51
|
Rodriguez-Menchaca AA, Solis E, Cameron K, De Felice LJ. S(+)amphetamine induces a persistent leak in the human dopamine transporter: molecular stent hypothesis. Br J Pharmacol 2012; 165:2749-57. [PMID: 22014068 DOI: 10.1111/j.1476-5381.2011.01728.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Wherever they are located, dopamine transporters (DATs) clear dopamine (DA) from the extracellular milieu to help regulate dopaminergic signalling. Exposure to amphetamine (AMPH) increases extracellular DA in the synaptic cleft, which has been ascribed to DAT reverse transport. Increased extracellular DA prolongs postsynaptic activity and reinforces abuse and hedonic behaviour. EXPERIMENTAL APPROACH Xenopus laevis oocytes expressing human (h) DAT were voltage-clamped and exposed to DA, R(-)AMPH, or S(+)AMPH. KEY RESULTS At -60mV, near neuronal resting potentials, S(+)AMPH induced a depolarizing current through hDAT, which after removing the drug, persisted for more than 30 min. This persistent leak in the absence of S(+)AMPH was in contrast to the currents induced by R(-)AMPH and DA, which returned to baseline immediately after their removal. Our data suggest that S(+)AMPH and Na(+) carry the initial S(+)AMPH-induced current, whereas Na+ and Cl(-) carry the persistent leak current. We propose that the persistent current results from the internal action of S(+)AMPH on hDAT because the temporal effect was consistent with S(+)AMPH influx, and intracellular S(+)AMPH activated the effect. The persistent current was dependent on Na(+) and was blocked by cocaine. Intracellular injection of S(+)AMPH also activated a DA-induced persistent leak current. CONCLUSIONS AND IMPLICATIONS We report a hitherto unknown action of S(+)AMPH on hDAT that potentially affects AMPH-induced DA release. We propose that internal S(+)AMPH acts as a molecular stent that holds the transporter open even after external S(+)AMPH is removed. Amphetamine-induced persistent leak currents are likely to influence dopaminergic signalling, DA release mechanisms, and amphetamine abuse.
Collapse
Affiliation(s)
- Aldo A Rodriguez-Menchaca
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | |
Collapse
|
52
|
Foster JD, Yang JW, Moritz AE, Challasivakanaka S, Smith MA, Holy M, Wilebski K, Sitte HH, Vaughan RA. Dopamine transporter phosphorylation site threonine 53 regulates substrate reuptake and amphetamine-stimulated efflux. J Biol Chem 2012; 287:29702-12. [PMID: 22722938 PMCID: PMC3436161 DOI: 10.1074/jbc.m112.367706] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In the central nervous system, levels of extraneuronal dopamine are controlled primarily by the action of the dopamine transporter (DAT). Multiple signaling pathways regulate transport activity, substrate efflux, and other DAT functions through currently unknown mechanisms. DAT is phosphorylated by protein kinase C within a serine cluster at the distal end of the cytoplasmic N terminus, whereas recent work in model cells revealed proline-directed phosphorylation of rat DAT at membrane-proximal residue Thr(53). In this report, we use mass spectrometry and a newly developed phospho-specific antibody to positively identify DAT phosphorylation at Thr(53) in rodent striatal tissue and heterologous expression systems. Basal phosphorylation of Thr(53) occurred with a stoichiometry of ~50% and was strongly increased by phorbol esters and protein phosphatase inhibitors, demonstrating modulation of the site by signaling pathways that impact DAT activity. Mutations of Thr(53) to prevent phosphorylation led to reduced dopamine transport V(max) and total apparent loss of amphetamine-stimulated substrate efflux, supporting a major role for this residue in the transport kinetic mechanism.
Collapse
Affiliation(s)
- James D Foster
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Bulling S, Schicker K, Zhang YW, Steinkellner T, Stockner T, Gruber CW, Boehm S, Freissmuth M, Rudnick G, Sitte HH, Sandtner W. The mechanistic basis for noncompetitive ibogaine inhibition of serotonin and dopamine transporters. J Biol Chem 2012; 287:18524-34. [PMID: 22451652 PMCID: PMC3365767 DOI: 10.1074/jbc.m112.343681] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ibogaine, a hallucinogenic alkaloid proposed as a treatment for opiate withdrawal, has been shown to inhibit serotonin transporter (SERT) noncompetitively, in contrast to all other known inhibitors, which are competitive with substrate. Ibogaine binding to SERT increases accessibility in the permeation pathway connecting the substrate-binding site with the cytoplasm. Because of the structural similarity between ibogaine and serotonin, it had been suggested that ibogaine binds to the substrate site of SERT. The results presented here show that ibogaine binds to a distinct site, accessible from the cell exterior, to inhibit both serotonin transport and serotonin-induced ionic currents. Ibogaine noncompetitively inhibited transport by both SERT and the homologous dopamine transporter (DAT). Ibogaine blocked substrate-induced currents also in DAT and increased accessibility of the DAT cytoplasmic permeation pathway. When present on the cell exterior, ibogaine inhibited SERT substrate-induced currents, but not when it was introduced into the cytoplasm through the patch electrode. Similar to noncompetitive transport inhibition, the current block was not reversed by increasing substrate concentration. The kinetics of inhibitor binding and dissociation, as determined by their effect on SERT currents, indicated that ibogaine does not inhibit by forming a long-lived complex with SERT, but rather binds directly to the transporter in an inward-open conformation. A kinetic model for transport describing the noncompetitive action of ibogaine and the competitive action of cocaine accounts well for the results of the present study.
Collapse
Affiliation(s)
- Simon Bulling
- Center of Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Cherubino F, Bertram S, Bossi E, Peres A. Pre-steady-state and reverse transport currents in the GABA transporter GAT1. Am J Physiol Cell Physiol 2011; 302:C1096-108. [PMID: 22173867 DOI: 10.1152/ajpcell.00268.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of internal substrates in the biophysical properties of the GABA transporter GAT1 has been investigated electrophysiologically in Xenopus oocytes heterologously expressing the cotransporter. Increments in Cl(-) and/or Na(+) concentrations caused by intracellular injections did not produce significant effects on the pre-steady-state currents, while a positive shift of the charge-voltage (Q-V) and decay time constant (τ)-voltage (τ-V) curves, together with a slowing of τ at positive potentials, was observed following treatments producing cytosolic Cl(-) depletion. Activation of the reverse transport mode by injections of GABA caused a reduction in the displaced charge. In the absence of external Cl(-), a stronger reduction in the displaced charge, together with a significant increase in reverse transport current, was observed. Therefore, complementarity between pre-steady-state and transport currents, observed in the forward mode, is preserved in the reverse mode. All these findings can be qualitatively reproduced by a kinetic scheme in which, in the forward mode, the Cl(-) ion is released first, after the inward charge movement, while the two Na(+) ions can be released only after binding of external GABA. In the reverse mode, internal GABA must bind first to the empty transporter, followed by internal Na(+) and Cl(-).
Collapse
Affiliation(s)
- Francesca Cherubino
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | | | | |
Collapse
|
55
|
Lurie IS, Li L, Toske SG. Hydrophilic interaction chromatography of seized drugs and related compounds with sub 2μm particle columns. J Chromatogr A 2011; 1218:9336-44. [DOI: 10.1016/j.chroma.2011.10.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 11/30/2022]
|
56
|
Schicker K, Uzelac Z, Gesmonde J, Bulling S, Stockner T, Freissmuth M, Boehm S, Rudnick G, Sitte HH, Sandtner W. Unifying concept of serotonin transporter-associated currents. J Biol Chem 2011; 287:438-445. [PMID: 22072712 PMCID: PMC3249096 DOI: 10.1074/jbc.m111.304261] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Serotonin (5-HT) uptake by the human serotonin transporter (hSERT) is driven by ion gradients. The stoichiometry of transported 5-HT and ions is predicted to result in electroneutral charge movement. However, hSERT mediates a current when challenged with 5-HT. This discrepancy can be accounted for by an uncoupled ion flux. Here, we investigated the mechanistic basis of the uncoupled currents and its relation to the conformational cycle of hSERT. Our observations support the conclusion that the conducting state underlying the uncoupled ion flux is in equilibrium with an inward facing state of the transporter with K+ bound. We identified conditions associated with accumulation of the transporter in inward facing conformations. Manipulations that increased the abundance of inward facing states resulted in enhanced steady-state currents. We present a comprehensive kinetic model of the transport cycle, which recapitulates salient features of the recorded currents. This study provides a framework for exploring transporter-associated currents.
