51
|
Zhang Y, Obuchi H, Toyota T. A Practical Guide to Preparation and Applications of Giant Unilamellar Vesicles Formed via Centrifugation of Water-in-Oil Emulsion Droplets. MEMBRANES 2023; 13:440. [PMID: 37103867 PMCID: PMC10144487 DOI: 10.3390/membranes13040440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Giant vesicles (GVs), which are closed lipid bilayer membranes with a diameter of more than 1 μm, have attracted attention not only as model cell membranes but also for the construction of artificial cells. For encapsulating water-soluble materials and/or water-dispersible particles or functionalizing membrane proteins and/or other synthesized amphiphiles, giant unilamellar vesicles (GUVs) have been applied in various fields, such as supramolecular chemistry, soft matter physics, life sciences, and bioengineering. In this review, we focus on a preparation technique for GUVs that encapsulate water-soluble materials and/or water-dispersible particles. It is based on the centrifugation of a water-in-oil emulsion layered on water and does not require special equipment other than a centrifuge, which makes it the first choice for laboratory use. Furthermore, we review recent studies on GUV-based artificial cells prepared using this technique and discuss their future applications.
Collapse
Affiliation(s)
- Yiting Zhang
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Haruto Obuchi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
52
|
Kumar S, Karmacharya M, Cho YK. Bridging the Gap between Nonliving Matter and Cellular Life. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202962. [PMID: 35988151 DOI: 10.1002/smll.202202962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Indexed: 06/15/2023]
Abstract
A cell, the fundamental unit of life, contains the requisite blueprint information necessary to survive and to build tissues, organs, and systems, eventually forming a fully functional living creature. A slight structural alteration can result in data misprinting, throwing the entire life process off balance. Advances in synthetic biology and cell engineering enable the predictable redesign of biological systems to perform novel functions. Individual functions and fundamental processes at the core of the biology of cells can be investigated by employing a synthetically constrained micro or nanoreactor. However, constructing a life-like structure from nonliving building blocks remains a considerable challenge. Chemical compartments, cascade signaling, energy generation, growth, replication, and adaptation within micro or nanoreactors must be comparable with their biological counterparts. Although these reactors currently lack the power and behavioral sophistication of their biological equivalents, their interface with biological systems enables the development of hybrid solutions for real-world applications, such as therapeutic agents, biosensors, innovative materials, and biochemical microreactors. This review discusses the latest advances in cell membrane-engineered micro or nanoreactors, as well as the limitations associated with high-throughput preparation methods and biological applications for the real-time modulation of complex pathological states.
Collapse
Affiliation(s)
- Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mamata Karmacharya
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
53
|
Heidari A, Sentürk OI, Yang S, Joesaar A, Gobbo P, Mann S, de Greef TFA, Wegner SV. Orthogonal Light-Dependent Membrane Adhesion Induces Social Self-Sorting and Member-Specific DNA Communication in Synthetic Cell Communities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206474. [PMID: 36599623 DOI: 10.1002/smll.202206474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Developing orthogonal chemical communication pathways in diverse synthetic cell communities is a considerable challenge due to the increased crosstalk and interference associated with large numbers of different types of sender-receiver pairs. Herein, the authors control which sender-receiver pairs communicate in a three-membered community of synthetic cells through red and blue light illumination. Semipermeable protein-polymer-based synthetic cells (proteinosomes) with complementary membrane-attached protein adhesion communicate through single-stranded DNA oligomers and synergistically process biochemical information within a community consisting of one sender and two different receiver populations. Different pairs of red and blue light-responsive protein-protein interactions act as membrane adhesion mediators between the sender and receivers such that they self-assemble and socially self-sort into different multicellular structures under red and blue light. Consequently, distinct sender-receiver pairs come into the signaling range depending on the light illumination and are able to communicate specifically without activation of the other receiver population. Overall, this work shows how photoswitchable membrane adhesion gives rise to different self-sorting protocell patterns that mediate member-specific DNA-based communication in ternary populations of synthetic cells and provides a step towards the design of orthogonal chemical communication networks in diverse communities of synthetic cells.
