51
|
Habib AM, Nagi K, Thillaiappan NB, Sukumaran V, Akhtar S. Vitamin D and Its Potential Interplay With Pain Signaling Pathways. Front Immunol 2020; 11:820. [PMID: 32547536 PMCID: PMC7270292 DOI: 10.3389/fimmu.2020.00820] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
About 50 million of the U.S. adult population suffer from chronic pain. It is a complex disease in its own right for which currently available analgesics have been deemed woefully inadequate since ~20% of the sufferers derive no benefit. Vitamin D, known for its role in calcium homeostasis and bone metabolism, is thought to be of clinical benefit in treating chronic pain without the side-effects of currently available analgesics. A strong correlation between hypovitaminosis D and incidence of bone pain is known. However, the potential underlying mechanisms by which vitamin D might exert its analgesic effects are poorly understood. In this review, we discuss pathways involved in pain sensing and processing primarily at the level of dorsal root ganglion (DRG) neurons and the potential interplay between vitamin D, its receptor (VDR) and known specific pain signaling pathways including nerve growth factor (NGF), glial-derived neurotrophic factor (GDNF), epidermal growth factor receptor (EGFR), and opioid receptors. We also discuss how vitamin D/VDR might influence immune cells and pain sensitization as well as review the increasingly important topic of vitamin D toxicity. Further in vitro and in vivo experimental studies will be required to study these potential interactions specifically in pain models. Such studies could highlight the potential usefulness of vitamin D either alone or in combination with existing analgesics to better treat chronic pain.
Collapse
Affiliation(s)
| | | | | | | | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
52
|
Delery EC, Edwards S. Neuropeptide and cytokine regulation of pain in the context of substance use disorders. Neuropharmacology 2020; 174:108153. [PMID: 32470337 DOI: 10.1016/j.neuropharm.2020.108153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Substance use disorders (SUDs) are frequently accompanied by affective symptoms that promote negative reinforcement mechanisms contributing to SUD maintenance or progression. Despite their widespread use as analgesics, chronic or excessive exposure to alcohol, opioids, and nicotine produces heightened nociceptive sensitivity, termed hyperalgesia. This review focuses on the contributions of neuropeptide (CRF, melanocortin, opioid peptide) and cytokine (IL-1β, TNF-α, chemokine) systems in the development and maintenance of substance-induced hyperalgesia. Few effective therapies exist for either chronic pain or SUD, and the common interaction of these disease states likely complicates their effective treatment. Here we highlight promising new discoveries as well as identify gaps in research that could lead to more effective and even simultaneous treatment of SUDs and co-morbid hyperalgesia symptoms.
Collapse
Affiliation(s)
- Elizabeth C Delery
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
53
|
Abstract
With over 30% of current medications targeting this family of proteins, G-protein-coupled receptors (GPCRs) remain invaluable therapeutic targets. However, due to their unique physicochemical properties, their low abundance, and the lack of highly specific antibodies, GPCRs are still challenging to study in vivo. To overcome these limitations, we combined here transgenic mouse models and proteomic analyses in order to resolve the interactome of the δ-opioid receptor (DOPr) in its native in vivo environment. Given its analgesic properties and milder undesired effects than most clinically prescribed opioids, DOPr is a promising alternative therapeutic target for chronic pain management. However, the molecular and cellular mechanisms regulating its signaling and trafficking remain poorly characterized. We thus performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses on brain homogenates of our newly generated knockin mouse expressing a FLAG-tagged version of DOPr and revealed several endogenous DOPr interactors involved in protein folding, trafficking, and signal transduction. The interactions with a few identified partners such as VPS41, ARF6, Rabaptin-5, and Rab10 were validated. We report an approach to characterize in vivo interacting proteins of GPCRs, the largest family of membrane receptors with crucial implications in virtually all physiological systems.
Collapse
|
54
|
Piekielna-Ciesielska J, Wtorek K, Janecka A. Biased Agonism as an Emerging Strategy in the Search for Better Opioid Analgesics. Curr Med Chem 2020; 27:1562-1575. [PMID: 31057099 DOI: 10.2174/0929867326666190506103124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
Morphine and related drugs that act through activating opioid receptors are the most effective analgesics for the relief of severe pain. They have been used for decades, despite the range of unwanted side effects that they produce, as no alternative has been found so far. The major goal of opioid research is to understand the mechanism of action of opioid receptor agonists and to improve the therapeutic utility of opioid drugs. In the search for safer and more potent analgesics, analogs with mixed opioid receptor profile gained a lot of interest. However, recently the concept of biased agonism, that highlights the fact that some ligands are able to differentially activate receptor downstream pathways, became a new approach in the design of novel drug candidates for clinical application. In this review, we summarize current knowledge on the development of opioid ligands of peptide and nonpeptide structure, showing how much opioid pharmacology evolved in recent years.
Collapse
Affiliation(s)
| | - Karol Wtorek
- Department of Biomolecular Chemistry, Medical University, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
55
|
Bagheri Tudashki H, Haddad Y, Charfi I, Couture R, Pineyro G. Ligand-specific recycling profiles determine distinct potential for chronic analgesic tolerance of delta-opioid receptor (DOPr) agonists. J Cell Mol Med 2020; 24:5718-5730. [PMID: 32279433 PMCID: PMC7214178 DOI: 10.1111/jcmm.15234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
δ-opioid receptor (DOPr) agonists have analgesic efficacy in chronic pain models but development of tolerance limits their use for long-term pain management. Although agonist potential for inducing acute analgesic tolerance has been associated with distinct patterns of DOPr internalization, the association between trafficking and chronic tolerance remains ill-defined. In a rat model of streptozotocin (STZ)-induced diabetic neuropathy, deltorphin II and TIPP produced sustained analgesia following daily (intrathecal) i.t. injections over six days, whereas similar treatment with SNC-80 or SB235863 led to progressive tolerance and loss of the analgesic response. Trafficking assays in murine neuron cultures showed no association between the magnitude of ligand-induced sequestration and development of chronic tolerance. Instead, ligands that supported DOPr recycling were also the ones producing sustained analgesia over 6-day treatment. Moreover, endosomal endothelin-converting enzyme 2 (ECE2) blocker 663444 prevented DOPr recycling by deltorphin II and TIPP and precipitated tolerance by these ligands. In conclusion, agonists, which support DOPr recycling, avoid development of analgesic tolerance over repeated administration.
Collapse
Affiliation(s)
| | - Youssef Haddad
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQCCanada
| | - Iness Charfi
- Centre de RechercheCentre Hospitalier Universitaire Ste-JustineMontréalQCCanada
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQCCanada
| | - Rejean Couture
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQCCanada
| | - Graciela Pineyro
- Centre de RechercheCentre Hospitalier Universitaire Ste-JustineMontréalQCCanada
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQCCanada
| |
Collapse
|
56
|
Berthiaume S, Abdallah K, Blais V, Gendron L. Alleviating pain with delta opioid receptor agonists: evidence from experimental models. J Neural Transm (Vienna) 2020; 127:661-672. [PMID: 32189076 DOI: 10.1007/s00702-020-02172-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
The use of opioids for the relief of pain and headache disorders has been studied for years. Nowadays, particularly because of its ability to produce analgesia in various pain models, delta opioid receptor (DOPr) emerges as a promising target for the development of new pain therapies. Indeed, their potential to avoid the unwanted effects commonly observed with clinically used opioids acting at the mu opioid receptor (MOPr) suggests that DOPr agonists could be a therapeutic option. In this review, we discuss the use of opioids in the management of pain in addition to describing the evidence of the analgesic potency of DOPr agonists in animal models.