Collapse
Affiliation(s)
- Klaus Schicker
- Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Zeljko Uzelac
- Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Joan Gesmonde
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066
| | - Simon Bulling
- Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Thomas Stockner
- Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Gary Rudnick
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066
| | - Harald H Sitte
- Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
57
|
Bertram S, Cherubino F, Bossi E, Castagna M, Peres A. GABA reverse transport by the neuronal cotransporter GAT1: influence of internal chloride depletion. Am J Physiol Cell Physiol 2011; 301:C1064-73. [PMID: 21775701 DOI: 10.1152/ajpcell.00120.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of intracellular ions on the reverse GABA transport by the neuronal transporter GAT1 was studied using voltage-clamp and [(3)H]GABA efflux determinations in Xenopus oocytes transfected with heterologous mRNA. Reverse transport was induced by intracellular GABA injections and measured in terms of the net outward current generated by the transporter. Changes in various intracellular ionic conditions affected the reverse current: higher concentrations of Na(+) enhanced the ratio of outward over inward transport current, while a considerable decrease of the outward current and a parallel reduction of the transporter-mediated GABA efflux were observed after treatments causing a diminution of the intracellular Cl(-) concentration. Particularly interesting was the impairment of the reverse transport observed after depletion of internal Cl(-) generated by the activity of a coexpressed K(+)-Cl(-) exporter KCC2. This finding suggests that reverse GABA transport may be physiologically regulated during early neuronal development, similarly to the functional alterations seen in GABA receptors caused by KCC2 activity.
Collapse
Affiliation(s)
- Simone Bertram
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Molecular Sciences, University of Insubria, Varese, Italy
| | | | | | | | | |
Collapse
|
58
|
Wildling L, Rankl C, Haselgrübler T, Gruber HJ, Holy M, Newman AH, Zou MF, Zhu R, Freissmuth M, Sitte HH, Hinterdorfer P. Probing binding pocket of serotonin transporter by single molecular force spectroscopy on living cells. J Biol Chem 2011; 287:105-113. [PMID: 22033932 PMCID: PMC3249061 DOI: 10.1074/jbc.m111.304873] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The serotonin transporter (SERT) terminates neurotransmission by removing serotonin from the synaptic cleft. In addition, it is the site of action of antidepressants (which block the transporter) and of amphetamines (which induce substrate efflux). The interaction energies involved in binding of such compounds to the transporter are unknown. Here, we used atomic force microscopy (AFM) to probe single molecular interactions between the serotonin transporter and MFZ2-12 (a potent cocaine analog) in living CHOK1 cells. For the AFM measurements, MFZ2-12 was immobilized on AFM tips by using a heterobifunctional cross-linker. By varying the pulling velocity in force distance cycles drug-transporter complexes were ruptured at different force loadings allowing for mapping of the interaction energy landscape. We derived chemical rate constants from these recordings and compared them with those inferred from inhibition of transport and ligand binding: koff values were in good agreement with those derived from uptake experiments; in contrast, the kon values were scaled down when determined by AFM. Our observations generated new insights into the energy landscape of the interaction between SERT and inhibitors. They thus provide a useful framework for molecular dynamics simulations by exploring the range of forces and energies that operate during the binding reaction.
Collapse
Affiliation(s)
- Linda Wildling
- Institute for Biophysics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Christian Rankl
- Agilent Technologies, Austria GmbH, Aubrunnerweg 11, 4040 Linz, Austria
| | | | - Hermann J Gruber
- Institute for Biophysics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Marion Holy
- Center of Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Mu-Fa Zou
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Rong Zhu
- Institute for Biophysics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Michael Freissmuth
- Center of Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Harald H Sitte
- Center of Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Peter Hinterdorfer
- Institute for Biophysics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria; Center for Advanced Bioanalysis, Scharitzerstrasse 6-8, 4020 Linz, Austria.
| |
Collapse
|
59
|
Renna MD, Oyadeyi AS, Bossi E, Kottra G, Peres A. Functional and structural determinants of reverse operation in the pH-dependent oligopeptide transporter PepT1. Cell Mol Life Sci 2011; 68:2961-75. [PMID: 21181229 PMCID: PMC11115064 DOI: 10.1007/s00018-010-0604-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/20/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
Abstract
The functional and structural basis of reverse operation of PepT1 has been studied in Xenopus oocytes expressing the wild-type and mutated forms of this protein. Using brief pulses from a negative holding potential, wild-type and Arg282 mutants exhibit outward currents in the presence of Gly-Gln. The reversal potential of these currents is affected by both pH and substrate concentration, confirming coupled transport in the wild type and in the mutants as well. Long-lasting voltage and current-clamp experiments show that the outward currents are only temporary, and reflect accumulation and/or depletion effects near the membrane. The ability to operate in reverse mode was confirmed in all isoforms by intracellular injection of substrate. The role of Arg282 and Asp341 in the reverse transport was also investigated using charged substrates. Positive Lys-Gly (but not Gly-Lys) showed enhanced transport currents in the Arg282 mutants. In contrast, negative Gly-Asp and Asp-Gly elicited modest currents in all isoforms.
Collapse
Affiliation(s)
- Maria Daniela Renna
- Laboratory of Cellular and Molecular Physiology, Dept. of Biotechnology and Molecular Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Ayodele Stephen Oyadeyi
- Laboratory of Cellular and Molecular Physiology, Dept. of Biotechnology and Molecular Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Elena Bossi
- Laboratory of Cellular and Molecular Physiology, Dept. of Biotechnology and Molecular Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Center for Neurosciences, University of Insubria, 21100 Varese, Italy
| | - Gabor Kottra
- Molecular Nutrition Unit, Technische Universität München, Freising, Germany
| | - Antonio Peres
- Laboratory of Cellular and Molecular Physiology, Dept. of Biotechnology and Molecular Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Center for Neurosciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
60
|
Lin Z, Canales JJ, Björgvinsson T, Thomsen MM, Qu H, Liu QR, Torres GE, Caine SB. Monoamine transporters: vulnerable and vital doorkeepers. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:1-46. [PMID: 21199769 PMCID: PMC3321928 DOI: 10.1016/b978-0-12-385506-0.00001-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transporters of dopamine, serotonin, and norepinephrine have been empirically used as medication targets for several mental illnesses in the last decades. These protein-targeted medications are effective only for subpopulations of patients with transporter-related brain disorders. Since the cDNA clonings in early 1990s, molecular studies of these transporters have revealed a wealth of information about the transporters' structure-activity relationship (SAR), neuropharmacology, cell biology, biochemistry, pharmacogenetics, and the diseases related to the human genes encoding these transporters among related regulators. Such new information creates a unique opportunity to develop transporter-specific medications based on SAR, mRNA, DNA, and perhaps transporter trafficking regulation for a number of highly relevant diseases including substance abuse, depression, schizophrenia, and Parkinson's disease.
Collapse
Affiliation(s)
- Zhicheng Lin
- Department of Psychiatry, Harvard Medical School and Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA 02478, USA
| | - Juan J. Canales
- Department of Psychology, Behavioural Neuroscience, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Thröstur Björgvinsson
- Behavioral Health Partial Hospital and Psychology Internship Programs, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - Morgane M. Thomsen
- Department of Psychiatry, Harvard Medical School and Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA 02478, USA
| | - Hong Qu
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University. Beijing, 100871 China
| | - Qing-Rong Liu
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Gonzalo E. Torres
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - S. Barak Caine
- Department of Psychiatry, Harvard Medical School and Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
61
|
Sarker S, Weissensteiner R, Steiner I, Sitte HH, Ecker GF, Freissmuth M, Sucic S. The high-affinity binding site for tricyclic antidepressants resides in the outer vestibule of the serotonin transporter. Mol Pharmacol 2010; 78:1026-35. [PMID: 20829432 PMCID: PMC4513247 DOI: 10.1124/mol.110.067538] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The structure of the bacterial leucine transporter from Aquifex aeolicus (LeuT(Aa)) has been used as a model for mammalian Na(+)/Cl(-)-dependent transporters, in particular the serotonin transporter (SERT). The crystal structure of LeuT(Aa) liganded to tricyclic antidepressants predicts simultaneous binding of inhibitor and substrate. This is incompatible with the mutually competitive inhibition of substrates and inhibitors of SERT. We explored the binding modes of tricyclic antidepressants by homology modeling and docking studies. Two approaches were used subsequently to differentiate between three clusters of potential docking poses: 1) a diagnostic SERT(Y95F) mutation, which greatly reduced the affinity for [(3)H]imipramine but did not affect substrate binding; 2) competition binding experiments in the presence and absence of carbamazepine (i.e., a tricyclic imipramine analog with a short side chain that competes with [(3)H]imipramine binding to SERT). Binding of releasers (para-chloroamphetamine, methylene-dioxy-methamphetamine/ecstasy) and of carbamazepine were mutually exclusive, but Dixon plots generated in the presence of carbamazepine yielded intersecting lines for serotonin, MPP(+), paroxetine, and ibogaine. These observations are consistent with a model, in which 1) the tricyclic ring is docked into the outer vestibule and the dimethyl-aminopropyl side chain points to the substrate binding site; 2) binding of amphetamines creates a structural change in the inner and outer vestibule that precludes docking of the tricyclic ring; 3) simultaneous binding of ibogaine (which binds to the inward-facing conformation) and of carbamazepine is indicative of a second binding site in the inner vestibule, consistent with the pseudosymmetric fold of monoamine transporters. This may be the second low-affinity binding site for antidepressants.