Collapse
Affiliation(s)
- Ali Heidari
- Institute of Physiological Chemistry and Pathobiochemistry University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Oya I Sentürk
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Shuo Yang
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Alex Joesaar
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Pierangelo Gobbo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, Max Planck Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Tom F A de Greef
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| |
Collapse
|
54
|
Cash B, Gaut NJ, Deich C, Johnson LL, Engelhart AE, Adamala KP. Parasites, Infections, and Inoculation in Synthetic Minimal Cells. ACS OMEGA 2023; 8:7045-7056. [PMID: 36844541 PMCID: PMC9948217 DOI: 10.1021/acsomega.2c07911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Synthetic minimal cells provide a controllable and engineerable model for biological processes. While much simpler than any live natural cell, synthetic cells offer a chassis for investigating the chemical foundations of key biological processes. Herein, we show a synthetic cell system with host cells, interacting with parasites and undergoing infections of varying severity. We demonstrate how the host can be engineered to resist infection, we investigate the metabolic cost of carrying resistance, and we show an inoculation that immunizes the host against pathogens. Our work expands the synthetic cell engineering toolbox by demonstrating host-pathogen interactions and mechanisms for acquiring immunity. This brings synthetic cell systems one step closer to providing a comprehensive model of complex, natural life.
Collapse
|
55
|
Sihorwala AZ, Lin AJ, Stachowiak JC, Belardi B. Light-Activated Assembly of Connexon Nanopores in Synthetic Cells. J Am Chem Soc 2023; 145:3561-3568. [PMID: 36724060 PMCID: PMC10188233 DOI: 10.1021/jacs.2c12491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During developmental processes and wound healing, activation of living cells occurs with spatiotemporal precision and leads to rapid release of soluble molecular signals, allowing communication and coordination between neighbors. Nonliving systems capable of similar responsive release hold great promise for information transfer in materials and site-specific drug delivery. One nonliving system that offers a tunable platform for programming release is synthetic cells. Encased in a lipid bilayer structure, synthetic cells can be outfitted with molecular conduits that span the bilayer and lead to material exchange. While previous work expressing membrane pore proteins in synthetic cells demonstrated content exchange, user-defined control over release has remained elusive. In mammalian cells, connexon nanopore structures drive content release and have garnered significant interest since they can direct material exchange through intercellular contacts. Here, we focus on connexon nanopores and present activated release of material from synthetic cells in a light-sensitive fashion. To do this, we re-engineer connexon nanopores to assemble after post-translational processing by a protease. By encapsulating proteases in light-sensitive liposomes, we show that assembly of nanopores can be triggered by illumination, resulting in rapid release of molecules encapsulated within synthetic cells. Controlling connexon nanopore activity provides an opportunity for initiating communication with extracellular signals and for transferring molecular agents to the cytoplasm of living cells in a rapid, light-guided manner.
Collapse
Affiliation(s)
- Ahmed Z Sihorwala
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander J Lin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
56
|
Staufer O, Gantner G, Platzman I, Tanner K, Berger I, Spatz JP. Bottom-up assembly of viral replication cycles. Nat Commun 2022; 13:6530. [PMID: 36323671 PMCID: PMC9628313 DOI: 10.1038/s41467-022-33661-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Bottom-up synthetic biology provides new means to understand living matter by constructing minimal life-like systems. This principle can also be applied to study infectious diseases. Here we summarize approaches and ethical considerations for the bottom-up assembly of viral replication cycles.
Collapse
Affiliation(s)
- Oskar Staufer
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK.
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, OX3 7FY, UK.