Collapse
Affiliation(s)
- Sophie Berthiaume
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Khaled Abdallah
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Véronique Blais
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Louis Gendron
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
57
|
Slavov S, Mattes W, Beger RD. Determination of structural factors affecting binding to mu, kappa and delta opioid receptors. Arch Toxicol 2020; 94:1215-1227. [PMID: 32107589 DOI: 10.1007/s00204-020-02684-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/21/2020] [Indexed: 11/30/2022]
Abstract
Addiction is a complex behavioral phenomenon in which naturally occurring or synthetic chemicals modulate the response of the reward system through their binding to a variety of neuroreceptors, resulting in compulsive substance-seeking and use despite harmful consequences to the individual. Among these, the opioid receptor (OR) family and more specifically, the mu-opioid receptor (MOR) subtype plays a critical role in the addiction to powerful prescription and illicit drugs such as hydrocodone, oxycodone, fentanyl, cocaine, and methamphetamine (Contet et al. in Curr Opin Neurobiol 14(3):370-378, 2004). Conversely, agonists binding to kappa (KOR) and antagonists binding to delta opioid receptors (DOR) have been reported to induce negative reinforcing effects. As more than 700 new psychoactive substances were illegally sold between 2009 and 2016 (DEA-DCT-DIR-032-18), most of them lacking basic toxicological and pharmacological profiles, molecular modeling approaches that could quickly and reliably fill the gaps in our knowledge would be highly desirable tools for determining the effects of these synthetics. Here, we report accurate 3D-spectrometric data-activity relationship classification models for large and diverse datasets of MOR, KOR and DOR binders with areas under the receiver operating characteristic curve for the "blind" prediction sets exceeding 0.88. Structural features associated with (selective) binding to MOR, KOR and/or DOR were identified. These models could assist regulatory agencies in evaluating the health risks associated with the use of unprofiled substances as well as to help the pharmaceutical industry in its search for new drugs to combat addiction.
Collapse
Affiliation(s)
- Svetoslav Slavov
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR, 72079, USA.
| | - William Mattes
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR, 72079, USA
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR, 72079, USA
| |
Collapse
|
58
|
Conibear AE, Asghar J, Hill R, Henderson G, Borbely E, Tekus V, Helyes Z, Palandri J, Bailey C, Starke I, von Mentzer B, Kendall D, Kelly E. A Novel G Protein-Biased Agonist at the δ Opioid Receptor with Analgesic Efficacy in Models of Chronic Pain. J Pharmacol Exp Ther 2020; 372:224-236. [PMID: 31594792 PMCID: PMC6978697 DOI: 10.1124/jpet.119.258640] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/26/2019] [Indexed: 11/22/2022] Open
Abstract
Agonists at the δ opioid receptor are known to be potent antihyperalgesics in chronic pain models and effective in models of anxiety and depression. However, some δ opioid agonists have proconvulsant properties while tolerance to the therapeutic effects can develop. Previous evidence indicates that different agonists acting at the δ opioid receptor differentially engage signaling and regulatory pathways with significant effects on behavioral outcomes. As such, interest is now growing in the development of biased agonists as a potential means to target specific signaling pathways and potentially improve the therapeutic profile of δ opioid agonists. Here, we report on PN6047 (3-[[4-(dimethylcarbamoyl)phenyl]-[1-(thiazol-5-ylmethyl)-4-piperidylidene]methyl]benzamide), a novel G protein-biased and selective δ opioid agonist. In cell-based assays, PN6047 fully engages G protein signaling but is a partial agonist in both the arrestin recruitment and internalization assays. PN6047 is effective in rodent models of chronic pain but shows no detectable analgesic tolerance following prolonged treatment. In addition, PN6047 exhibited antidepressant-like activity in the forced swim test, and importantly, the drug had no effect on chemically induced seizures. PN6047 did not exhibit reward-like properties in the conditioned place preference test or induce respiratory depression. Thus, δ opioid ligands with limited arrestin signaling such as PN6047 may be therapeutically beneficial in the treatment of chronic pain states. SIGNIFICANCE STATEMENT: PN6047 (3-[[4-(dimethylcarbamoyl)phenyl]-[1-(thiazol-5-ylmethyl)-4-piperidylidene]methyl]benzamide) is a selective, G protein-biased δ opioid agonist with efficacy in preclinical models of chronic pain. No analgesic tolerance was observed after prolonged treatment, and PN6047 does not display proconvulsant activity or other opioid-mediated adverse effects. Our data suggest that δ opioid ligands with limited arrestin signaling will be beneficial in the treatment of chronic pain.
Collapse
Affiliation(s)
- Alexandra E Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Junaid Asghar
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Rob Hill
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Eva Borbely
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Valeria Tekus
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Zsuzsanna Helyes
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Josephine Palandri
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Chris Bailey
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Ingemar Starke
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Bengt von Mentzer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - David Kendall
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom (A.E.C., R.H., G.H., E.K.); Faculty of Pharmacy, Gomal University, Khyber Pakhtunkhwa, Pakistan (J.A.); PharmInVivo Ltd., Szentagothai Research Centre, Centre for Neuroscience and Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary (E.B., V.T., Z.H.); Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (J.P., C.B.); and PharmNovo AB, Kungshamn, Sweden (I.S., B.v.M., D.K.)
| |
Collapse
|
59
|
Abstract
Ischemic stroke is a global epidemic condition due to an inadequate supply of blood and oxygen to a specific area of brain either by arterial blockage or by narrowing of blood vessels. Despite having advancement in the use of thrombolytic and clot removal medicine, significant numbers of stroke patients are still left out without option for treatment. In this review, we summarize recent research work on the activation of δ-opioid receptor as a strategy for treating ischemic stroke-caused neuronal injury. Moreover, as activation of δ-opioid receptor by a non-peptidic δ-opioid receptor agonist also modulates the expression, maturation and processing of amyloid precursor protein and β-secretase activity, the potential role of these effects on ischemic stroke caused dementia or Alzheimer's disease are also discussed.
Collapse
Affiliation(s)
- Kalpana Subedi
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
60
|
Puryear CB, Brooks J, Tan L, Smith K, Li Y, Cunningham J, Todtenkopf MS, Dean RL, Sanchez C. Opioid receptor modulation of neural circuits in depression: What can be learned from preclinical data? Neurosci Biobehav Rev 2020; 108:658-678. [DOI: 10.1016/j.neubiorev.2019.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
61
|
Gozani SN. Remote Analgesic Effects Of Conventional Transcutaneous Electrical Nerve Stimulation: A Scientific And Clinical Review With A Focus On Chronic Pain. J Pain Res 2019; 12:3185-3201. [PMID: 31819603 PMCID: PMC6885653 DOI: 10.2147/jpr.s226600] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/02/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transcutaneous electrical nerve stimulation (TENS) is a safe, noninvasive treatment for chronic pain that can be self-administered. Conventional TENS involves stimulation of peripheral sensory nerves at a strong, non-painful level. Following the original gate-control theory of pain, stimulation is typically near the target pain. As another option, remote stimulation may also be effective and offers potential advantages. OBJECTIVE This narrative review examines mechanisms underlying the remote analgesic effects of conventional TENS and appraises the clinical evidence. METHODS A literature search for English-language articles was performed on PubMed. Keywords included terms related to the location of TENS . Citations from primary references and textbooks were examined for additional articles. RESULTS Over 30 studies reported remote analgesic effects of conventional TENS. The evidence included studies using animal models of pain, experimental pain in humans, and clinical studies in subjects with chronic pain. Three types of remote analgesia were identified: at the contralateral homologous site, at sites distant from stimulation but innervated by overlapping spinal segments, and at unrelated extrasegmental sites. CONCLUSION There is scientific and clinical evidence that conventional TENS has remote analgesic effects. This may occur through modulation of pain processing at the level of the dorsal horn, in brainstem centers mediating descending inhibition, and within the pain matrix. A broadening of perspectives on how conventional TENS produces analgesia may encourage researchers, clinicians, and medical-device manufacturers to develop novel ways of using this safe, cost-effective neuromodulation technique for chronic pain.
Collapse
|
62
|
Claff T, Yu J, Blais V, Patel N, Martin C, Wu L, Han GW, Holleran BJ, Van der Poorten O, White KL, Hanson MA, Sarret P, Gendron L, Cherezov V, Katritch V, Ballet S, Liu ZJ, Müller CE, Stevens RC. Elucidating the active δ-opioid receptor crystal structure with peptide and small-molecule agonists. SCIENCE ADVANCES 2019; 5:eaax9115. [PMID: 31807708 PMCID: PMC6881160 DOI: 10.1126/sciadv.aax9115] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/25/2019] [Indexed: 05/13/2023]
Abstract
Selective activation of the δ-opioid receptor (DOP) has great potential for the treatment of chronic pain, benefitting from ancillary anxiolytic and antidepressant-like effects. Moreover, DOP agonists show reduced adverse effects as compared to μ-opioid receptor (MOP) agonists that are in the spotlight of the current "opioid crisis." Here, we report the first crystal structures of the DOP in an activated state, in complex with two relevant and structurally diverse agonists: the potent opioid agonist peptide KGCHM07 and the small-molecule agonist DPI-287 at 2.8 and 3.3 Å resolution, respectively. Our study identifies key determinants for agonist recognition, receptor activation, and DOP selectivity, revealing crucial differences between both agonist scaffolds. Our findings provide the first investigation into atomic-scale agonist binding at the DOP, supported by site-directed mutagenesis and pharmacological characterization. These structures will underpin the future structure-based development of DOP agonists for an improved pain treatment with fewer adverse effects.