Collapse
Affiliation(s)
- Subhodeep Sarker
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
62
|
Shaikh SA, Tajkhorshid E. Modeling and dynamics of the inward-facing state of a Na+/Cl- dependent neurotransmitter transporter homologue. PLoS Comput Biol 2010; 6. [PMID: 20865057 PMCID: PMC2928745 DOI: 10.1371/journal.pcbi.1000905] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 07/26/2010] [Indexed: 10/30/2022] Open
Abstract
The leucine transporter (LeuT) has recently commanded exceptional attention due mainly to two distinctions; it provides the only crystal structures available for a protein homologous to the pharmacologically relevant neurotransmitter: sodium symporters (NSS), and, it exhibits a hallmark 5-TM inverted repeat ("LeuT-fold"), a fold recently discovered to also exist in several secondary transporter families, underscoring its general role in transporter function. Constructing the transport cycle of "LeuT-fold" transporters requires detailed structural and dynamic descriptions of the outward-facing (OF) and inward-facing (IF) states, as well as the intermediate states. To this end, we have modeled the structurally unknown IF state of LeuT, based on the known crystal structures of the OF state of LeuT and the IF state of vSGLT, a "LeuT-fold" transporter. The detailed methodology developed for the study combines structure-based alignment, threading, targeted MD and equilibrium MD, and can be applied to other proteins. The resulting IF-state models maintain the secondary structural features of LeuT. Water penetration and solvent accessibility calculations show that TM1, TM3, TM6 and TM8 line the substrate binding/unbinding pathway with TM10 and its pseudosymmetric partner, TM5, participating in the extracellular and intracellular halves of the lumen, respectively. We report conformational hotspots where notable changes in interactions occur between the IF and OF states. We observe Na2 exiting the LeuT-substrate- complex in the IF state, mainly due to TM1 bending. Inducing a transition in only one of the two pseudosymmetric domains, while allowing the second to respond dynamically, is found to be sufficient to induce the formation of the IF state. We also propose that TM2 and TM7 may be facilitators of TM1 and TM6 motion. Thus, this study not only presents a novel modeling methodology applied to obtain the IF state of LeuT, but also describes structural elements involved in a possibly general transport mechanism in transporters adopting the "LeuT-fold".
Collapse
Affiliation(s)
- Saher Afshan Shaikh
- Department of Biochemistry and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Emad Tajkhorshid
- Department of Biochemistry and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- College of Medicine and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
63
|
Li Y, Cheng SY, Chen N, Reith MEA. Interrelation of dopamine transporter oligomerization and surface presence as studied with mutant transporter proteins and amphetamine. J Neurochem 2010; 114:873-85. [PMID: 20492355 DOI: 10.1111/j.1471-4159.2010.06818.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Our previous work suggested a role for oligomerization in regulating dopamine transporter (DAT) internalization, with d-amphetamine dissociating DAT oligomers and monomers being endocytosed. This model was put to detailed testing in the present work with the use of DAT constructs differentially tagged with Myc or Flag, reversal of tags in co-immunoprecipitation and cross-linking assays, and application of antibodies against different tags in biotinylation experiments. Upon pairing wild-type (WT) DAT with W84L mutant, effects of d-amphetamine on oligomerization (decrease) but not surface DAT are observed. Internalization of W84L monomers appears to be slow as inferred from the inability of d-amphetamine to reduce surface Myc upon co-expressing Flag-WT with Myc-W84L but not Myc-WT with Flag-W84L, and from the sluggish Myc-W84L endocytosis rate (both with or without d-amphetamine). Results obtained for D313N, D345N, or D436N mutants can all be accommodated by a model in which D-amphetamine is unable to dissociate mutant protomers from oligomers (tetramers or higher-order assemblies) that contain them; this interpretation is confirmed in experiments with both tag reversal in co-expression and antibody reversal in western blotting. Upon co-transfecting Myc- and Flag-tagged constructs, resulting tetramers can be calculated to be composed of different species (MycMycMycMyc, MycMycMycFlag, MycMycFlagFlag, MycFlagFlagFlag, and FlagFlagFlagFlag), but it is shown that outcomes predicted by models based on MycMycFlagFlag oligomers are not changed in a major way by the occurrence of the additional species.
Collapse
Affiliation(s)
- Yan Li
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
64
|
Field JR, Henry LK, Blakely RD. Transmembrane domain 6 of the human serotonin transporter contributes to an aqueously accessible binding pocket for serotonin and the psychostimulant 3,4-methylene dioxymethamphetamine. J Biol Chem 2010; 285:11270-80. [PMID: 20159976 PMCID: PMC2857005 DOI: 10.1074/jbc.m109.093658] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/04/2010] [Indexed: 01/07/2023] Open
Abstract
The plasma membrane serotonin (5-HT) transporter (SERT, SLC6A4) clears 5-HT after release at nerve termini and is targeted by both antidepressant medications and psychostimulants (e.g. MDMA, cocaine). Homology modeling of human SERT (hSERT), based on high resolution structures of the microbial SLC6 family member LeuT(Aa), along with biochemical studies of wild type and mutant transporters, predicts transmembrane (TM) domains 1, 3, 6, and 8 comprise the 5-HT-binding pocket. We utilized the substituted cysteine accessibility method along with surface and site-specific biotinylation to probe TM6 for aqueous accessibility and differential interactions with 5-HT and psychostimulants. Our results are consistent with TM6 being composed of an aqueous-accessible, alpha-helical extracellular domain (TM6a) that is separated by a central, unwound section from a cytoplasmically localized domain (TM6b) with limited aqueous accessibility. The substitution G338C appears to lock hSERT in an outward-facing conformation that, although accessible to aminoethylmethanethiosulfonate-biotin, 5-HT, and citalopram, is incapable of inward 5-HT transport. Transport of 5-HT by G338C can be partially restored by the TM1 mutation Y95F. With regard to methanethiosulfonate (MTS) inactivation of uptake, TM6a Cys mutants demonstrate Na(+)-dependent [2-(trimethylammonium)ethyl]-MTS sensitivity. Studies with the centrally located substitution S336C reveal features of a common binding pocket for 5-HT and 3,4-methylenedioxymethamphetamine (MDMA). Interestingly, the substitution I333C reveals an MDMA-induced conformation not observed with 5-HT. In the context of prior studies on TM1, our findings document shared and unique features of TM6 contributing to hSERT aqueous accessibility, ligand recognition, and conformational dynamics.
Collapse
Affiliation(s)
| | - L. Keith Henry
- the Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203
| | - Randy D. Blakely
- From the Departments of Pharmacology and
- Psychiatry and
- Center for Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8548 and
| |
Collapse
|
65
|
Sucic S, Dallinger S, Zdrazil B, Weissensteiner R, Jørgensen TN, Holy M, Kudlacek O, Seidel S, Cha JH, Gether U, Newman AH, Ecker GF, Freissmuth M, Sitte HH. The N terminus of monoamine transporters is a lever required for the action of amphetamines. J Biol Chem 2010; 285:10924-38. [PMID: 20118234 PMCID: PMC2856298 DOI: 10.1074/jbc.m109.083154] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The serotonin transporter (SERT) terminates neurotransmission by removing serotonin from the synaptic cleft. In addition, it is the site of action of antidepressants (which block the transporter) and of amphetamines (which induce substrate efflux). We explored the functional importance of the N terminus in mediating the action of amphetamines by focusing initially on the highly conserved threonine residue at position 81, a candidate site for phosphorylation by protein kinase C. Molecular dynamics simulations of the wild type SERT, compared with its mutations SERTT81A and SERTT81D, suggested structural changes in the inner vestibule indicative of an opening of the inner vestibule. Predictions from this model (e.g. the preferential accumulation of SERTT81A in the inward conformation, its reduced turnover number, and a larger distance between its N and C termini) were verified. Most importantly, SERTT81A (and the homologous mutations in noradrenaline and dopamine) failed to support amphetamine-induced efflux, and this was not remedied by aspartate at this position. Amphetamine-induced currents through SERTT81A were comparable with those through the wild type transporter. Both abundant Na+ entry and accumulation of SERTT81A in the inward facing conformation ought to favor amphetamine-induced efflux. Thus, we surmised that the N terminus must play a direct role in driving the transporter into a state that supports amphetamine-induced efflux. This hypothesis was verified by truncating the first 64 amino acids and by tethering the N terminus to an additional transmembrane helix. Either modification abolished amphetamine-induced efflux. We therefore conclude that the N terminus of monoamine transporters acts as a lever that sustains reverse transport.