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany.
| | - Gösta Gantner
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
- Theological Seminary, Heidelberg University, Kisselgasse 1, 69117, Heidelberg, Germany
| | - Ilia Platzman
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), University of Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Klaus Tanner
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
- Theological Seminary, Heidelberg University, Kisselgasse 1, 69117, Heidelberg, Germany
| | - Imre Berger
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - Joachim P Spatz
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), University of Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
57
|
Gispert I, Hindley JW, Pilkington CP, Shree H, Barter LMC, Ces O, Elani Y. Stimuli-responsive vesicles as distributed artificial organelles for bacterial activation. Proc Natl Acad Sci U S A 2022; 119:e2206563119. [PMID: 36223394 PMCID: PMC9586261 DOI: 10.1073/pnas.2206563119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Intercellular communication is a hallmark of living systems. As such, engineering artificial cells that possess this behavior has been at the heart of activities in bottom-up synthetic biology. Communication between artificial and living cells has potential to confer novel capabilities to living organisms that could be exploited in biomedicine and biotechnology. However, most current approaches rely on the exchange of chemical signals that cannot be externally controlled. Here, we report two types of remote-controlled vesicle-based artificial organelles that translate physical inputs into chemical messages that lead to bacterial activation. Upon light or temperature stimulation, artificial cell membranes are activated, releasing signaling molecules that induce protein expression in Escherichia coli. This distributed approach differs from established methods for engineering stimuli-responsive bacteria. Here, artificial cells (as opposed to bacterial cells themselves) are the design unit. Having stimuli-responsive elements compartmentalized in artificial cells has potential applications in therapeutics, tissue engineering, and bioremediation. It will underpin the design of hybrid living/nonliving systems where temporal control over population interactions can be exerted.
Collapse
Affiliation(s)
- Ignacio Gispert
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - James W. Hindley
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Colin P. Pilkington
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Hansa Shree
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Laura M. C. Barter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Oscar Ces
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| |
Collapse
|
58
|
Chen G, Levin R, Landau S, Kaduri M, Adir O, Ianovici I, Krinsky N, Doppelt-Flikshtain O, Shklover J, Shainsky-Roitman J, Levenberg S, Schroeder A. Implanted synthetic cells trigger tissue angiogenesis through de novo production of recombinant growth factors. Proc Natl Acad Sci U S A 2022; 119:e2207525119. [PMID: 36095208 PMCID: PMC9499519 DOI: 10.1073/pnas.2207525119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Progress in bottom-up synthetic biology has stimulated the development of synthetic cells (SCs), autonomous protein-manufacturing particles, as dynamic biomimetics for replacing diseased natural cells and addressing medical needs. Here, we report that SCs genetically encoded to produce proangiogenic factors triggered the physiological process of neovascularization in mice. The SCs were constructed of giant lipid vesicles and were optimized to facilitate enhanced protein production. When introduced with the appropriate genetic code, the SCs synthesized a recombinant human basic fibroblast growth factor (bFGF), reaching expression levels of up to 9⋅106 protein copies per SC. In culture, the SCs induced endothelial cell proliferation, migration, tube formation, and angiogenesis-related intracellular signaling, confirming their proangiogenic activity. Integrating the SCs with bioengineered constructs bearing endothelial cells promoted the remodeling of mature vascular networks, supported by a collagen-IV basement membrane-like matrix. In vivo, prolonged local administration of the SCs in mice triggered the infiltration of blood vessels into implanted Matrigel plugs without recorded systemic immunogenicity. These findings emphasize the potential of SCs as therapeutic platforms for activating physiological processes by autonomously producing biological drugs inside the body.