Collapse
Affiliation(s)
- Tobias Claff
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Rd, Pudong, Shanghai 201210, China
- PharmaCenter Bonn, University of Bonn, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jing Yu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Rd, Pudong, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Véronique Blais
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Nilkanth Patel
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Charlotte Martin
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Rd, Pudong, Shanghai 201210, China
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Brian J. Holleran
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Olivier Van der Poorten
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Kate L. White
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Louis Gendron
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Vadim Cherezov
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Vsevolod Katritch
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Rd, Pudong, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Christa E. Müller
- PharmaCenter Bonn, University of Bonn, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany
- Corresponding author. (C.E.M.); (R.C.S.)
| | - Raymond C. Stevens
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Rd, Pudong, Shanghai 201210, China
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
- Corresponding author. (C.E.M.); (R.C.S.)
| |
Collapse
|
63
|
Abstract
Drug addiction is a worldwide societal problem and public health burden, and results from recreational drug use that develops into a complex brain disorder. The opioid system, one of the first discovered neuropeptide systems in the history of neuroscience, is central to addiction. Recently, opioid receptors have been propelled back on stage by the rising opioid epidemics, revolutions in G protein-coupled receptor research and fascinating developments in basic neuroscience. This Review discusses rapidly advancing research into the role of opioid receptors in addiction, and addresses the key questions of whether we can kill pain without addiction using mu-opioid-receptor-targeting opiates, how mu- and kappa-opioid receptors operate within the neurocircuitry of addiction and whether we can bridge human and animal opioid research in the field of drug abuse.
Collapse
Affiliation(s)
- Emmanuel Darcq
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Brigitte Lina Kieffer
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada. .,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France.
| |
Collapse
|
64
|
Mann A, Moulédous L, Froment C, O'Neill PR, Dasgupta P, Günther T, Brunori G, Kieffer BL, Toll L, Bruchas MR, Zaveri NT, Schulz S. Agonist-selective NOP receptor phosphorylation correlates in vitro and in vivo and reveals differential post-activation signaling by chemically diverse agonists. Sci Signal 2019; 12:12/574/eaau8072. [PMID: 30914485 DOI: 10.1126/scisignal.aau8072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Agonists of the nociceptin/orphanin FQ opioid peptide (NOP) receptor, a member of the opioid receptor family, are under active investigation as novel analgesics, but their modes of signaling are less well characterized than those of other members of the opioid receptor family. Therefore, we investigated whether different NOP receptor ligands showed differential signaling or functional selectivity at the NOP receptor. Using newly developed phosphosite-specific antibodies to the NOP receptor, we found that agonist-induced NOP receptor phosphorylation occurred primarily at four carboxyl-terminal serine (Ser) and threonine (Thr) residues, namely, Ser346, Ser351, Thr362, and Ser363, and proceeded with a temporal hierarchy, with Ser346 as the first site of phosphorylation. G protein-coupled receptor kinases 2 and 3 (GRK2/3) cooperated during agonist-induced phosphorylation, which, in turn, facilitated NOP receptor desensitization and internalization. A comparison of structurally distinct NOP receptor agonists revealed dissociation in functional efficacies between G protein-dependent signaling and receptor phosphorylation. Furthermore, in NOP-eGFP and NOP-eYFP mice, NOP receptor agonists induced multisite phosphorylation and internalization in a dose-dependent and agonist-selective manner that could be blocked by specific antagonists. Our study provides new tools to study ligand-activated NOP receptor signaling in vitro and in vivo. Differential agonist-selective NOP receptor phosphorylation by chemically diverse NOP receptor agonists suggests that differential signaling by NOP receptor agonists may play a role in NOP receptor ligand pharmacology.
Collapse
Affiliation(s)
- Anika Mann
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, Jena 07747, Germany.
| | - Lionel Moulédous
- Research Center on Animal Cognition, Center for Integrative Biology, Toulouse University, CNRS, UPS, 31062 Toulouse Cedex 09, France
| | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
| | - Patrick R O'Neill
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pooja Dasgupta
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, Jena 07747, Germany
| | - Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, Jena 07747, Germany
| | - Gloria Brunori
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC H3A 1A1, Canada
| | - Lawrence Toll
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, Jena 07747, Germany.
| |
Collapse
|
65
|
Beaudeau JL, Blais V, Holleran BJ, Bergeron A, Piñeyro G, Guérin B, Gendron L, Dory YL. N-Guanidyl and C-Tetrazole Leu-Enkephalin Derivatives: Efficient Mu and Delta Opioid Receptor Agonists with Improved Pharmacological Properties. ACS Chem Neurosci 2019; 10:1615-1626. [PMID: 30614675 DOI: 10.1021/acschemneuro.8b00550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Leu-enkephalin and d-Ala2-Leu-enkephalin were modified at their N- and C-termini with guanidyl and tetrazole groups. The resulting molecules were prepared in solution or by solid phase peptide synthesis. The affinity of the different analogues at mu (MOP) and delta opioid receptors (DOP) was then assessed by competitive binding in stably transfected DOP and MOP HEK293 cells. Inhibition of cAMP production and recruitment of β-arrestin were also investigated. Finally, lipophilicity (logD7.4) and plasma stability of each compound were measured. Compared to the native ligands, we found that the replacement of the terminal carboxylate by a tetrazole slightly decreased both the affinity at mu and delta opioid receptors as well as the half-life. By contrast, replacing the ammonium at the N-terminus with a guanidyl significantly improved the affinity, the potency, as well as the lipophilicity and the stability of the resulting peptides. Replacing the glycine residue with a d-alanine in position 2 consistently improved the potency as well as the stability of the analogues. The best peptidomimetic of the whole series, guanidyl-Tyr-d-Ala-Gly-Phe-Leu-tetrazole, displayed sub-nanomolar affinity and an increased lipophilicity. Moreover, it proved to be stable in plasma for up to 24 h, suggesting that the modifications are protecting the compound against protease degradation.
Collapse
Affiliation(s)
| | | | | | | | - Graciela Piñeyro
- Département de Psychiatrie, Centre de Recherche du CHU Ste-Justine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | | | | | | |
Collapse
|
66
|
Shiwarski DJ, Crilly SE, Dates A, Puthenveedu MA. Dual RXR motifs regulate nerve growth factor-mediated intracellular retention of the delta opioid receptor. Mol Biol Cell 2019; 30:680-690. [PMID: 30601694 PMCID: PMC6589700 DOI: 10.1091/mbc.e18-05-0292] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 12/19/2022] Open
Abstract
The delta opioid receptor (DOR), a physiologically relevant prototype for G protein-coupled receptors, is retained in intracellular compartments in neuronal cells. This retention is mediated by a nerve growth factor (NGF)-regulated checkpoint that delays the export of DOR from the trans-Golgi network. How DOR is selectively retained in the Golgi, in the midst of dynamic membrane transport and cargo export, is a fundamental unanswered question. Here we address this by investigating sequence elements on DOR that regulate DOR surface delivery, focusing on the C-terminal tail of DOR that is sufficient for NGF-mediated regulation. By systematic mutational analysis, we define conserved dual bi-arginine (RXR) motifs that are required for NGF- and phosphoinositide-regulated DOR export from intracellular compartments in neuroendocrine cells. These motifs were required to bind the coatomer protein I (COPI) complex, a vesicle coat complex that mediates primarily retrograde cargo traffic in the Golgi. Our results suggest that interactions of DOR with COPI, via atypical COPI motifs on the C-terminal tail, retain DOR in the Golgi. These interactions could provide a point of regulation of DOR export and delivery by extracellular signaling pathways.