Collapse
Affiliation(s)
- Sonja Sucic
- Center of Biomolecular Medicine and Pharmacology, Institute of Pharmacology, Medical University Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Sitte HH, Freissmuth M. The reverse operation of Na(+)/Cl(-)-coupled neurotransmitter transporters--why amphetamines take two to tango. J Neurochem 2009; 112:340-55. [PMID: 19891736 DOI: 10.1111/j.1471-4159.2009.06474.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Sodium-chloride coupled neurotransmitter transporters achieve reuptake of their physiological substrate by exploiting the pre-existing sodium-gradient across the cellular membrane. This terminates the action of previously released substrate in the synaptic cleft. However, a change of the transmembrane ionic gradients or specific binding of some psychostimulant drugs to these proteins, like amphetamine and its derivatives, induce reverse operation of neurotransmitter:sodium symporters. This effect eventually leads to an increase in the synaptic concentration of non-exocytotically released neurotransmitters [and - in the case of the norepinephrine transporters, underlies the well-known indirect sympathomimetic activity]. While this action has long been appreciated, the underlying mechanistic details have been surprisingly difficult to understand. Some aspects can be resolved by incorporating insights into the oligomeric nature of transporters, into the nature of the accompanying ion fluxes, and changes in protein kinase activities.
Collapse
Affiliation(s)
- Harald H Sitte
- Institute of Pharmacology, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
67
|
Sandtner W, Gerstbrein K, Sitte HH. A relationship between membrane permeability of amphetamines and serotonin efflux via serotonin transporters. BMC Pharmacol 2009. [PMCID: PMC2778908 DOI: 10.1186/1471-2210-9-s2-a37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
68
|
Robertson SD, Matthies HJG, Galli A. A closer look at amphetamine-induced reverse transport and trafficking of the dopamine and norepinephrine transporters. Mol Neurobiol 2009; 39:73-80. [PMID: 19199083 PMCID: PMC2729543 DOI: 10.1007/s12035-009-8053-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
Amphetamine (AMPH) and its derivatives are regularly used in the treatment of a wide array of disorders such as attention-deficit hyperactivity disorder (ADHD), obesity, traumatic brain injury, and narcolepsy (Prog Neurobiol 75:406-433, 2005; J Am Med Assoc 105:2051-2054, 1935; J Am Acad Child Adolesc Psychiatry 41:514-521, 2002; Neuron 43:261-269, 2004; Annu Rev Pharmacol Toxicol 47:681-698, 2007; Drugs Aging 21:67-79, 2004). Despite the important medicinal role for AMPH, it is more widely known for its psychostimulant and addictive properties as a drug of abuse. The primary molecular targets of AMPH are both the vesicular monoamine transporters (VMATs) and plasma membrane monoamine-dopamine (DA), norepinephrine (NE), and serotonin (5-HT)-transporters. The rewarding and addicting properties of AMPH rely on its ability to act as a substrate for these transporters and ultimately increase extracellular levels of monoamines. AMPH achieves this elevation in extracellular levels of neurotransmitter by inducing synaptic vesicle depletion, which increases intracellular monoamine levels, and also by promoting reverse transport (efflux) through plasma membrane monoamine transporters (J Biol Chem 237:2311-2317, 1962; Med Exp Int J Exp Med 6:47-53, 1962; Neuron 19:1271-1283, 1997; J Physiol 144:314-336, 1958; J Neurosci 18:1979-1986, 1998; Science 237:1219-1223, 1987; J Neurosc 15:4102-4108, 1995). This review will focus on two important aspects of AMPH-induced regulation of the plasma membrane monoamine transporters-transporter mediated monoamine efflux and transporter trafficking.
Collapse
Affiliation(s)
- S D Robertson
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
69
|
Colleoni S, Jensen AA, Landucci E, Fumagalli E, Conti P, Pinto A, De Amici M, Pellegrini-Giampietro DE, De Micheli C, Mennini T, Gobbi M. Neuroprotective effects of the novel glutamate transporter inhibitor (-)-3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]-isoxazole-4-carboxylic acid, which preferentially inhibits reverse transport (glutamate release) compared with glutamate reuptake. J Pharmacol Exp Ther 2008; 326:646-56. [PMID: 18451317 DOI: 10.1124/jpet.107.135251] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
(+/-)-3-Hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo [3,4 -d]-isoxazole-4-carboxylic acid (HIP-A) and (+/-)-3-hydroxy-4,5,6, 6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-6-carboxylic acid (HIP-B) are selective inhibitors of excitatory amino acid transporters (EAATs), as potent as DL-threo-beta-benzyloxyaspartic acid (TBOA). We report here that the active isomers are (-)-HIP-A and (+)-HIP-B, being approximately 150- and 10-fold more potent than the corresponding enantiomers as inhibitors of [3H]aspartate uptake in rat brain synaptosomes and hEAAT1-3-expressing cells. Comparable IC(50) values were found on the three hEAAT subtypes. (-)-HIP-A maintained the remarkable property, previously reported with the racemates, of inhibiting synaptosomal glutamate-induced [3H]D-aspartate release (reverse transport) at concentrations significantly lower than those inhibiting [3H]L-glutamate uptake. New data suggest that the noncompetitive-like interaction described previously is probably the consequence of an insurmountable, long-lasting impairment of EAAT's function. Some minutes of preincubation are required to induce this impairment, the duration of preincubation having more effect on inhibition of glutamate-induced release than of glutamate uptake. In organotypic rat hippocampal slices and mixed mouse brain cortical cultures, TBOA, but not (-)-HIP-A, had toxic effects. Under ischemic conditions, a neuroprotective effect was found with 10 to 30 microM (-)-HIP-A, but not with 10 to 30 microM TBOA or 100 microM (-)-HIP-A. The effect of (-)-HIP-A suggests that, under ischemia, EAATs mediate both release (reverse transport) and uptake of glutamate. The neuroprotection with the lower (-)-HIP-A concentrations may indicate a selective inhibition of the reverse transport confirming the data obtained in synaptosomes. The selective interference with glutamate-induced glutamate release might offer a new strategy for neuroprotective action.
Collapse
Affiliation(s)
- Simona Colleoni
- Istituto di Ricerche Farmacologiche "Mario Negri," 20156 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Willeit M, Sitte HH, Thierry N, Michalek K, Praschak-Rieder N, Zill P, Winkler D, Brannath W, Fischer MB, Bondy B, Kasper S, Singer EA. Enhanced serotonin transporter function during depression in seasonal affective disorder. Neuropsychopharmacology 2008; 33:1503-13. [PMID: 17882235 DOI: 10.1038/sj.npp.1301560] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Decreased synaptic serotonin during depressive episodes is a central element of the monoamine hypothesis of depression. The serotonin transporter (5-HTT, SERT) is a key molecule for the control of synaptic serotonin levels. Here we aimed to detect state-related alterations in the efficiency of 5-HTT-mediated inward and outward transport in platelets of drug-free depressed patients suffering from seasonal affective disorder (SAD). 5-HTT turnover rate, a measure for the number of inward transport events per minute, and tyramine-induced, 5-HTT-mediated outward transport were assessed at baseline, after 4 weeks of bright light therapy, and in summer using a case-control design in a consecutive sample of 73 drug-free depressed patients with SAD and 70 nonseasonal healthy controls. Patients were drug-naive or medication-free for at least 6 months prior to study inclusion, females patients were studied in the follicular phase of the menstrual cycle. All participants were genotyped for a 5-HTT-promoter polymorphism (5-HTTLPR) to assess the influence of this polymorphism on 5-HTT parameters. Efficiency of 5-HTT-mediated inward (p=0.014) and outward (p=0.003) transport was enhanced in depressed patients. Both measures normalized toward control levels after therapy and in natural summer remission. Changes in outward transport showed a clear correlation with treatment response (rho=0.421, p=0.001). Changes in inward transport were mediated by changes in 5-HTT transport efficiency rather than affinity or density. 5-HTTLPR was not associated with any of the 5-HTT parameters. In sum, we conclude that the 5-HTT is in a hyperfunctional state during depression in SAD and normalizes after light therapy and in natural summer remission.