Collapse
Affiliation(s)
- Gal Chen
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
- The Interdisciplinary Program for Biotechnology, Technion, Haifa 32000, Israel
| | - Rotem Levin
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
| | - Shira Landau
- Department of Biomedical Engineering, Technion, Haifa 32000, Israel
| | - Maya Kaduri
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
| | - Omer Adir
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion, Haifa 32000, Israel
| | - Iris Ianovici
- Department of Biomedical Engineering, Technion, Haifa 32000, Israel
| | - Nitzan Krinsky
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
| | - Ofri Doppelt-Flikshtain
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Jeny Shklover
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
| | | | - Avi Schroeder
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa 32000, Israel
| |
Collapse
|
59
|
Wang D, Yang Y, Chen F, Lyu Y, Tan W. Network topology-directed design of molecular CPU for cell-like dynamic information processing. SCIENCE ADVANCES 2022; 8:eabq0917. [PMID: 35947658 PMCID: PMC9365278 DOI: 10.1126/sciadv.abq0917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Natural cells (NCs) can automatically and continuously respond to fluctuant external information and distinguish meaningful stimuli from weak noise depending on their powerful genetic and protein networks. We herein report a network topology-directed design of dynamic molecular processing system (DMPS) as a molecular central processing unit that powers an artificial cell (AC) able to process fluctuant information in its immediate environment similar to NCs. By constructing a mixed cell community, ACs and NCs have synchronous response to fluctuant extracellular stimuli under physiological condition and in a blood vessel-mimic circulation system. We also show that fluctuant bioinformation released by NCs can be received and processed by ACs. The molecular design of DMPS-powered AC is expected to allow a profound understanding of biological systems, advance the construction of intelligent molecular systems, and promote more elegant bioengineering applications.
Collapse
Affiliation(s)
- Dan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yani Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong 518000, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
60
|
Karoui H, Patwal PS, Pavan Kumar BVVS, Martin N. Chemical Communication in Artificial Cells: Basic Concepts, Design and Challenges. Front Mol Biosci 2022; 9:880525. [PMID: 35720123 PMCID: PMC9199989 DOI: 10.3389/fmolb.2022.880525] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decade, the focus of bottom-up synthetic biology has shifted from the design of complex artificial cell architectures to the design of interactions between artificial cells mediated by physical and chemical cues. Engineering communication between artificial cells is crucial for the realization of coordinated dynamic behaviours in artificial cell populations, which would have implications for biotechnology, advanced colloidal materials and regenerative medicine. In this review, we focus our discussion on molecular communication between artificial cells. We cover basic concepts such as the importance of compartmentalization, the metabolic machinery driving signaling across cell boundaries and the different modes of communication used. The various studies in artificial cell signaling have been classified based on the distance between sender and receiver cells, just like in biology into autocrine, juxtacrine, paracrine and endocrine signaling. Emerging tools available for the design of dynamic and adaptive signaling are highlighted and some recent advances of signaling-enabled collective behaviours, such as quorum sensing, travelling pulses and predator-prey behaviour, are also discussed.
Collapse
Affiliation(s)
- Hedi Karoui
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, France
| | - Pankaj Singh Patwal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
| | | | - Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, France
| |
Collapse
|
61
|
Di Iorio D, Wegner SV. Towards applications of synthetic cells in nanotechnology. Curr Opin Chem Biol 2022; 68:102145. [PMID: 35461027 DOI: 10.1016/j.cbpa.2022.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
Synthetic cells, which are assembled anew from well-defined molecular parts, open-up new possibilities for nanotechnological applications due to their reduced complexity and high functionality. In this review, we discuss how synthetic cells are being implemented in different fields ranging from biomedicine to material science. On one hand, synthetic cells can serve as microreactors that house metabolic networks and as therapeutic carriers that directly communicate with living cells. On the other hand, synthetic cells can become active components in a new-generation of materials that process inputs and result in autonomous and adaptive behavior. These early examples highlight the potential impact that synthetic cells will have in future applications.