Collapse
Affiliation(s)
- Daniel J. Shiwarski
- Department of Biological Sciences, The Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Stephanie E. Crilly
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109
| | - Andrew Dates
- Department of Biological Sciences, The Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Manojkumar A. Puthenveedu
- Department of Biological Sciences, The Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
67
|
Weinberg ZY, Crilly SE, Puthenveedu MA. Spatial encoding of GPCR signaling in the nervous system. Curr Opin Cell Biol 2019; 57:83-89. [PMID: 30708280 DOI: 10.1016/j.ceb.2018.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023]
Abstract
Several GPCRs, including receptors previously thought to signal primarily from the cell surface, have been recently shown to signal from many intracellular compartments. This raises the idea that signaling by any given receptor is spatially encoded in the cell, with distinct sites of signal origin dictating distinct downstream consequences. We will discuss recent developments that address this novel facet of GPCR physiology, focusing on the spatial segregation of signaling from the cell surface, endosomes, and the Golgi by receptors relevant to the nervous system.
Collapse
Affiliation(s)
- Zara Y Weinberg
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephanie E Crilly
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Manojkumar A Puthenveedu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
68
|
Gendron L, Nagi K, Zeghal M, Giguère PM, Pineyro G. Molecular aspects of delta opioid receptors. OPIOID HORMONES 2019; 111:49-90. [DOI: 10.1016/bs.vh.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
69
|
Génier S, Degrandmaison J, Lavoie CL, Gendron L, Parent JL. Monitoring the Aggregation of GPCRs by Fluorescence Microscopy. Methods Mol Biol 2019; 1947:289-302. [PMID: 30969423 DOI: 10.1007/978-1-4939-9121-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
G protein-coupled receptors (GPCRs) contain highly hydrophobic domains that are subject to aggregation when exposed to the crowded environment of the cytoplasm. Many events can lead to protein aggregation such as mutations, endoplasmic reticulum (ER) stress, and misfolding. These processes have been widely known to impact GPCR folding, maturation, and localization. Protein aggregates are transported toward the microtubule-organizing center via dynein to form a large juxta-nuclear structure called the aggresome, and in due course, are then targeted for degradation. Here, we describe a method to study aggregation of GPCRs by fluorescence microscopy.
Collapse
Affiliation(s)
- Samuel Génier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jade Degrandmaison
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christine L Lavoie
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Luc Parent
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
70
|
Abstract
Drug use and the associated overdose deaths have been a serious public health threat in the United States and the world. While traditional drugs of abuse such as cocaine remain popular, recreational use of newer synthetic drugs has continued to increase, but the prevalence of use is likely underestimated. In this review, epidemiology, chemistry, pharmacophysiology, clinical effects, laboratory detection, and clinical treatment are discussed for newly emerging drugs of abuse in the following classes: (1) opioids (e.g., fentanyl, fentanyl analogues, and mitragynine), (2) cannabinoids [THC and its analogues, alkylindole (e.g., JWH-018, JWH-073), cyclohexylphenol (e.g., CP-47,497), and indazole carboxamide (e.g., FUB-AMB, ADB-FUBINACA)], (3) stimulants and hallucinogens [β-keto amphetamines (e.g., methcathinone, methylone), pyrrolidinophenones (e.g., α-PVP, MDPV), and dimethoxyphenethylamine ("2C" and "NBOMe")], (4) dissociative agents (e.g., 3-MeO-PCP, methoxetamine, 2-oxo-PCE), and (5) sedative-hypnotics (e.g., gabapentin, baclofen, clonazolam, etizolam). It is critically important to coordinate hospital, medical examiner, and law enforcement personnel with laboratory services to respond to these emerging threats.
Collapse
Affiliation(s)
- Kenichi Tamama
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Clinical Laboratories, University of Pittsburgh Medical Center Presbyterian Hospital, Pittsburgh, PA, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Clinical Laboratory, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.
| | - Michael J Lynch
- Division of Medical Toxicology, Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Pittsburgh Poison Center, Pittsburgh, PA, USA.
| |
Collapse
|
71
|
Huang J, Ren Y, Xu Y, Chen T, Xia TC, Li Z, Zhao J, Hua F, Sheng S, Xia Y. The delta-opioid receptor and Parkinson's disease. CNS Neurosci Ther 2018; 24:1089-1099. [PMID: 30076686 PMCID: PMC6489828 DOI: 10.1111/cns.13045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a common degenerative neurological disease leading to a series of familial, medical, and social problems. Although it is known that the major characteristics of PD pathophysiology are the dysfunction of basal ganglia due to injury/loss of dopaminergic neurons in the substantia nigra pars compacta dopaminergic and exhaustion of corpus striatum dopamine, therapeutic modalities for PD are limited in clinical settings up to date. It is of utmost importance to better understand PD pathophysiology and explore new solutions for this serious neurodegenerative disorder. Our recent work and those of others suggest that the delta-opioid receptor (DOR) is neuroprotective and serves an antiparkinsonism role in the brain. This review summarizes recent progress in this field and explores potential mechanisms for DOR-mediated antiparkinsonism.
Collapse
Affiliation(s)
- Jin‐Zhong Huang
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Yi Ren
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Yuan Xu
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Tao Chen
- Hainan General HospitalHaikouHainanChina
| | | | - Zhuo‐Ri Li
- Hainan General HospitalHaikouHainanChina
| | | | - Fei Hua
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Shi‐Ying Sheng
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint FunctionFudan UniversityShanghaiChina
- Department of Aeronautics and AstronauticsFudan UniversityShanghaiChina
| |
Collapse
|
72
|
Machelska H, Celik MÖ. Advances in Achieving Opioid Analgesia Without Side Effects. Front Pharmacol 2018; 9:1388. [PMID: 30555325 PMCID: PMC6282113 DOI: 10.3389/fphar.2018.01388] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Opioids are the most effective drugs for the treatment of severe pain, but they also cause addiction and overdose deaths, which have led to a worldwide opioid crisis. Therefore, the development of safer opioids is urgently needed. In this article, we provide a critical overview of emerging opioid-based strategies aimed at effective pain relief and improved side effect profiles. These approaches comprise biased agonism, the targeting of (i) opioid receptors in peripheral inflamed tissue (by reducing agonist access to the brain, the use of nanocarriers, or low pH-sensitive agonists); (ii) heteromers or multiple receptors (by monovalent, bivalent, and multifunctional ligands); (iii) receptor splice variants; and (iv) endogenous opioid peptides (by preventing their degradation or enhancing their production by gene transfer). Substantial advancements are underscored by pharmaceutical development of new opioids such as peripheral κ-receptor agonists, and by treatments augmenting the action of endogenous opioids, which have entered clinical trials. Additionally, there are several promising novel opioids comprehensively examined in preclinical studies, but also strategies such as biased agonism, which might require careful rethinking.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
73
|
Yudin Y, Rohacs T. Inhibitory G i/O-coupled receptors in somatosensory neurons: Potential therapeutic targets for novel analgesics. Mol Pain 2018; 14:1744806918763646. [PMID: 29580154 PMCID: PMC5882016 DOI: 10.1177/1744806918763646] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Primary sensory neurons in the dorsal root ganglia and trigeminal ganglia are responsible for sensing mechanical and thermal stimuli, as well as detecting tissue damage. These neurons express ion channels that respond to thermal, mechanical, or chemical cues, conduct action potentials, and mediate transmitter release. These neurons also express a large number of G-protein coupled receptors, which are major transducers for extracellular signaling molecules, and their activation usually modulates the primary transduction pathways. Receptors that couple to phospholipase C via heterotrimeric Gq/11 proteins and those that activate adenylate cyclase via Gs are considered excitatory; they positively regulate somatosensory transduction and they play roles in inflammatory sensitization and pain, and in some cases also in inducing itch. On the other hand, receptors that couple to Gi/o proteins, such as opioid or GABAB receptors, are generally inhibitory. Their activation counteracts the effect of Gs-stimulation by inhibiting adenylate cyclase, as well as exerts effects on ion channels, usually resulting in decreased excitability. This review will summarize knowledge on Gi-coupled receptors in sensory neurons, focusing on their roles in ion channel regulation and discuss their potential as targets for analgesic and antipruritic medications.