Collapse
Affiliation(s)
- Matthäus Willeit
- Department of Biological Psychiatry, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Quantum-chemical, NMR and X-ray diffraction studies on (±)-1-[3,4-(methylenedioxy)phenyl]-2-methylaminopropane. J Mol Graph Model 2008; 26:1296-305. [DOI: 10.1016/j.jmgm.2007.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 12/18/2007] [Accepted: 12/19/2007] [Indexed: 11/24/2022]
|
72
|
Bartholomäus I, Milan-Lobo L, Nicke A, Dutertre S, Hastrup H, Jha A, Gether U, Sitte HH, Betz H, Eulenburg V. Glycine transporter dimers: evidence for occurrence in the plasma membrane. J Biol Chem 2008; 283:10978-91. [PMID: 18252709 DOI: 10.1074/jbc.m800622200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Different Na(+)/Cl(-)-dependent neurotransmitter transporters of the SLC6a family have been shown to form dimers or oligomers in both intracellular compartments and at the cell surface. In contrast, the glycine transporters (GlyTs) GlyT1 and -2 have been reported to exist as monomers in the plasma membrane based on hydrodynamic and native gel electrophoretic studies. Here, we used cysteine substitution and oxidative cross-linking to show that of GlyT1 and GlyT2 also form dimeric complexes within the plasma membrane. GlyT oligomerization at the cell surface was confirmed for both GlyT1 and GlyT2 by fluorescence resonance energy transfer microscopy. Endoglycosidase treatment and surface biotinylation further revealed that complex-glycosylated GlyTs form dimers located at the cell surface. Furthermore, substitution of tryptophan 469 of GlyT2 by an arginine generated a transporter deficient in dimerization that was retained intracellulary. Based on these results and GlyT structures modeled by using the crystal structure of the bacterial homolog LeuT(Aa), as a template, residues located within the extracellular loop 3 and at the beginning of transmembrane domain 6 are proposed to contribute to the dimerization interface of GlyTs.
Collapse
Affiliation(s)
- Ingo Bartholomäus
- Department of Neurochemistry, Max Planck Institute for Brain Research, Deutschordenstrasse 46, 60529 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Gobbi M, Funicello M, Gerstbrein K, Holy M, Moya PR, Sotomayor R, Forray MI, Gysling K, Paluzzi S, Bonanno G, Reyes-Parada M, Sitte HH, Mennini T. N,N-dimethyl-thioamphetamine and methyl-thioamphetamine, two non-neurotoxic substrates of 5-HT transporters, have scant in vitro efficacy for the induction of transporter-mediated 5-HT release and currents. J Neurochem 2008; 105:1770-80. [PMID: 18248615 DOI: 10.1111/j.1471-4159.2008.05272.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We studied two non-neurotoxic amphetamine derivatives (methyl-thioamphetamine, MTA and N,N-dimethylMTA, DMMTA) interacting with serotonin (5-HT) transporters (SERTs) with affinities comparable to that of p-Cl-amphetamine (pCA). The rank order for their maximal effects in inducing both [(3)H]5-HT release from rat brain synaptosomes or hSERT-expressing HEK-293 cells, and currents in hSERT-expressing oocytes, was pCA >> MTA > or = DMMTA. A correlation between drug-induced release and currents is also strengthened by the similar bell shape of the dose-response curves. Release experiments indicated that MTA and DMMTA are SERT substrates although MTA is taken up by HEK-293 cells with a V(max) 40% lower than pCA. The weak effects of MTA and DMMTA in vitro might therefore be due to their properties as 'partial substrates' on the mechanisms, other than translocation, responsible for currents and/or release. After either local or systemic in vivo administration, MTA and DMMTA release 5-HT in a manner comparable to pCA. These findings confirm that the neurotoxic properties of some amphetamine derivatives are independent of their 5-HT-releasing activity in vivo. It is worth noting that only those amphetamine derivatives with high efficiency in inducing 5-HT release and currents in vitro have neurotoxic properties.
Collapse
Affiliation(s)
- Marco Gobbi
- Istituto di Ricerche Farmacologiche "Mario Negri", Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Kuwayama K, Inoue H, Kanamori T, Tsujikawa K, Miyaguchi H, Iwata Y, Miyauchi S, Kamo N, Kishi T. Uptake of 3,4-methylenedioxymethamphetamine and its related compounds by a proton-coupled transport system in Caco-2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:42-50. [DOI: 10.1016/j.bbamem.2007.08.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 08/24/2007] [Accepted: 08/27/2007] [Indexed: 01/06/2023]
|
75
|
Abstract
Substrate-induced endocytic trafficking of dopamine transporter (DAT) has been observed, but little is known about the regulation of DAT oligomerization by substrate. The present study investigates the effect on substrates on DAT oligomerization and explores a potential link with the presence of DAT at the cell surface in human embryonic kidney cells transiently or stably expressing N-terminal tagged DAT constructs. Dopamine (100 microM) or amphetamine (2-10 microM) reduced Myc-DAT coimmunoprecipitated along with Flag-DAT (oligomeric DAT) in tandem with a reduction in surface DAT determined by biotinylation. Dopamine (10-1000 microM) and amphetamine (0.2-200 microM) reduced DAT oligomerization as assessed by cross-linking with copper sulfate phenanthroline or Cu2+. Inhibition of endocytosis by 10 microM phenylarsine oxide or 450 mM sucrose counteracted the effect of 10 microM DA or 2 microM amphetamine in reducing DAT cross-linking. In addition to overall similarities between the results with the two cross-linking agents and between the results with the two different endocytosis inhibitors, some differences were noted as well, likely related to the efficiency of the cross-linking process and the sulfhydryl-reactive properties of phenylarsine oxide, respectively. The present results are the first to indicate regulation of oligomerization of an solute carrier family 6 transporter, the DAT, by substrates that act at DAT. In addition, the present study opens up the possibility of an important linkage between oligomerization of DAT and endocytic or other modulatory mechanisms impacting surface DAT.
Collapse
Affiliation(s)
- Nianhang Chen
- Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York 10016, USA
| | | |
Collapse
|
76
|
Montgomery T, Buon C, Eibauer S, Guiry PJ, Keenan AK, McBean GJ. Comparative potencies of 3,4-methylenedioxymethamphetamine (MDMA) analogues as inhibitors of [3H]noradrenaline and [3H]5-HT transport in mammalian cell lines. Br J Pharmacol 2007; 152:1121-30. [PMID: 17891159 PMCID: PMC2095113 DOI: 10.1038/sj.bjp.0707473] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Illegal 'ecstasy' tablets frequently contain 3,4-methylenedioxymethamphetamine (MDMA)-like compounds of unknown pharmacological activity. Since monoamine transporters are one of the primary targets of MDMA action in the brain, a number of MDMA analogues have been tested for their ability to inhibit [3H]noradrenaline uptake into rat PC12 cells expressing the noradrenaline transporter (NET) and [3H]5-HT uptake into HEK293 cells stably transfected with the 5-HT transporter (SERT). EXPERIMENTAL APPROACH Concentration-response curves for the following compounds at both NET and SERT were determined under saturating substrate conditions: 4-hydroxy-3-methoxyamphetamine (HMA), 4-hydroxy-3-methoxymethamphetamine (HMMA), 3,4-methylenedioxy-N-hydroxyamphetamine (MDOH), 2,5-dimethoxy-4-bromophenylethylamine (2CB), 3,4-dimethoxymethamphetamine (DMMA), 3,4-methylenedioxyphenyl-2-butanamine (BDB), 3,4-methylenedioxyphenyl-N-methyl-2-butanamine (MBDB) and 2,3-methylenedioxymethamphetamine (2,3-MDMA). KEY RESULTS 2,3-MDMA was significantly less potent than MDMA at SERT, but equipotent with MDMA at NET. 2CB and BDB were both significantly less potent than MDMA at NET, but equipotent with MDMA at SERT. MBDB, DMMA, MDOH and the MDMA metabolites HMA and HMMA, were all significantly less potent than MDMA at both NET and SERT. CONCLUSIONS AND IMPLICATIONS This study provides an important insight into the structural requirements of MDMA analogue affinity at both NET and SERT. It is anticipated that these results will facilitate understanding of the likely pharmacological actions of structural analogues of MDMA.