Collapse
Affiliation(s)
- Daniele Di Iorio
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Germany.
| |
Collapse
|
62
|
Mashima T, van Stevendaal MHME, Cornelissens FRA, Mason AF, Rosier BJHM, Altenburg WJ, Oohora K, Hirayama S, Hayashi T, van Hest JCM, Brunsveld L. DNA-Mediated Protein Shuttling between Coacervate-Based Artificial Cells. Angew Chem Int Ed Engl 2022; 61:e202115041. [PMID: 35133040 PMCID: PMC9303767 DOI: 10.1002/anie.202115041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 11/30/2022]
Abstract
The regulation of protein uptake and secretion is crucial for (inter)cellular signaling. Mimicking these molecular events is essential when engineering synthetic cellular systems. A first step towards achieving this goal is obtaining control over the uptake and release of proteins from synthetic cells in response to an external trigger. Herein, we have developed an artificial cell that sequesters and releases proteinaceous cargo upon addition of a coded chemical signal: single‐stranded DNA oligos (ssDNA) were employed to independently control the localization of a set of three different ssDNA‐modified proteins. The molecular coded signal allows for multiple iterations of triggered uptake and release, regulation of the amount and rate of protein release and the sequential release of the three different proteins. This signaling concept was furthermore used to directionally transfer a protein between two artificial cell populations, providing novel directions for engineering lifelike communication pathways inside higher order (proto)cellular structures.
Collapse
Affiliation(s)
- Tsuyoshi Mashima
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands.,Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Marleen H M E van Stevendaal
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Femke R A Cornelissens
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Alexander F Mason
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Bas J H M Rosier
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Wiggert J Altenburg
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Shota Hirayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Jan C M van Hest
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| |
Collapse
|
63
|
Guindani C, da Silva LC, Cao S, Ivanov T, Landfester K. Synthetic Cells: From Simple Bio-Inspired Modules to Sophisticated Integrated Systems. Angew Chem Int Ed Engl 2022; 61:e202110855. [PMID: 34856047 PMCID: PMC9314110 DOI: 10.1002/anie.202110855] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/08/2021] [Indexed: 12/01/2022]
Abstract
Bottom-up synthetic biology is the science of building systems that mimic the structure and function of living cells from scratch. To do this, researchers combine tools from chemistry, materials science, and biochemistry to develop functional and structural building blocks to construct synthetic cell-like systems. The many strategies and materials that have been developed in recent decades have enabled scientists to engineer synthetic cells and organelles that mimic the essential functions and behaviors of natural cells. Examples include synthetic cells that can synthesize their own ATP using light, maintain metabolic reactions through enzymatic networks, perform gene replication, and even grow and divide. In this Review, we discuss recent developments in the design and construction of synthetic cells and organelles using the bottom-up approach. Our goal is to present representative synthetic cells of increasing complexity as well as strategies for solving distinct challenges in bottom-up synthetic biology.
Collapse
Affiliation(s)
- Camila Guindani
- Chemical Engineering ProgramCOPPEFederal University of Rio de Janeiro, PEQ/COPPE/UFRJ, CEP 21941-972Rio de JaneiroRJBrazil
| | - Lucas Caire da Silva
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shoupeng Cao
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Tsvetomir Ivanov
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Katharina Landfester
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
64
|
Shimane Y, Kuruma Y. Rapid and Facile Preparation of Giant Vesicles by the Droplet Transfer Method for Artificial Cell Construction. Front Bioeng Biotechnol 2022; 10:873854. [PMID: 35464723 PMCID: PMC9021372 DOI: 10.3389/fbioe.2022.873854] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Giant vesicles have been widely used for the bottom-up construction of artificial (or synthetic) cells and the physicochemical analysis of lipid membranes. Although methods for the formation of giant vesicles and the encapsulation of molecules within them have been established, a standardized protocol has not been shared among researchers including non-experts. Here we proposed a rapid and facile protocol that allows the formation of giant vesicles within 30 min. The quality of the giant vesicles encapsulating a cell-free protein expression system was comparable to that of the ones formed using a conventional method, in terms of the synthesis of both soluble and membrane proteins. We also performed protein synthesis in artificial cells using a lyophilized cell-free mixture and showed an equivalent level of protein synthesis. Our method could become a standard method for giant vesicle formation suited for artificial cell research.