Collapse
Affiliation(s)
- Yevgen Yudin
- 1 Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Tibor Rohacs
- 1 Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
74
|
Molecular Adaptations in the Rat Dorsal Striatum and Hippocampus Following Abstinence-Induced Incubation of Drug Seeking After Escalated Oxycodone Self-Administration. Mol Neurobiol 2018; 56:3603-3615. [PMID: 30155791 PMCID: PMC6477015 DOI: 10.1007/s12035-018-1318-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022]
Abstract
Repeated exposure to the opioid agonist, oxycodone, can lead to addiction. Here, we sought to identify potential neurobiological consequences of withdrawal from escalated and non-escalated oxycodone self-administration in rats. To reach these goals, we used short-access (ShA) (3 h) and long-access (LgA) (9 h) exposure to oxycodone self-administration followed by protracted forced abstinence. After 31 days of withdrawal, we quantified mRNA and protein levels of opioid receptors in the rat dorsal striatum and hippocampus. Rats in the LgA, but not the ShA, group exhibited escalation of oxycodone SA, with distinction of two behavioral phenotypes of relatively lower (LgA-L) and higher (LgA-H) oxycodone takers. Both LgA, but not ShA, phenotypes showed time-dependent increases in oxycodone seeking during the 31 days of forced abstinence. Rats from both LgA-L and LgA-H groups also exhibited decreased levels of striatal mu opioid receptor protein levels in comparison to saline and ShA rats. In contrast, mu opioid receptor mRNA expression was increased in the dorsal striatum of LgA-H rats. Moreover, hippocampal mu and kappa receptor protein levels were both increased in the LgA-H phenotype. Nevertheless, hippocampal mu receptor mRNA levels were decreased in the two LgA groups whereas kappa receptor mRNA expression was decreased in ShA and LgA oxycodone groups. Decreases in striatal mu opioid receptor protein expression in the LgA rats may serve as substrates for relapse to drug seeking because these changes occur in rats that showed incubation of oxycodone seeking.
Collapse
|
75
|
Alternative Splicing of the Delta-Opioid Receptor Gene Suggests Existence of New Functional Isoforms. Mol Neurobiol 2018; 56:2855-2869. [PMID: 30066306 DOI: 10.1007/s12035-018-1253-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/17/2018] [Indexed: 12/26/2022]
Abstract
The delta-opioid receptor (DOPr) participates in mediating the effects of opioid analgesics. However, no selective agonists have entered clinical care despite potential to ameliorate many neurological and psychiatric disorders. In an effort to address the drug development challenges, the functional contribution of receptor isoforms created by alternative splicing of the three-exonic coding gene, OPRD1, has been overlooked. We report that the gene is transcriptionally more diverse than previously demonstrated, producing novel protein isoforms in humans and mice. We provide support for the functional relevance of splice variants through context-dependent expression profiling (tissues, disease model) and conservation of the transcriptional landscape in closely related vertebrates. The conserved alternative transcriptional events have two distinct patterns. First, cassette exon inclusions between exons 1 and 2 interrupt the reading frame, producing truncated receptor fragments comprising only the first transmembrane (TM) domain, despite the lack of exact exon orthologues between distant species. Second, a novel promoter and transcriptional start site upstream of exon 2 produces a transcript of an N-terminally truncated 6TM isoform. However, a fundamental difference in the exonic landscaping as well as translation and translation products poses limits for modelling the human DOPr receptor system in mice.
Collapse
|
76
|
Vicente-Sanchez A, Dripps IJ, Tipton AF, Akbari H, Akbari A, Jutkiewicz EM, Pradhan AA. Tolerance to high-internalizing δ opioid receptor agonist is critically mediated by arrestin 2. Br J Pharmacol 2018; 175:3050-3059. [PMID: 29722902 DOI: 10.1111/bph.14353] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Opioid δ receptor agonists are potent antihyperalgesics in chronic pain models, but tolerance develops after prolonged use. Previous evidence indicates that distinct forms of tolerance occur depending on the internalization properties of δ receptor agonists. As arrestins are important in receptor internalization, we investigated the role of arrestin 2 (β-arrestin 1) in mediating the development of tolerance induced by high- and low-internalizing δ receptor agonists. EXPERIMENTAL APPROACH We evaluated the effect of two δ receptor agonists with similar analgesic potencies, but either high-(SNC80) or low-(ARM390) internalization properties in wild-type (WT) and arrestin 2 knockout (KO) mice. We compared tolerance to the antihyperalgesic effects of these compounds in a model of inflammatory pain. We also examined tolerance to the convulsant effect of SNC80. Furthermore, effect of chronic treatment with SNC80 on δ agonist-stimulated [35 S]-GTPγS binding was determined in WT and KO mice. KEY RESULTS Arrestin 2 KO resulted in increased drug potency, duration of action and decreased acute tolerance to the antihyperalgesic effects of SNC80. In contrast, ARM390 produced similar effects in both WT and KO animals. Following chronic treatment, we found a marked decrease in the extent of tolerance to SNC80-induced antihyperalgesia and convulsions in arrestin 2 KO mice. Accordingly, δ receptors remained functionally coupled to G proteins in arrestin 2 KO mice chronically treated with SNC80. CONCLUSIONS AND IMPLICATIONS Overall, these results suggest that δ receptor agonists interact with arrestins in a ligand-specific manner, and tolerance to high- but not low-internalizing agonists are preferentially regulated by arrestin 2.
Collapse
Affiliation(s)
- Ana Vicente-Sanchez
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Isaac J Dripps
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Alycia F Tipton
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Heba Akbari
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Areeb Akbari
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
77
|
Charfi I, Abdallah K, Gendron L, Pineyro G. Delta opioid receptors recycle to the membrane after sorting to the degradation path. Cell Mol Life Sci 2018; 75:2257-2271. [PMID: 29288293 PMCID: PMC11105734 DOI: 10.1007/s00018-017-2732-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 01/24/2023]
Abstract
Soon after internalization delta opioid receptors (DOPrs) are committed to the degradation path by G protein-coupled receptor (GPCR)-associated binding protein. Here we provide evidence that this classical post-endocytic itinerary may be rectified by downstream sorting decisions which allow DOPrs to regain to the membrane after having reached late endosomes (LE). The LE sorting mechanism involved ESCRT accessory protein Alix and the TIP47/Rab9 retrieval complex which supported translocation of the receptor to the TGN, from where it subsequently regained the cell membrane. Preventing DOPrs from completing this itinerary precipitated acute analgesic tolerance to the agonist DPDPE, supporting the relevance of this recycling path in maintaining the analgesic response by this receptor. Taken together, these findings reveal a post-endocytic itinerary where GPCRs that have been sorted for degradation can still recycle to the membrane.
Collapse
Affiliation(s)
- Iness Charfi
- Department of Pharmacology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Ste-Justine Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Khaled Abdallah
- Department of Pharmacology-physiology, University of Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Louis Gendron
- Department of Pharmacology-physiology, University of Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Graciela Pineyro
- Department of Pharmacology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada.
- Department of Psychiatry, University of Montreal, Montreal, Quebec, H3T 1J4, Canada.
- Ste-Justine Hospital, Montreal, Quebec, H3T 1C5, Canada.
| |
Collapse
|
78
|
Bella Ndong D, Blais V, Holleran BJ, Proteau-Gagné A, Cantin-Savoie I, Robert W, Nadon JF, Beauchemin S, Leduc R, Piñeyro G, Guérin B, Gendron L, Dory YL. Exploration of the fifth position of leu-enkephalin and its role in binding and activating delta (DOP) and mu (MOP) opioid receptors. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Dominique Bella Ndong
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Véronique Blais
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Brian J. Holleran
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Arnaud Proteau-Gagné
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Chimie, Facult des Sciences; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Isabelle Cantin-Savoie
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Chimie, Facult des Sciences; Université de Sherbrooke; Sherbrooke Québec Canada
| | - William Robert
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Jean-François Nadon
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Chimie, Facult des Sciences; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Sophie Beauchemin
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Chimie, Facult des Sciences; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Richard Leduc
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
- Centre de recherche du CHU de Sherbrooke; Sherbrooke Québec Canada
| | - Graciela Piñeyro
- Département de Psychiatrie, Centre de Recherche du CHU Ste-Justine; Université de Montréal; Montreal Québec Canada
| | - Brigitte Guérin
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Centre de recherche du CHU de Sherbrooke; Sherbrooke Québec Canada
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Louis Gendron
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
- Centre de recherche du CHU de Sherbrooke; Sherbrooke Québec Canada
| | - Yves L. Dory
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Chimie, Facult des Sciences; Université de Sherbrooke; Sherbrooke Québec Canada
- Centre de recherche du CHU de Sherbrooke; Sherbrooke Québec Canada
| |
Collapse
|
79
|
Kato AS, Witkin JM. Protein complexes as psychiatric and neurological drug targets. Biochem Pharmacol 2018; 151:263-281. [PMID: 29330067 DOI: 10.1016/j.bcp.2018.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
Abstract
The need for improved medications for psychiatric and neurological disorders is clear. Difficulties in finding such drugs demands that all strategic means be utilized for their invention. The discovery of forebrain specific AMPA receptor antagonists, which selectively block the specific combinations of principal and auxiliary subunits present in forebrain regions but spare targets in the cerebellum, was recently disclosed. This discovery raised the possibility that other auxiliary protein systems could be utilized to help identify new medicines. Discussion of the TARP-dependent AMPA receptor antagonists has been presented elsewhere. Here we review the diversity of protein complexes of neurotransmitter receptors in the nervous system to highlight the broad range of protein/protein drug targets. We briefly outline the structural basis of protein complexes as drug targets for G-protein-coupled receptors, voltage-gated ion channels, and ligand-gated ion channels. This review highlights heterodimers, subunit-specific receptor constructions, multiple signaling pathways, and auxiliary proteins with an emphasis on the later. We conclude that the use of auxiliary proteins in chemical compound screening could enhance the detection of specific, targeted drug searches and lead to novel and improved medicines for psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Akihiko S Kato
- Neuroscience Discovery, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA.