Collapse
Affiliation(s)
- T Montgomery
- School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin Dublin, Ireland
| | - C Buon
- Centre for Synthesis and Chemical Biology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin Dublin, Ireland
| | - S Eibauer
- Centre for Synthesis and Chemical Biology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin Dublin, Ireland
| | - P J Guiry
- Centre for Synthesis and Chemical Biology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin Dublin, Ireland
| | - A K Keenan
- School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin Dublin, Ireland
| | - G J McBean
- School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin Dublin, Ireland
- Author for correspondence:
| |
Collapse
|
77
|
Kuwayama K, Inoue H, Kanamori T, Tsujikawa K, Miyaguchi H, Iwata Y, Miyauchi S, Kamo N, Kishi T. Interactions between 3,4-methylenedioxymethamphetamine, methamphetamine, ketamine, and caffeine in human intestinal Caco-2 cells and in oral administration to rats. Forensic Sci Int 2007; 170:183-8. [DOI: 10.1016/j.forsciint.2007.02.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 02/14/2007] [Accepted: 02/15/2007] [Indexed: 11/25/2022]
|
78
|
Reith MEA, Zhen J, Chen N. The importance of company: Na+ and Cl- influence substrate interaction with SLC6 transporters and other proteins. Handb Exp Pharmacol 2007:75-93. [PMID: 16722231 DOI: 10.1007/3-540-29784-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
SLC6 transporters, which include transporters for gamma-aminobutyric acid (GABA), norepinephrine, dopamine, serotonin, glycine, taurine, L-proline, creatine, betaine, and neutral cationic amino acids, require Na+ and Cl- for their function, and this review covers the interaction between transporters of this family with Na+ and Cl- from a structure-function standpoint. Because detailed structure-function information regarding ion interactions with SLC6 transporters is limited, we cover other proteins cotransporting Na+ or Cl- with substrate (SLClA2, PutP, SLC5A1, melB), or ion binding to proteins in general (rhodanese, ATPase, LacY, thermolysine, angiotensin-converting enzyme, halorhodopsin, CFTR). Residues can be involved in directly binding Na+ or Cl-, in coupling ion binding to conformational changes in transporter, in coupling Na+ or Cl- movement to transport, or in conferring ion selectivity. Coordination of ions can involve a number of residues, and portions of the substrate and coupling ion binding sites can be distal in space in the tertiary structure of the transporter, with other portions that are close in space thought to be crucial for the coupling process. The reactivity with methanethiosulfonate reagents of cysteines placed in strategic positions in the transporter provides a readout for conformational changes upon ion or substrate binding. More work is needed to establish the relationships between ion interactions and oligomerization of SLC6 transporters.
Collapse
Affiliation(s)
- M E A Reith
- Department of Biological Sciences, Illinois State University, Normal, IL 61656, USA.
| | | | | |
Collapse
|
79
|
Abstract
Traditionally, substrate translocation by neurotransmitter transporters has been described by the alternate access model. Recent structural data obtained with three distantly related transporters have also been interpreted as supportive of this model, because conformational correlates were visualized (inward-facing conformation, occluded state). However, the experimental evidence is overwhelmingly in favour of a more complex mode of operation: Transporters also exist in conformations that do not seal the permeation pathway. These conformations support a channel-like activity, including random permeation of substrate and co-substrate ions in a single-file mode. It is likely that the channel-like activity is modified by the interaction of the transporters with accessory proteins and regulatory kinases. Finally, channel-like activity is instrumental to understand the mechanism of action of amphetamines.
Collapse
Affiliation(s)
- K Gerstbrein
- Institute of Pharmacology, Center for Biomolecular Medicine and Pharmacology, Medical University Vienna, Währingerstrasse 13a, 1090 Vienna, Austria
| | | |
Collapse
|
80
|
Torres GE, Amara SG. Glutamate and monoamine transporters: new visions of form and function. Curr Opin Neurobiol 2007; 17:304-12. [PMID: 17509873 DOI: 10.1016/j.conb.2007.05.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
Neurotransmitters are rapidly removed from the extracellular space primarily through the actions of plasma membrane transporters. This uptake process is not only essential in the termination of neurotransmission but also serves to replenish intracellular levels of transmitter for further release. Neurotransmitter transporters couple the inward movement of substrate to the movement of Na(+) down a concentration gradient and, in addition to their transport function, some carriers also display channel-like activities. Five Na(+)/K(+)-dependent glutamate transporter subtypes belong to the solute carrier 1 (SLC1) family and a second family, SLC6, encompasses the Na(+)/Cl(-)-dependent transporters for dopamine, 5-hydroxytryptamine (serotonin), noradrenaline, GABA and glycine. Recent advances, including high-resolution structures from both families, are now providing new insights into the molecular determinants that contribute to substrate translocation and ion channel activities. Other influential studies have explored how cellular regulatory mechanisms modulate transporter function, and how the different functions of the carrier shape the patterns of neurotransmitter signaling. This review focuses on recent studies of glutamate and monoamine transporters as prototypes of the two carrier families.
Collapse
Affiliation(s)
- Gonzalo E Torres
- Department of Neurobiology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
81
|
Quinn ST, Guiry PJ, Schwab T, Keenan AK, McBean GJ. Blockade of noradrenaline transport abolishes 4-methylthioamphetamine-induced contraction of the rat aorta in vitro. ACTA ACUST UNITED AC 2006; 26:335-44. [PMID: 16968472 DOI: 10.1111/j.1474-8673.2006.00373.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to characterize the effects of 4-methylthioamphetamine (4-MTA) on contractility and noradrenaline (NA) transport and release in the isolated rat aorta. Descending thoracic aortic rings were isolated from male Wistar rats (220-240 g) and the effect of 4-MTA on contractility was measured by isometric force displacement. 4-MTA (0.1 microm-1 mm) induced a concentration-dependent contraction of aortic rings, with a pD(2) of 4.40 +/- 0.38, and an E(max) of 0.80 +/- 0.05 g tension. The alpha(1)-adrenoceptor antagonist, prazosin (1 microm) and alpha(2) antagonist, yohimbine (1 microm) inhibited maximal contraction to 100 microm 4-MTA by 45.0 +/- 6.7% and 53.5 +/- 7.1% of control values respectively, whereas the 5-hydroxytryptamine (5-HT) antagonist, ketanserin (100 nm) had no effect on the 4-MTA-mediated contraction. The specific NA transport inhibitor, nisoxetine (1 microm) abolished contraction of the aorta by 4-MTA. 4 Nisoxetine-sensitive [(3)H]-NA transport in aortic rings was measured over a concentration range of 0-5 microm [(3)H]-NA, and had a maximal rate of transport (V(max)) of 0.77 +/- 0.07 pmol [(3)H]-NA min(-1) mg(-1) protein and a Michaelis affinity constant (K(M)) of 2.3 +/- 0.5 microm. 4-MTA inhibited nisoxetine-sensitive [(3)H]-NA transport with a pIC(50) of 6.16 +/- 0.18 and the pIC(50) for inhibition of nisoxetine-sensitive [(3)H]-NA transport by 3,4-methylenedioxymethamphetamine (MDMA) was 6.83 +/- 0.13. 4-MTA (1-100 microm) significantly stimulated release of pre-loaded [(3)H]-NA from aortic rings and 4-MTA-induced [(3)H]-NA release was inhibited by 1 microm nisoxetine. These data suggest that 4-MTA causes contraction of the rat aorta in vitro by a mechanism that is consistent with an ability to cause release of NA at the level of the NA transporter. It is concluded that 4-MTA has the potential to increase the extracellular concentration of NA peripherally as well as centrally, and that this may cause adverse cardiovascular effects in its users.
Collapse
Affiliation(s)
- S T Quinn
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
82
|
Foster JD, Cervinski MA, Gorentla BK, Vaughan RA. Regulation of the dopamine transporter by phosphorylation. Handb Exp Pharmacol 2006:197-214. [PMID: 16722237 DOI: 10.1007/3-540-29784-7_10] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The dopamine transporter (DAT) is a neuronal phosphoprotein and target for psychoactive drugs that plays a critical role in terminating dopaminergic transmission by reuptake of dopamine from the synaptic space. Control of DAT activity and plasma membrane expression are therefore central to drug actions and the spatial and temporal regulation of synaptic dopamine levels. DATs rapidly traffic between the plasma membrane and endosomal compartments in both constitutive and protein kinase C-dependent manners. Kinase activators, phosphatase inhibitors, and transported substrates modulate DAT phosphorylation and activity, but the underlying mechanisms and role of phosphorylation in these processes are poorly understood. Complex adaptive changes in DAT function potentially related to these processes are also induced by psychostimulant and therapeutic transport blockers such as cocaine and methylphenidate. This chapter provides an overview of the current state of knowledge regarding DAT phosphorylation and its relationship to transporter activity and trafficking. A better understanding of how dopaminergic neurons regulate DAT function and the role of phosphorylation may lead to the identification of novel therapeutic targets for the treatment and prevention of dopaminergic disorders.