Collapse
Affiliation(s)
- Yasuhiro Shimane
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Research Institute of Industrial Technology, Toyo University, Saitama, Japan
| | - Yutetsu Kuruma
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- *Correspondence: Yutetsu Kuruma,
| |
Collapse
|
65
|
Bailoni E, Poolman B. ATP Recycling Fuels Sustainable Glycerol 3-Phosphate Formation in Synthetic Cells Fed by Dynamic Dialysis. ACS Synth Biol 2022; 11:2348-2360. [PMID: 35377147 PMCID: PMC9295154 DOI: 10.1021/acssynbio.2c00075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The bottom-up construction
of an autonomously growing, self-reproducing
cell represents a great challenge for synthetic biology. Synthetic
cellular systems are envisioned as out-of-equilibrium enzymatic networks
encompassed by a selectively open phospholipid bilayer allowing for
protein-mediated communication; internal metabolite recycling is another
key aspect of a sustainable metabolism. Importantly, gaining tight
control over the external medium is essential to avoid thermodynamic
equilibrium due to nutrient depletion or waste buildup in a closed
compartment (e.g., a test tube). Implementing a sustainable
strategy for phospholipid biosynthesis is key to expanding the cellular
boundaries. However, phospholipid biosynthesis is currently limited
by substrate availability, e.g., of glycerol 3-phosphate,
the essential core of phospholipid headgroups. Here, we reconstitute
an enzymatic network for sustainable glycerol 3-phosphate synthesis
inside large unilamellar vesicles. We exploit the Escherichia
coli glycerol kinase GlpK to synthesize glycerol 3-phosphate
from externally supplied glycerol. We fuel phospholipid headgroup
formation by sustainable l-arginine breakdown. In addition,
we design and characterize a dynamic dialysis setup optimized for
synthetic cells, which is used to control the external medium composition
and to achieve sustainable glycerol 3-phosphate synthesis.
Collapse
Affiliation(s)
- Eleonora Bailoni
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
66
|
Hernandez Bücher JE, Staufer O, Ostertag L, Mersdorf U, Platzman I, Spatz JP. Bottom-up assembly of target-specific cytotoxic synthetic cells. Biomaterials 2022; 285:121522. [DOI: 10.1016/j.biomaterials.2022.121522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 12/23/2022]
|
67
|
Guindani C, Silva LC, Cao S, Ivanov T, Landfester K. Synthetic Cells: From Simple Bio‐Inspired Modules to Sophisticated Integrated Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Camila Guindani
- Chemical Engineering Program COPPE Federal University of Rio de Janeiro, PEQ/COPPE/UFRJ, CEP 21941-972 Rio de Janeiro RJ Brazil
| | - Lucas Caire Silva
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Shoupeng Cao
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Tsvetomir Ivanov
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Katharina Landfester
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
68
|
Gao N, Xu C, Yin Z, Li M, Mann S. Triggerable Protocell Capture in Nanoparticle-Caged Coacervate Microdroplets. J Am Chem Soc 2022; 144:3855-3862. [PMID: 35192333 PMCID: PMC9097475 DOI: 10.1021/jacs.1c11414] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 01/08/2023]
Abstract
Controlling the dynamics of mixed communities of cell-like entities (protocells) provides a step toward the development of higher-order cytomimetic behaviors in artificial cell consortia. In this paper, we develop a caged protocell model with a molecularly crowded coacervate interior surrounded by a non-cross-linked gold (Au)/poly(ethylene glycol) (PEG) nanoparticle-jammed stimuli-responsive membrane. The jammed membrane is unlocked by either exogenous light-mediated Au/PEG dissociation at the Au surface or endogenous enzyme-mediated cleavage of a ketal linkage on the PEG backbone. The membrane assembly/disassembly process is used for the controlled and selective uptake of guest protocells into the caged coacervate microdroplets as a path toward an all-water model of triggerable transmembrane uptake in synthetic protocell communities. Active capture of the guest protocells stems from the high sequestration potential of the coacervate interior such that tailoring the surface properties of the guest protocells provides a rudimentary system of protocell sorting. Our results highlight the potential for programming surface-contact interactions between artificial membrane-bounded compartments and could have implications for the development of protocell networks, storage and delivery microsystems, and microreactor technologies.
