123-34. [PMID: 24329499 DOI: 10.3109/00498254.2013.868062] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1. Human-chimeric mice with humanized liver have been constructed by transplantation of human hepatocytes into several types of mice having genetic modifications that injure endogenous liver cells. Here, we focus on liver urokinase-type plasminogen activator-transgenic severe combined immunodeficiency (uPA/SCID) mice, which are the most widely used human-chimeric mice. Studies so far indicate that drug metabolism, drug transport, pharmacological effects and toxicological action in these mice are broadly similar to those in humans. 2. Expression of various drug-metabolizing enzymes is known to be different between humans and rodents. However, the expression pattern of cytochrome P450, aldehyde oxidase and phase II enzymes in the liver of human-chimeric mice resembles that in humans, not that in the host mice. 3. Metabolism of various drugs, including S-warfarin, zaleplon, ibuprofen, naproxen, coumarin, troglitazone and midazolam, in human-chimeric mice is mediated by human drug-metabolizing enzymes, not by host mouse enzymes, and thus resembles that in humans. 4. Pharmacological and toxicological effects of various drugs in human-chimeric mice are also similar to those in humans. 5. The current consensus is that chimeric mice with humanized liver are useful to predict drug metabolism catalyzed by cytochrome P450, aldehyde oxidase and phase II enzymes in humans in vivo and in vitro. Some remaining issues are discussed in this review.
Collapse
Affiliation(s)
- Shigeyuki Kitamura
- Department of Environmental Science, Nihon Pharmaceutical University , Saitama , Japan and
| | | |
Collapse
|
62
|
Foster JR, Lund G, Sapelnikova S, Tyrrell DL, Kneteman NM. Chimeric rodents with humanized liver: bridging the preclinical/clinical trial gap in ADME/toxicity studies. Xenobiotica 2013; 44:109-22. [DOI: 10.3109/00498254.2013.867553] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
63
|
Making Models Work: Library Annotation through Phenoclustering. ACTA ACUST UNITED AC 2013; 10. [PMID: 24187570 DOI: 10.1016/j.ddmod.2011.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
For the chemical biologist, the promise of the post-genomic era has yet to be fulfilled. In the past decade, a flurry of phenotype-based chemical genetic screens in in vivo and cultured cell models have yielded numerous small molecules with interesting biological properties with potential to reveal plethora of novel insights. However, these screens have also led to the bottleneck of target identification. This article will focus on recent progress in phenoclustering in various model systems as an option for target identification.
Collapse
|
64
|
Sanoh S, Ohta S. Chimeric mice transplanted with human hepatocytes as a model for prediction of human drug metabolism and pharmacokinetics. Biopharm Drug Dispos 2013; 35:71-86. [DOI: 10.1002/bdd.1864] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/09/2013] [Accepted: 09/21/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Seigo Sanoh
- Graduate School of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| |
Collapse
|
65
|
Yoshizato K, Tateno C. A mouse with humanized liver as an animal model for predicting drug effects and for studying hepatic viral infection: where to next? Expert Opin Drug Metab Toxicol 2013; 9:1419-35. [DOI: 10.1517/17425255.2013.826649] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
66
|
Tanoue C, Sugihara K, Uramaru N, Tayama Y, Watanabe Y, Horie T, Ohta S, Kitamura S. Prediction of human metabolism of the sedative-hypnotic zaleplon using chimeric mice transplanted with human hepatocytes. Xenobiotica 2013; 43:956-62. [DOI: 10.3109/00498254.2013.788232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
67
|
Peltz G. Can 'humanized' mice improve drug development in the 21st century? Trends Pharmacol Sci 2013; 34:255-60. [PMID: 23602782 PMCID: PMC3682766 DOI: 10.1016/j.tips.2013.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 02/08/2023]
Abstract
Chimeric mice, which have human hepatocytes engrafted in their liver, have been used to study human drug metabolism and pharmacodynamic responses for nearly 20 years. However, there are very few examples where their use has prospectively impacted the development of a candidate medication. Here, three different chimeric mouse models and their utility for pharmacology studies are evaluated. Several recent studies indicate that using these chimeric mouse models could help to overcome traditional (predicting human-specific metabolites and toxicities) and 21st century problems (strategies for personalized medicine and selection of optimal combination therapies) in drug development. These examples suggest that there are many opportunities in which the use of chimeric mice could significantly improve the quality of preclinical drug assessment.
Collapse
Affiliation(s)
- Gary Peltz
- Department of Anesthesia, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
68
|
Garattini E, Terao M. Aldehyde oxidase and its importance in novel drug discovery: present and future challenges. Expert Opin Drug Discov 2013; 8:641-54. [DOI: 10.1517/17460441.2013.788497] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
69
|
Hutzler JM, Obach RS, Dalvie D, Zientek MA. Strategies for a comprehensive understanding of metabolism by aldehyde oxidase. Expert Opin Drug Metab Toxicol 2012; 9:153-68. [DOI: 10.1517/17425255.2013.738668] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
70
|
Sanoh S, Horiguchi A, Sugihara K, Kotake Y, Tayama Y, Uramaru N, Ohshita H, Tateno C, Horie T, Kitamura S, Ohta S. Predictability of metabolism of ibuprofen and naproxen using chimeric mice with human hepatocytes. Drug Metab Dispos 2012; 40:2267-72. [PMID: 22936315 DOI: 10.1124/dmd.112.047555] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Prediction of human drug metabolism is important for drug development. Recently, the number of new drug candidates metabolized by not only cytochrome P450 (P450) but also non-P450 has been increasing. It is necessary to consider species differences in drug metabolism between humans and experimental animals. We examined species differences of drug metabolism, especially between humans and rats, for ibuprofen and (S)-naproxen as nonsteroidal anti-inflammatory drugs, which are metabolized by P450 and UDP-glucuronosyltransferase, sulfotransferase, and amino acid N-acyltransferase for taurine conjugation in liver, using human chimeric mice (h-PXB mice) repopulated with human hepatocytes and rat chimeric mice (r-PXB mice) transplanted with rat hepatocytes. We performed the direct comparison of excretory metabolites in urine between h-PXB mice and reported data for humans as well as between r-PXB mice and rats after administration of ibuprofen and (S)-naproxen. Good agreement for urinary metabolites (percentage of dose) was observed not only between humans and h-PXB mice but also between rats and r-PXB mice. Therefore, the metabolic profiles in humans and rats reflected those in h-PXB mice and r-PXB mice. Our results indicated that h-PXB mice should be helpful for predicting the quantitative metabolic profiles of drugs mediated by P450 and non-P450 in liver, and r-PXB mice should be helpful for evaluation of species differences in these metabolic enzymes.
Collapse
Affiliation(s)
- Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|