Collapse
Affiliation(s)
- J D Foster
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58203, USA
| | | | | | | |
Collapse
|
83
|
Farhan H, Freissmuth M, Sitte HH. Oligomerization of neurotransmitter transporters: a ticket from the endoplasmic reticulum to the plasma membrane. Handb Exp Pharmacol 2006:233-49. [PMID: 16722239 DOI: 10.1007/3-540-29784-7_12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular localization of neurotransmitter transporters is important for the precise control of synaptic transmission. By removing the neurotransmitters from the synaptic cleft, these transporters terminate signalling and affect duration and intensity of neurotransmission. Thus, a lot of work has been invested in the determination of the cellular compartment to which neurotransmitter transporters localize. In particular, the polarized distribution has received substantial attention. However, trafficking of transporters in the early secretory pathway has been largely ignored. Oligomer formation is a prerequisite for newly formed transporters to pass the stringent quality control mechanisms of the endoplasmic reticulum (ER), and this quaternary structure is also the preferred state which transporters reside in at the plasma membrane. Only properly assembled transporters are able to recruit the coatomer coat proteins that are needed for ER-to-Golgi trafficking. In this review, we will start with a brief description on transporter oligomerization that underlies ER-to-Golgi trafficking, followed by an introduction to ER-to-Golgi trafficking of neurotransmitter transporters. Finally, we will discuss the importance of oligomer formation for the pharmacological action of the illicitly used amphetamines and its derivatives.
Collapse
Affiliation(s)
- H Farhan
- Institute of Pharmacology, Centre for Biomolecular Medicine and Pharmacology, Medical University Vienna, Währingerstrasse 13a, 1090 Vienna, Austria
| | | | | |
Collapse
|
84
|
Abstract
The norepinephrine transporter (NET) terminates noradrenergic signalling by rapid re-uptake of neuronally released norepinephrine (NE) into presynaptic terminals. NET exerts a fine regulated control over NE-mediated behavioural and physiological effects including mood, depression, feeding behaviour, cognition, regulation of blood pressure and heart rate. NET is a target of several drugs which are therapeutically used in the treatment or diagnosis of disorders among which depression, attention-deficit hyperactivity disorder and feeding disturbances are the most common. Individual genetic variations in the gene encoding the human NET (hNET), located at chromosome 16q12.2, may contribute to the pathogenesis of those diseases. An increasing number of studies concerning the identification of single nucleotide polymorphisms in the hNET gene and their potential association with disease as well as the functional investigation of naturally occurring or induced amino acid variations in hNET have contributed to a better understanding of NET function, regulation and genetic contribution to disorders. This review will reflect the current knowledge in the field of NET from its initial discovery until now.
Collapse
Affiliation(s)
- H Bönisch
- Department of Pharmacology and Toxicology, University of Bonn, Reuterstr. 2b, 53115 Bonn, Germany.
| | | |
Collapse
|
85
|
Wang SM, Lin CC, Li TL, Shih CY, Giang YS, Liu RH. Distribution characteristics of methamphetamine and amphetamine in urine and hair specimens collected from alleged methamphetamine users in northern Taiwan. Anal Chim Acta 2006; 576:140-6. [PMID: 17723626 DOI: 10.1016/j.aca.2006.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 01/04/2006] [Accepted: 01/06/2006] [Indexed: 11/19/2022]
Abstract
This study was conducted to better understand the distribution characteristics of methamphetamine and amphetamine in urine and hair specimens collected from alleged methamphetamine users in the local population. It is anticipated that the data hereby obtained will be helpful to the interpretation of the time and pattern of drug use. Eight alleged methamphetamine-using arrestees from Keelung Police Department (north of Taipei, Taiwan) consented to contribute both urine and hair specimens. Each arrestee contributed seven urine specimens collected at 0, 12, 24, 48, 72, 96, and 120 h, respectively, after the arrest. Hair specimens were cut into 2-cm sections. The limits of detection and quantitation of the urine protocol were 40 and 50 ng/mL, respectively, for both amphetamine and methamphetamine, while the corresponding limits of detection and quantitation for the hair protocol were 0.8 and 1.0 ng/mg, respectively. The concentration variations of methamphetamine and amphetamine in the urine specimens exhibited three distinct patterns: (a) continuous decrease in the analytes' concentrations for specimens collected at hours 0-120; (b) increase in the analytes' concentrations in specimens collected at hours 0-12, followed by decrease; (c) increase in analytes' concentrations in specimens collected at later times. Together with the amphetamine/methamphetamine concentration ratios found in these urine specimens, the observed trends in the changes of the analytes' concentrations are helpful for the interpretation on the time of drug use. Unlike urine specimens, amphetamine/methamphetamine concentration ratios in various hair specimens and hair sections remain relatively constant.
Collapse
Affiliation(s)
- Sheng-Meng Wang
- Department of Forensic Science, Central Police University, 56 Shujen Road, Kueishan, Taoyuan 33304, Taiwan.
| | | | | | | | | | | |
Collapse
|
86
|
Williams JM, Galli A. The dopamine transporter: a vigilant border control for psychostimulant action. Handb Exp Pharmacol 2006:215-32. [PMID: 16722238 DOI: 10.1007/3-540-29784-7_11] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Neurotransmission within the mesocorticolimbic dopamine system has remained the central focus of investigation into the molecular, cellular and behavioral properties of psychostimulants for nearly three decades. The primary means by which dopamine transmission in the synapse is terminated is via the dopamine transporter (DAT), the presynaptic plasmalemmal protein that is responsible for the reuptake of released dopamine. Numerous abused as well as clinically important drugs have important pharmacological interactions with DAT. In general, these compounds fall into two categories: those that block dopamine transport (e.g., cocaine, methylphenidate) and those that serve as substrates for transport [e.g., dopamine, amphetamine and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy")]. Recent data from in vitro and in vivo studies have suggested that DAT, like other biogenic amine transporters, share several characteristics with classical ligand-gated ion channels. In addition, substrates for transport promote redistribution of DAT away from the plasma membrane, while transport inhibitors such as cocaine disrupt this process. In addition, presynaptic autoreceptors for dopamine have been implicated in the modulation of DAT surface expression and function. The present chapter summarizes some of the recent discoveries pertaining to the electrogenic properties of DAT and their potential relevance to the effects of amphetamine-like stimulants on DAT function. Although there are a number of intracellular and extracellular modulatory influences on dopamine clearance that may play particular roles in psychostimulant action, we specifically focus on the differential direct modulation of DAT function by transport substrates and inhibitors, and we also discusses the role of presynaptic D2 receptors in transport regulation.
Collapse
Affiliation(s)
- J M Williams
- Department of Molecular Physiology and Biophysics, Center for Molecular Neuroscience, Vanderbilt University Medical Center, 465 21st Ave. S., 7124 MRB III, Nashville, TN 37232, USA.
| | | |
Collapse
|
87
|
Mari SA, Soragna A, Castagna M, Santacroce M, Perego C, Bossi E, Peres A, Sacchi VF. Role of the conserved glutamine 291 in the rat gamma-aminobutyric acid transporter rGAT-1. Cell Mol Life Sci 2006; 63:100-11. [PMID: 16378241 PMCID: PMC2792339 DOI: 10.1007/s00018-005-5512-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We investigated the role of the Q291 glutamine residue in the functioning of the rat gamma-aminobutyric acid (GABA) transporter GAT-1. Q291 mutants cannot transport GABA or give rise to transient, leak and transport-coupled currents even though they are targeted to the plasma membrane. Coexpression experiments of wild-type and Q291 mutants suggest that GAT-1 is a functional monomer though it requires oligomeric assembly for membrane insertion. We determined the accessibility of Q291 by investigating the impact of impermeant sulfhydryl reagents on cysteine residues engineered in close proximity to Q291. The effect of these reagents indicates that Q291 faces the external aqueous milieu. The introduction of a steric hindrance close to Q291 by means of [2-(trimethylammonium)ethyl] methanethiosulfonate bromide modification of C74A/T290C altered the affinity of the mutant for cations. Taken together, these results suggest that this irreplaceable residue is involved in the interaction with sodium or in maintaining the cation accessibility to the transporter.