| | - Jeffrey M Witkin
- Neuroscience Discovery, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
80
|
Abstract
Opioids are the most effective drugs for the treatment of severe pain, but they also cause addiction and overdose deaths, which have led to a worldwide opioid crisis. Therefore, the development of safer opioids is urgently needed. In this article, we provide a critical overview of emerging opioid-based strategies aimed at effective pain relief and improved side effect profiles. These approaches comprise biased agonism, the targeting of (i) opioid receptors in peripheral inflamed tissue (by reducing agonist access to the brain, the use of nanocarriers, or low pH-sensitive agonists); (ii) heteromers or multiple receptors (by monovalent, bivalent, and multifunctional ligands); (iii) receptor splice variants; and (iv) endogenous opioid peptides (by preventing their degradation or enhancing their production by gene transfer). Substantial advancements are underscored by pharmaceutical development of new opioids such as peripheral κ-receptor agonists, and by treatments augmenting the action of endogenous opioids, which have entered clinical trials. Additionally, there are several promising novel opioids comprehensively examined in preclinical studies, but also strategies such as biased agonism, which might require careful rethinking.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
81
|
Abstract
Nowadays, the delta opioid receptor (DOPr) represents a promising target for the treatment of chronic pain and emotional disorders. Despite the fact that they produce limited antinociceptive effects in healthy animals and in most acute pain models, DOPr agonists have shown efficacy in various chronic pain models. In this chapter, we review the progresses that have been made over the last decades in understanding the role played by DOPr in the control of pain. More specifically, the distribution of DOPr within the central nervous system and along pain pathways is presented. We also summarize the literature supporting a role for DOPr in acute, tonic, and chronic pain models, as well as the mechanisms regulating its activity under specific conditions. Finally, novel compounds that have make their way to clinical trials are discussed.
Collapse
Affiliation(s)
- Khaled Abdallah
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du CHUS, Sherbrooke, QC, Canada
| | - Louis Gendron
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre de recherche du CHUS, Sherbrooke, QC, Canada.
- Département d'anesthésiologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Quebec Pain Research Network, Sherbrooke, QC, Canada.
| |
Collapse
|
82
|
Abstract
Opioid receptors are the sites of action for morphine and most other clinically used opioid drugs. Abundant evidence now demonstrates that different opioid receptor types can physically associate to form heteromers. Owing to their constituent monomers' involvement in analgesia, mu/delta opioid receptor (M/DOR) heteromers have been a particular focus of attention. Understandings of the physiological relevance and indisputable proof of M/DOR formation in vivo are still evolving. This aspect of the field has been slow to progress in large part by the limitations of most available experimental models; recently however, promising progress is being made. As a result, the long-repeated promise of opioid receptor heteromers as selective therapeutic targets is now being realized.
Collapse
Affiliation(s)
- Catherine M Cahill
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
| | - Edmund Ong
- Department of Anesthesiology, Duke University, Durham, NC, USA
| |
Collapse
|
83
|
Frontal cortex dysfunction as a target for remediation in opiate use disorder: Role in cognitive dysfunction and disordered reward systems. PROGRESS IN BRAIN RESEARCH 2018; 239:179-227. [DOI: 10.1016/bs.pbr.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
84
|
Lackman JJ, Goth CK, Halim A, Vakhrushev SY, Clausen H, Petäjä-Repo UE. Site-specific O-glycosylation of N-terminal serine residues by polypeptide GalNAc-transferase 2 modulates human δ-opioid receptor turnover at the plasma membrane. Cell Signal 2018; 42:184-193. [PMID: 29097258 DOI: 10.1016/j.cellsig.2017.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are an important protein family of signalling receptors that govern a wide variety of physiological functions. The capacity to transmit extracellular signals and the extent of cellular response are largely determined by the amount of functional receptors at the cell surface that is subject to complex and fine-tuned regulation. Here, we demonstrate that the cell surface expression level of an inhibitory GPCR, the human δ-opioid receptor (hδOR) involved in pain and mood regulation, is modulated by site-specific N-acetylgalactosamine (GalNAc) -type O-glycosylation. Importantly, we identified one out of the 20 polypeptide GalNAc-transferase isoforms, GalNAc-T2, as the specific regulator of O-glycosylation of Ser6, Ser25 and Ser29 in the N-terminal ectodomain of the receptor. This was demonstrated by in vitro glycosylation assays using peptides corresponding to the hδOR N-terminus, Vicia villosa lectin affinity purification of receptors expressed in HEK293 SimpleCells capable of synthesizing only truncated O-glycans, GalNAc-T edited cell line model systems, and site-directed mutagenesis of the putative O-glycosylation sites. Interestingly, a single-nucleotide polymorphism, at residue 27 (F27C), was found to alter O-glycosylation of the receptor in efficiency as well as in glycosite usage. Furthermore, flow cytometry and cell surface biotinylation assays using O-glycan deficient CHO-ldlD cells revealed that the absence of O-glycans results in decreased receptor levels at the plasma membrane due to enhanced turnover. In addition, mutation of the identified O-glycosylation sites led to a decrease in the number of ligand-binding competent receptors and impaired agonist-mediated inhibition of cyclic AMP accumulation in HEK293 cells. Thus, site-specific O-glycosylation by a selected GalNAc-T isoform can increase the stability of a GPCR, in a process that modulates the constitutive turnover and steady-state levels of functional receptors at the cell surface.
Collapse
MESH Headings
- Acetylgalactosamine/chemistry
- Acetylgalactosamine/metabolism
- Amino Acid Sequence
- Animals
- CHO Cells
- Cell Line, Tumor
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Chromatography, Affinity/methods
- Cricetulus
- Cyclic AMP/metabolism
- Glycosylation
- HEK293 Cells
- Hep G2 Cells
- Humans
- Mutagenesis, Site-Directed
- N-Acetylgalactosaminyltransferases/genetics
- N-Acetylgalactosaminyltransferases/metabolism
- Neurons/cytology
- Neurons/metabolism
- Peptides/chemical synthesis
- Peptides/metabolism
- Plant Lectins/chemistry
- Polymorphism, Single Nucleotide
- Protein Processing, Post-Translational
- Protein Stability
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Serine/metabolism
- Polypeptide N-acetylgalactosaminyltransferase
Collapse
Affiliation(s)
- Jarkko J Lackman
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, FI-90014 Oulu, Finland
| | - Christoffer K Goth
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Ulla E Petäjä-Repo
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, FI-90014 Oulu, Finland.
| |
Collapse
|
85
|
Profiling molecular factors associated with pyknosis and developmental arrest induced by an opioid receptor antagonist and dihydroartemisinin in Plasmodium falciparum. PLoS One 2017; 12:e0184874. [PMID: 28934264 PMCID: PMC5608265 DOI: 10.1371/journal.pone.0184874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/03/2017] [Indexed: 12/26/2022] Open
Abstract
Malaria continues to be a devastating disease, largely caused by Plasmodium falciparum infection. We investigated the effects of opioid and cannabinoid receptor antagonists on the growth of intraerythrocytic P. falciparum. The delta opioid receptor antagonist 7-benzylidenenaltrexone (BNTX) and the cannabinoid receptor antagonists rimonaband and SR144528 caused growth arrest of the parasite. Notably BNTX and the established antimalarial drug dihydroartemisinin induced prominent pyknosis in parasite cells after a short period of incubation. We compared genome-wide transcriptome profiles in P. falciparum with different degrees of pyknosis in response to drug treatment, and identified 11 transcripts potentially associated with the evoking of pyknosis, of which three, including glutathione reductase (PfGR), triose phosphate transporter (PfoTPT), and a conserved Plasmodium membrane protein, showed markedly different gene expression levels in accordance with the degree of pyknosis. Furthermore, the use of specific inhibitors confirmed PfGR but not PfoTPT as a possible factor contributing to the development of pyknosis. A reduction in total glutathione levels was also detected in association with increased pyknosis. These results further our understanding of the mechanisms responsible for P. falciparum development and the antimalarial activity of dihydroartemisinin, and provide useful information for the development of novel antimalarial agents.
