51
|
Ulyantsev VI, Kazakov SV, Dubinkina VB, Tyakht AV, Alexeev DG. MetaFast: fast reference-free graph-based comparison of shotgun metagenomic data. Bioinformatics 2016; 32:2760-7. [PMID: 27259541 DOI: 10.1093/bioinformatics/btw312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/16/2016] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION High-throughput metagenomic sequencing has revolutionized our view on the structure and metabolic potential of microbial communities. However, analysis of metagenomic composition is often complicated by the high complexity of the community and the lack of related reference genomic sequences. As a start point for comparative metagenomic analysis, the researchers require efficient means for assessing pairwise similarity of the metagenomes (beta-diversity). A number of approaches were used to address this task, however, most of them have inherent disadvantages that limit their scope of applicability. For instance, the reference-based methods poorly perform on metagenomes from previously unstudied niches, while composition-based methods appear to be too abstract for straightforward interpretation and do not allow to identify the differentially abundant features. RESULTS We developed MetaFast, an approach that allows to represent a shotgun metagenome from an arbitrary environment as a modified de Bruijn graph consisting of simplified components. For multiple metagenomes, the resulting representation is used to obtain a pairwise similarity matrix. The dimensional structure of the metagenomic components preserved in our algorithm reflects the inherent subspecies-level diversity of microbiota. The method is computationally efficient and especially promising for an analysis of metagenomes from novel environmental niches. AVAILABILITY AND IMPLEMENTATION Source code and binaries are freely available for download at https://github.com/ctlab/metafast The code is written in Java and is platform independent (tested on Linux and Windows x86_64). CONTACT ulyantsev@rain.ifmo.ru SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Veronika B Dubinkina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russian Federation Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russian Federation
| | - Alexander V Tyakht
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russian Federation Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russian Federation
| | - Dmitry G Alexeev
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russian Federation
| |
Collapse
|
52
|
Aguirre de Cárcer D, López-Bueno A, Alonso-Lobo JM, Quesada A, Alcamí A. Metagenomic analysis of lacustrine viral diversity along a latitudinal transect of the Antarctic Peninsula. FEMS Microbiol Ecol 2016; 92:fiw074. [PMID: 27059864 DOI: 10.1093/femsec/fiw074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 01/21/2023] Open
Abstract
Environmental viruses constitute the most abundant biological entities on earth, and harbor an enormous genetic diversity. While their strong influence on the ecosystem is widely acknowledged, current knowledge about their diversity and distribution remains limited. Here we present the metagenomic study of viral communities from freshwater bodies located along a transect of the Antarctic Peninsula. These ecosystems were chosen on the basis of environmental and biogeographical variation. The results obtained indicate that the virus assemblages were diverse, and that the larger fraction represented viruses with no close relatives in the databases. Comparisons to existing metaviromes showed that the communities studied were dissimilar to other freshwater viromes including those from the Arctic. Finally, we observed no indication of there being a reduction in either viral richness or diversity estimates with increasing latitude along the studied transect, further adding to the controversy regarding the possible existence of latitudinal gradients of diversity in the microbial world.
Collapse
Affiliation(s)
- Daniel Aguirre de Cárcer
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alberto López-Bueno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan M Alonso-Lobo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
53
|
Kim Y, Aw TG, Rose JB. Transporting Ocean Viromes: Invasion of the Aquatic Biosphere. PLoS One 2016; 11:e0152671. [PMID: 27055282 PMCID: PMC4824483 DOI: 10.1371/journal.pone.0152671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/17/2016] [Indexed: 11/18/2022] Open
Abstract
Studies of marine viromes (viral metagenomes) have revealed that DNA viruses are highly diverse and exhibit biogeographic patterns. However, little is known about the diversity of RNA viruses, which are mostly composed of eukaryotic viruses, and their biogeographic patterns in the oceans. A growth in global commerce and maritime traffic may accelerate spread of diverse and non-cosmopolitan DNA viruses and potentially RNA viruses from one part of the world to another. Here, we demonstrated through metagenomic analyses that failure to comply with mid-ocean ballast water exchange regulation could result in movement of viromes including both DNA viruses and RNA viruses (including potential viral pathogens) unique to geographic and environmental niches. Furthermore, our results showed that virus richness (known and unknown viruses) in ballast water is associated with distance between ballast water exchange location and its nearest shoreline as well as length of water storage time in ballast tanks (voyage duration). However, richness of only known viruses is governed by local environmental conditions and different viral groups have different responses to environmental variation. Overall, these results identified ballast water as a factor contributing to ocean virome transport and potentially increased exposure of the aquatic bioshpere to viral invasion.
Collapse
Affiliation(s)
- Yiseul Kim
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - Tiong Gim Aw
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Joan B. Rose
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
54
|
Daniel ADC, Pedrós-Alió C, Pearce DA, Alcamí A. Composition and Interactions among Bacterial, Microeukaryotic, and T4-like Viral Assemblages in Lakes from Both Polar Zones. Front Microbiol 2016; 7:337. [PMID: 27047459 PMCID: PMC4796948 DOI: 10.3389/fmicb.2016.00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/03/2016] [Indexed: 02/01/2023] Open
Abstract
In this study we assess global biogeography and correlation patterns among three components of microbial life: bacteria, microeukaryotes, and T4-like myoviruses. In addition to environmental and biogeographical considerations, we have focused our study on samples from high-latitude pristine lakes from both poles, since these simple island-like ecosystems represent ideal ecological models to probe the relationships among microbial components and with the environment. Bacterial assemblages were dominated by members of the same groups found to dominate freshwater ecosystems elsewhere, and microeukaryotic assemblages were dominated by photosynthetic microalgae. Despite inter-lake variations in community composition, the overall percentages of OTUs shared among sites was remarkable, indicating that many microeukaryotic, bacterial, and viral OTUs are globally-distributed. We observed an intriguing negative correlation between bacterial and microeukaryotic diversity values. Notably, our analyses show significant global correlations between bacterial and microeukaryotic community structures, and between the phylogenetic compositions of bacterial and T4-like virus assemblages. Overall, environmental filtering emerged as the main factor driving community structures.