Collapse
Affiliation(s)
- S. A. Mari
- Institute of General Physiology and Biological Chemistry ‘G. Esposito’, University of Milan, Via Trentacoste 2, 20134 Milano, Italy
| | - A. Soragna
- Laboratory of Cellular and Molecular Physiology, Department of Structural and Functional Biology and Center for Neuroscience, University of Insubria, 21100 Varese, Italy
| | - M. Castagna
- Institute of General Physiology and Biological Chemistry ‘G. Esposito’, University of Milan, Via Trentacoste 2, 20134 Milano, Italy
| | - M. Santacroce
- Institute of General Physiology and Biological Chemistry ‘G. Esposito’, University of Milan, Via Trentacoste 2, 20134 Milano, Italy
| | - C. Perego
- Institute of General Physiology and Biological Chemistry ‘G. Esposito’, University of Milan, Via Trentacoste 2, 20134 Milano, Italy
| | - E. Bossi
- Laboratory of Cellular and Molecular Physiology, Department of Structural and Functional Biology and Center for Neuroscience, University of Insubria, 21100 Varese, Italy
| | - A. Peres
- Laboratory of Cellular and Molecular Physiology, Department of Structural and Functional Biology and Center for Neuroscience, University of Insubria, 21100 Varese, Italy
| | - V. F. Sacchi
- Institute of General Physiology and Biological Chemistry ‘G. Esposito’, University of Milan, Via Trentacoste 2, 20134 Milano, Italy
| |
Collapse
|
88
|
Hilber B, Scholze P, Dorostkar MM, Sandtner W, Holy M, Boehm S, Singer EA, Sitte HH. Serotonin-transporter mediated efflux: A pharmacological analysis of amphetamines and non-amphetamines. Neuropharmacology 2005; 49:811-9. [PMID: 16185723 DOI: 10.1016/j.neuropharm.2005.08.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 08/10/2005] [Indexed: 11/17/2022]
Abstract
The physiological function of neurotransmitter transporter proteins like the serotonin transporter (SERT) is reuptake of neurotransmitter that terminates synaptic serotoninergic transmission. SERT can operate in reverse direction and be induced by SERT substrates including 5-HT, tyramine and the positively charged methyl-phenylpyridinium (MPP(+)), as well as the amphetamine derivatives para-chloroamphetamine (pCA) and methylene-dioxy-methamphetamine (MDMA). These substrates also induce inwardly directed sodium currents that are predominantly carried by sodium ions. Efflux via SERT depends on this sodium flux that is believed to be a prerequisite for outward transport. However, in recent studies, it has been suggested that substrates may be distinct in their properties to induce efflux. Therefore, the aim of the present study was a pharmacological characterization of different SERT substrates in uptake experiments, their abilities to induce transporter-mediated efflux and currents. In conclusion, the rank order of affinities in uptake and electrophysiological experiments correlate well, while the potencies of the amphetamine derivatives for the induction of efflux are clearly higher than those of the other substrates. These discrepancies can be only explained by mechanisms that can be induced by amphetamines. Therefore, based on our pharmacological observations, we conclude that amphetamines distinctly differ from non-amphetamine SERT substrates.
Collapse
Affiliation(s)
- Birgit Hilber
- Institute of Pharmacology, Medical University Vienna, Waehringerstr. 13a, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Surratt CK, Ukairo OT, Ramanujapuram S. Recognition of psychostimulants, antidepressants, and other inhibitors of synaptic neurotransmitter uptake by the plasma membrane monoamine transporters. AAPS JOURNAL 2005; 7:E739-51. [PMID: 16353950 PMCID: PMC2751276 DOI: 10.1208/aapsj070374] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plasma membrane monoamine transporters terminate neurotransmission by removing dopamine, norepinephrine, or serotonin from the synaptic cleft between neurons. Specific inhibitors for these transporters, including the abused psychostimulants cocaine and amphetamine and the tricyclic and SSRI classes of antidepressants, exert their physiological effects by interfering with synaptic uptake and thus prolonging the actions of the monoamine. Pharmacological, biochemical, and immunological characterization of the many site-directed, chimeric, and deletion mutants generated for the plasma membrane monoamine transporters have revealed much about the commonalities and dissimilarities between transporter substrate, ion, and inhibitor binding sites. Mutations that alter the binding affinity or substrate uptake inhibition potency of inhibitors by at least 3-fold are the focus of this review. These findings are clarifying the picture regarding substrate uptake inhibitor/transporter protein interactions at the level of the drug pharmacophore and the amino acid residue, information necessary for rational design of novel medications for substance abuse and a variety of psychiatric disorders.
Collapse
Affiliation(s)
- Christopher K Surratt
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | | | | |
Collapse
|
90
|
Cervinski MA, Foster JD, Vaughan RA. Psychoactive substrates stimulate dopamine transporter phosphorylation and down-regulation by cocaine-sensitive and protein kinase C-dependent mechanisms. J Biol Chem 2005; 280:40442-9. [PMID: 16204245 DOI: 10.1074/jbc.m501969200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dopamine transporters (DATs) undergo intracellular sequestration and functional down-regulation upon exposure to psychostimulant substrates. To investigate the potential mechanism underlying these responses, we examined the acute in vitro and in vivo effects of amphetamine and methamphetamine (METH) on phosphorylation and down-regulation of rat DAT using wild type and N-terminal truncation mutants. Phosphorylation of DAT assessed by (32)PO(4) metabolic labeling was increased up to 2-fold by in vitro treatment of rDAT LLC-PK(1) cells with amphetamine or METH and was similarly increased in rat striatal tissue by in vitro application or in vivo injection of METH. The dopamine transport blocker (-)-cocaine did not affect DAT phosphorylation but prevented the phosphorylation increase induced by METH. Phosphorylation of DAT induced by METH was also prevented by the protein kinase C blocker bisindoylmaleimide I and was absent in an N-terminally truncated protein that lacks the first 21 residues including 6 serines that also represent the site of phorbol ester induced phosphorylation. Down-regulation of transport induced by METH was also cocaine- and protein kinase C-dependent but was retained in the N-terminal truncation mutant. These results demonstrate that transport or binding of METH stimulates DAT phosphorylation and down-regulation by a mechanism that requires protein kinase C but that METH-induced down-regulation can occur independently of direct transporter phosphorylation. The finding that DAT phosphorylation is stimulated by amphetamines reveals a previously unknown effect of these drugs that is not produced by cocaine and may be related to reinforcement.
Collapse
Affiliation(s)
- Mark A Cervinski
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, USA
| | | | | |
Collapse
|
91
|
Sulzer D, Sonders MS, Poulsen NW, Galli A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 2005; 75:406-33. [PMID: 15955613 DOI: 10.1016/j.pneurobio.2005.04.003] [Citation(s) in RCA: 864] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 04/15/2005] [Accepted: 04/18/2005] [Indexed: 01/11/2023]
Abstract
Amphetamine and substituted amphetamines, including methamphetamine, methylphenidate (Ritalin), methylenedioxymethamphetamine (ecstasy), and the herbs khat and ephedra, encompass the only widely administered class of drugs that predominantly release neurotransmitter, in this case principally catecholamines, by a non-exocytic mechanism. These drugs play important medicinal and social roles in many cultures, exert profound effects on mental function and behavior, and can produce neurodegeneration and addiction. Numerous questions remain regarding the unusual molecular mechanisms by which these compounds induce catecholamine release. We review current issues on the two apparent primary mechanisms--the redistribution of catecholamines from synaptic vesicles to the cytosol, and induction of reverse transport of transmitter through plasma membrane uptake carriers--and on additional drug effects that affect extracellular catecholamine levels, including uptake inhibition, effects on exocytosis, neurotransmitter synthesis, and metabolism.
Collapse
Affiliation(s)
- David Sulzer
- Department of Psychiatry, Neurology and Pharmacology, New York State Psychiatric Institute, Columbia University, 650 W. 168th Street, Black Building Room 309, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
92
|
Kitayama S, Sogawa C. Regulated Expression and Function of the Somatodendritic Catecholamine Neurotransmitter Transporters. J Pharmacol Sci 2005; 99:121-7. [PMID: 16217145 DOI: 10.1254/jphs.cpj05003x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Termination of neurotransmission at catecholaminergic synapses is well documented by the transporters for dopamine and norepinephrine, members of the Na(+)/Cl(-)-dependent neurotransmitter transporter family, which accumulates released transmitters within their nerve endings, respectively. Although somatodendritic expression of the transporters and the effects of cocaine and amphetamine on those have been reported, their role is still obscure. Recent findings of the transporter function as an ion channel and/or its reverse transport property provide a clue to identify the role of these transporters in the somatodendrites and their consequential interaction with uptake inhibitors. Differences in ionic environment and maturity of the release machinery in the somatodendrites at developmental stages influence the transporter functions, resulting in the formation of both positive and negative feedback loop of catecholaminergic neurons.
Collapse
Affiliation(s)
- Shigeo Kitayama
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 5-1 Shikata-cho, 2-chome, Okayama 700-8525, Japan.
| | | |
Collapse
|