Collapse
|
86
|
Roeckel LA, Utard V, Reiss D, Mouheiche J, Maurin H, Robé A, Audouard E, Wood JN, Goumon Y, Simonin F, Gaveriaux-Ruff C. Morphine-induced hyperalgesia involves mu opioid receptors and the metabolite morphine-3-glucuronide. Sci Rep 2017; 7:10406. [PMID: 28871199 PMCID: PMC5583172 DOI: 10.1038/s41598-017-11120-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
Opiates are potent analgesics but their clinical use is limited by side effects including analgesic tolerance and opioid-induced hyperalgesia (OIH). The Opiates produce analgesia and other adverse effects through activation of the mu opioid receptor (MOR) encoded by the Oprm1 gene. However, MOR and morphine metabolism involvement in OIH have been little explored. Hence, we examined MOR contribution to OIH by comparing morphine-induced hyperalgesia in wild type (WT) and MOR knockout (KO) mice. We found that repeated morphine administration led to analgesic tolerance and hyperalgesia in WT mice but not in MOR KO mice. The absence of OIH in MOR KO mice was found in both sexes, in two KO global mutant lines, and for mechanical, heat and cold pain modalities. In addition, the morphine metabolite morphine-3beta-D-glucuronide (M3G) elicited hyperalgesia in WT but not in MOR KO animals, as well as in both MOR flox and MOR-Nav1.8 sensory neuron conditional KO mice. M3G displayed significant binding to MOR and G-protein activation when using membranes from MOR-transfected cells or WT mice but not from MOR KO mice. Collectively our results show that MOR is involved in hyperalgesia induced by chronic morphine and its metabolite M3G.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Valérie Utard
- Université de Strasbourg, Illkirch, France.,Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Illkirch, France
| | - David Reiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Jinane Mouheiche
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Hervé Maurin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Anne Robé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Emilie Audouard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - John N Wood
- Molecular Nociception group, Wolson Institute for Biomedical Research, University College London, WCIE 6BT, London, UK
| | - Yannick Goumon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Frédéric Simonin
- Université de Strasbourg, Illkirch, France.,Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Illkirch, France
| | - Claire Gaveriaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. .,Université de Strasbourg, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.
| |
Collapse
|
87
|
Structure and Function of Peptide-Binding G Protein-Coupled Receptors. J Mol Biol 2017; 429:2726-2745. [PMID: 28705763 DOI: 10.1016/j.jmb.2017.06.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and are important human drug targets. Of the 826 human GPCRs, 118 of them recognize endogenous peptide or protein ligands, and 30 of the 118 are targeted by approved drug molecules, including the very high-profile class B glucagon-like peptide 1 receptor. In this review, we analyze the 21 experimentally determined three-dimensional structures of the known peptide-binding GPCRs in relation to the endogenous peptides and drug molecules that modulate their cell signaling processes. Our integrated analyses reveal that half of the marketed drugs and most of the drugs in clinical trials that interact with peptide GPCRs are small molecules with a wide range of binding modes distinct from those of large peptide ligands. As we continue to collect additional data on these receptors from orthogonal approaches, including nuclear magnetic resonance and electron microscopy, we are beginning to understand how these receptors interact with their ligands at the molecular level and how improving the pharmacology of GPCR signal transduction requires us to study these receptors using multiple biophysical techniques.
Collapse
|
88
|
Lobingier BT, Hüttenhain R, Eichel K, Miller KB, Ting AY, von Zastrow M, Krogan NJ. An Approach to Spatiotemporally Resolve Protein Interaction Networks in Living Cells. Cell 2017; 169:350-360.e12. [PMID: 28388416 DOI: 10.1016/j.cell.2017.03.022] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/02/2017] [Accepted: 03/15/2017] [Indexed: 11/25/2022]
Abstract
Cells operate through protein interaction networks organized in space and time. Here, we describe an approach to resolve both dimensions simultaneously by using proximity labeling mediated by engineered ascorbic acid peroxidase (APEX). APEX has been used to capture entire organelle proteomes with high temporal resolution, but its breadth of labeling is generally thought to preclude the higher spatial resolution necessary to interrogate specific protein networks. We provide a solution to this problem by combining quantitative proteomics with a system of spatial references. As proof of principle, we apply this approach to interrogate proteins engaged by G-protein-coupled receptors as they dynamically signal and traffic in response to ligand-induced activation. The method resolves known binding partners, as well as previously unidentified network components. Validating its utility as a discovery pipeline, we establish that two of these proteins promote ubiquitin-linked receptor downregulation after prolonged activation.
Collapse
Affiliation(s)
- Braden T Lobingier
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, QBI, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kelsie Eichel
- Program in Biochemistry and Molecular Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Mark von Zastrow
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, QBI, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA.
| |
Collapse
|
89
|
Shiwarski DJ, Darr M, Telmer CA, Bruchez MP, Puthenveedu MA. PI3K class II α regulates δ-opioid receptor export from the trans-Golgi network. Mol Biol Cell 2017; 28:2202-2219. [PMID: 28566554 PMCID: PMC5531736 DOI: 10.1091/mbc.e17-01-0030] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/26/2017] [Accepted: 05/23/2017] [Indexed: 12/20/2022] Open
Abstract
The interplay between signaling and trafficking by G protein-coupled receptors (GPCRs) has focused mainly on endocytic trafficking. Whether and how surface delivery of newly synthesized GPCRs is regulated by extracellular signals is less understood. Here we define a signaling-regulated checkpoint at the trans-Golgi network (TGN) that controls the surface delivery of the delta opioid receptor (δR). In PC12 cells, inhibition of phosphoinositide-3 kinase (PI3K) activity blocked export of newly synthesized δR from the Golgi and delivery to the cell surface, similar to treatment with nerve growth factor (NGF). Depletion of class II phosphoinositide-3 kinase α (PI3K C2A), but not inhibition of class I PI3K, blocked δR export to comparable levels and attenuated δR-mediated cAMP inhibition. NGF treatment displaced PI3K C2A from the Golgi and optogenetic recruitment of the PI3K C2A kinase domain to the TGN-induced δR export downstream of NGF. Of importance, PI3K C2A expression promotes export of endogenous δR in primary trigeminal ganglion neurons. Taken together, our results identify PI3K C2A as being required and sufficient for δR export and surface delivery in neuronal cells and suggest that it could be a key modulator of a novel Golgi export checkpoint that coordinates GPCR delivery to the surface.