Collapse
Affiliation(s)
- Aguirre de Cárcer Daniel
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid Madrid, Spain
| | | | - David A Pearce
- British Antarctic Survey, Natural Environment Research CouncilCambridge, UK; Faculty of Health and Life Sciences, University of NorthumbriaNewcastle Upon Tyne, UK; University Center in SvalbardLonyearbyen, Norway
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
55
|
Millard AD, Pearce D, Zwirglmaier K. Biogeography of bacteriophages at four hydrothermal vent sites in the Antarctic based on g23 sequence diversity. FEMS Microbiol Lett 2016; 363:fnw043. [PMID: 26903011 DOI: 10.1093/femsle/fnw043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 11/14/2022] Open
Abstract
In this study, which was carried out within the ChEsSO consortium project (Chemosynthetically driven ecosystems south of the Polar Front), we sampled two hydrothermal vent sites on the East Scotia Ridge, Scotia Sea, one in the Kemp Caldera, South Sandwich Arc and one in the Bransfield Strait, north-west of the Antarctic Peninsula, which exhibit strong differences in their chemical characteristics. We compared a subset of their bacteriophage population by Sanger- and 454-sequencing of g23, which codes for the major capsid protein of T4likeviruses. We found that the sites differ vastly in their bacteriophage diversity, which reflects the differences in the chemical conditions and therefore putatively the differences in microbial hosts living at these sites. Comparing phage diversity in the vent samples to other aquatic samples, the vent samples formed a distinct separate cluster, which also included the non-vent control samples that were taken several hundred meters above the vent chimneys. This indicates that the influence of the vents on the microbial population and therefore also the bacteriophage population extends much further than anticipated.
Collapse
Affiliation(s)
- Andrew D Millard
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - David Pearce
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK Department of Applied Sciences, Northumbria University, Ellison Building, Newcastle-upon-Tyne, NE1 8ST, UK The University Centre in Svalbard (UNIS), P.O. Box 156, N-9171, Longyearbyen, Svalbard, Norway
| | | |
Collapse
|
56
|
Cai L, Zhang R, He Y, Feng X, Jiao N. Metagenomic Analysis of Virioplankton of the Subtropical Jiulong River Estuary, China. Viruses 2016; 8:v8020035. [PMID: 26848678 PMCID: PMC4776190 DOI: 10.3390/v8020035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 11/24/2022] Open
Abstract
Viruses are the most abundant biological entities in the oceans, and encompass a significant reservoir of genetic diversity. However, little is known about their biodiversity in estuary environments, which represent a highly dynamic and potentially more diverse habitat. Here, we report a metagenomic analysis of the dsDNA viral community from the Jiulong River Estuary (JRE), China, and provide a comparative analysis with other closely related environments. The results showed that the majority of JRE virome did not show any significant similarity to the database. For the major viral group (Caudovirales) detected in the sample, Podoviridae (44.88%) were the most abundant family, followed by Siphoviridae (32.98%) and Myoviridae (17.32%). The two most abundant viruses identified in the virome were phages HTVC010P and HMO-2011, which infect bacteria belonging to marine SAR11 and SAR116 clades, respectively. Two contigs larger than 20 kb, which show similar overall genome architectures to Celeribacter phage P12053L and Thalosomonas phage BA3, respectively, were generated during assembly. Comparative analysis showed that the JRE virome was more similar to marine viromes than to freshwater viromes, and shared a relative coarse-grain genetic overlap (averaging 14.14% ± 1.68%) with other coastal viromes. Our study indicated that the diversity and community structure of the virioplankton found in JRE were mainly affected by marine waters, with less influence from freshwater discharge.
Collapse
Affiliation(s)
- Lanlan Cai
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361005, China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361005, China.
| | - Ying He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoyuan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361005, China.
| |
Collapse
|
57
|
Cavicchioli R, Erdmann S. The discovery of Antarctic RNA viruses: a new game changer. Mol Ecol 2016; 24:4809-11. [PMID: 26417900 DOI: 10.1111/mec.13387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 11/30/2022]
Abstract
Antarctic ecosystems are dominated by micro-organisms, and viruses play particularly important roles in the food webs. Since the first report in 2009 (López-Bueno et al. ), 'omic'-based studies have greatly enlightened our understanding of Antarctic aquatic microbial diversity and ecosystem function (Wilkins et al. ; Cavicchioli ). This has included the discovery of many new eukaryotic viruses (López-Bueno et al. ), virophage predators of algal viruses (Yau et al. ), bacteria with resistance to phage (Lauro et al. ) and mechanisms of haloarchaeal evasion, defence and adaptation to viruses (Tschitschko et al. ). In this issue of Molecular Ecology, López-Bueno et al. () report the first discovery of RNA viruses from an Antarctic aquatic environment. High sequence coverage enabled genome variation to be assessed for four positive-sense single-stranded RNA viruses from the order Picornavirales. By examining the populations present in the water column and in the lake's catchment area, populations of 'quasispecies' were able to be linked to local environmental factors. In view of the importance of viruses in Antarctic ecosystems but lack of data describing them, this study represents a significant advance in the field.
Collapse
Affiliation(s)
- Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Susanne Erdmann
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
58
|
Affiliation(s)
- Enrique Villar
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
59
|
|