Collapse
Affiliation(s)
- Daniel J Shiwarski
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Marlena Darr
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Cheryl A Telmer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Marcel P Bruchez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Manojkumar A Puthenveedu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213 .,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
90
|
A PTEN-Regulated Checkpoint Controls Surface Delivery of δ Opioid Receptors. J Neurosci 2017; 37:3741-3752. [PMID: 28264976 DOI: 10.1523/jneurosci.2923-16.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/26/2017] [Accepted: 02/14/2017] [Indexed: 12/13/2022] Open
Abstract
The δ opioid receptor (δR) is a promising alternate target for pain management because δR agonists show decreased abuse potential compared with current opioid analgesics that target the μ opioid receptor. A critical limitation in developing δR as an analgesic target, however, is that δR agonists show relatively low efficacy in vivo, requiring the use of high doses that often cause adverse effects, such as convulsions. Here we tested whether intracellular retention of δR in sensory neurons contributes to this low δR agonist efficacy in vivo by limiting surface δR expression. Using direct visualization of δR trafficking and localization, we define a phosphatase and tensin homolog (PTEN)-regulated checkpoint that retains δR in the Golgi and decreases surface delivery in rat and mice sensory neurons. PTEN inhibition releases δR from this checkpoint and stimulates delivery of exogenous and endogenous δR to the neuronal surface both in vitro and in vivo PTEN inhibition in vivo increases the percentage of TG neurons expressing δR on the surface and allows efficient δR-mediated antihyperalgesia in mice. Together, we define a critical role for PTEN in regulating the surface delivery and bioavailability of the δR, explain the low efficacy of δR agonists in vivo, and provide evidence that active δR relocation is a viable strategy to increase δR antinociception.SIGNIFICANCE STATEMENT Opioid analgesics, such as morphine, which target the μ opioid receptor (μR), have been the mainstay of pain management, but their use is highly limited by adverse effects and their variable efficacy in chronic pain. Identifying alternate analgesic targets is therefore of great significance. Although the δ opioid receptor (δR) is an attractive option, a critical limiting factor in developing δR as a target has been the low efficacy of δR agonists. Why δR agonists show low efficacy is still under debate. This study provides mechanistic and functional data that intracellular localization of δR in neurons is a key factor that contributes to low agonist efficacy, and presents a proof of mechanism that relocating δR improves efficacy.
Collapse
|
91
|
Spahn V, Stein C. Targeting delta opioid receptors for pain treatment: drugs in phase I and II clinical development. Expert Opin Investig Drugs 2017; 26:155-160. [PMID: 28001096 DOI: 10.1080/13543784.2017.1275562] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Opioids are widely used to treat severe pain. Most clinically used opioids activate µ-opioid receptors (MOR). Their ligands induce potent analgesia but also adverse effects. The δ-opioid receptor (DOR) is another member of the opioid receptor family that has been under intense investigation with the aim to avoid MOR-induced side effects. Areas covered: This article reviews DOR ligands which appeared to be promising after preclinical evaluation. A literature search using Pubmed, Cochrane library, ClinicalTrials.gov, EudraCT, AdisInsight database and EBSCO Online Library was conducted. Out of numerous newly synthesized molecules, only few candidates entered phase I and/or II clinical investigation. The publicly accessible results are presented here. Expert opinion: Many compounds showed potent DOR-specific pain inhibition in preclinical studies. ADL5859 and ADL5747 entered clinical trials and successfully passed phase I. However, in phase II studies the primary endpoint (pain reduction) was not met and further investigation was terminated. A third compound, NP2, is in phase II clinical evaluation and results are pending. These findings suggest a potential of DOR ligands according to preclinical studies. Further clinical research and secondary analysis of unpublished data is needed to identify molecules which are useful in humans.
Collapse
Affiliation(s)
- Viola Spahn
- a Klinik für Anästhesiologie und operative Intensivmedizin , Charité Campus Benjamin Franklin, Freie Universität Berlin , Berlin , Germany
| | - Christoph Stein
- a Klinik für Anästhesiologie und operative Intensivmedizin , Charité Campus Benjamin Franklin, Freie Universität Berlin , Berlin , Germany.,b Multifunctional Biomaterials for Medicine , Helmholtz Virtual Institute , Teltow , Germany
| |
Collapse
|
92
|
François A, Scherrer G. Delta Opioid Receptor Expression and Function in Primary Afferent Somatosensory Neurons. Handb Exp Pharmacol 2017; 247:87-114. [PMID: 28993838 DOI: 10.1007/164_2017_58] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The functional diversity of primary afferent neurons of the dorsal root ganglia (DRG) generates a variety of qualitatively and quantitatively distinct somatosensory experiences, from shooting pain to pleasant touch. In recent years, the identification of dozens of genetic markers specifically expressed by subpopulations of DRG neurons has dramatically improved our understanding of this diversity and provided the tools to manipulate their activity and uncover their molecular identity and function. Opioid receptors have long been known to be expressed by discrete populations of DRG neurons, in which they regulate cell excitability and neurotransmitter release. We review recent insights into the identity of the DRG neurons that express the delta opioid receptor (DOR) and the ion channel mechanisms that DOR engages in these cells to regulate sensory input. We highlight recent findings derived from DORGFP reporter mice and from in situ hybridization and RNA sequencing studies in wild-type mice that revealed DOR presence in cutaneous mechanosensory afferents eliciting touch and implicated in tactile allodynia. Mechanistically, we describe how DOR modulates opening of voltage-gated calcium channels (VGCCs) to control glutamatergic neurotransmission between somatosensory neurons and postsynaptic neurons in the spinal cord dorsal horn. We additionally discuss other potential signaling mechanisms, including those involving potassium channels, which DOR may engage to fine tune somatosensation. We conclude by discussing how this knowledge may explain the analgesic properties of DOR agonists against mechanical pain and uncovers an unanticipated specialized function for DOR in cutaneous mechanosensation.
Collapse
Affiliation(s)
- Amaury François
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA. .,Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA. .,Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
93
|
St-Louis É, Degrandmaison J, Grastilleur S, Génier S, Blais V, Lavoie C, Parent JL, Gendron L. Involvement of the coatomer protein complex I in the intracellular traffic of the delta opioid receptor. Mol Cell Neurosci 2016; 79:53-63. [PMID: 28041939 DOI: 10.1016/j.mcn.2016.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/01/2016] [Accepted: 12/26/2016] [Indexed: 11/16/2022] Open
Abstract
The delta opioid receptor (DOPr) is known to be mainly expressed in intracellular compartments. It remains unknown why DOPr is barely exported to the cell surface, but it seems that a substantial proportion of the immature receptor is trapped within the endoplasmic reticulum (ER) and the Golgi network. In the present study, we performed LC-MS/MS analysis to identify putative protein partners involved in the retention of DOPr. Analysis of the proteins co-immunoprecipitating with Flag-DOPr in transfected HEK293 cells revealed the presence of numerous subunits of the coatomer protein complex I (COPI), a vesicle-coating complex involved in recycling resident proteins from the Golgi back to the ER. Further analysis of the amino acid sequence of DOPr identified multiple consensus di-lysine and di-arginine motifs within the intracellular segments of DOPr. Using cell-surface ELISA and GST pulldown assays, we showed that DOPr interacts with COPI through its intracellular loops 2 and 3 (ICL2 and ICL3, respectively) and that the mutation of the K164AK166 (ICL2) or K250EK252 (ICL3) putative COPI binding sites increased the cell-surface expression of DOPr in transfected cells. Altogether, our results indicate that COPI is a binding partner of DOPr and provide a putative mechanism to explain why DOPr is highly retained inside the cells.
Collapse
Affiliation(s)
- Étienne St-Louis
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Jade Degrandmaison
- Département de médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Sébastien Grastilleur
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Samuel Génier
- Département de médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Véronique Blais
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Christine Lavoie
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Jean-Luc Parent
- Département de médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du CHUS, Sherbrooke, Québec, Canada.
| | - Louis Gendron
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada; Département d'anesthésiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du CHUS, Sherbrooke, Québec, Canada; Quebec Pain Research Network, Québec, Canada.
| |
Collapse
|
94
|
Cahill CM, Walwyn W, Taylor AMW, Pradhan AAA, Evans CJ. Allostatic Mechanisms of Opioid Tolerance Beyond Desensitization and Downregulation. Trends Pharmacol Sci 2016; 37:963-976. [PMID: 27670390 DOI: 10.1016/j.tips.2016.08.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
Abstract
Mechanisms of opioid tolerance have focused on adaptive modifications within cells containing opioid receptors, defined here as cellular allostasis, emphasizing regulation of the opioid receptor signalosome. We review additional regulatory and opponent processes involved in behavioral tolerance, and include mechanistic differences both between agonists (agonist bias), and between μ- and δ-opioid receptors. In a process we will refer to as pass-forward allostasis, cells modified directly by opioid drugs impute allostatic changes to downstream circuitry. Because of the broad distribution of opioid systems, every brain cell may be touched by pass-forward allostasis in the opioid-dependent/tolerant state. We will implicate neurons and microglia as interactive contributors to the cumulative allostatic processes creating analgesic and hedonic tolerance to opioid drugs.
Collapse
Affiliation(s)
- Catherine M Cahill
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, 837 Health Sciences Road, Irvine, CA 92697, USA
| | - Wendy Walwyn
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Anna M W Taylor
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Amynah A A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612, USA
| | - Christopher J Evans
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|