Collapse
Affiliation(s)
- Ning Gao
- Max
Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol BS8 1TS, U.K.
- Centre
for Protolife Research and Centre for Organized Matter Chemistry,
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Can Xu
- Centre
for Protolife Research and Centre for Organized Matter Chemistry,
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Zhuping Yin
- Centre
for Protolife Research and Centre for Organized Matter Chemistry,
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Mei Li
- Centre
for Protolife Research and Centre for Organized Matter Chemistry,
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
- School
of Materials Science and Engineering, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
| | - Stephen Mann
- Max
Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol BS8 1TS, U.K.
- Centre
for Protolife Research and Centre for Organized Matter Chemistry,
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
- School
of Materials Science and Engineering, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
69
|
de Luis B, Morellá-Aucejo Á, Llopis-Lorente A, Martínez-Latorre J, Sancenón F, López C, Murguía JR, Martínez-Máñez R. Nanoprogrammed Cross-Kingdom Communication Between Living Microorganisms. NANO LETTERS 2022; 22:1836-1844. [PMID: 35171622 PMCID: PMC9940291 DOI: 10.1021/acs.nanolett.1c02435] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The engineering of chemical communication at the micro/nanoscale is a key emergent topic in micro/nanotechnology, synthetic biology, and related areas. However, the field is still in its infancy; previous advances, although scarce, have mainly focused on communication between abiotic micro/nanosystems or between microvesicles and living cells. Here, we have implemented a nanoprogrammed cross-kingdom communication involving two different microorganisms and tailor-made nanodevices acting as "nanotranslators". Information flows from the sender cells (bacteria) to the nanodevice and from the nanodevice to receiver cells (yeasts) in a hierarchical way, allowing communication between two microorganisms that otherwise would not interact.
Collapse
Affiliation(s)
- Beatriz de Luis
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ángela Morellá-Aucejo
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain
| | - Antoni Llopis-Lorente
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Javier Martínez-Latorre
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Carmelo López
- Instituto
Universitario de Conservación y Mejora de la Agrodiversidad
Valenciana, Universitat Politècnica
de València (COMAV-UPV), 46022 Valencia, Spain
| | - José Ramón Murguía
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Instituto
de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46026 Valencia, Spain
| |
Collapse
|
70
|
Mashima T, Stevendaal MHME, Cornelissens FRA, Mason AF, Rosier BJHM, Altenburg WJ, Oohora K, Hirayama S, Hayashi T, Hest JCM, Brunsveld L. DNA‐Mediated Protein Shuttling between Coacervate‐Based Artificial Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tsuyoshi Mashima
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita 565-0871 Japan
| | - Marleen H. M. E. Stevendaal
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Femke R. A. Cornelissens
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Alexander F. Mason
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Bas J. H. M. Rosier
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Wiggert J. Altenburg
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Koji Oohora
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita 565-0871 Japan
| | - Shota Hirayama
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita 565-0871 Japan
| | - Takashi Hayashi
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita 565-0871 Japan
| | - Jan C. M. Hest
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| |
Collapse
|
71
|
Galas JC, Estevez-Torres A, Van Der Hofstadt M. Long-Lasting and Responsive DNA/Enzyme-Based Programs in Serum-Supplemented Extracellular Media. ACS Synth Biol 2022; 11:968-976. [PMID: 35133811 DOI: 10.1021/acssynbio.1c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA molecular programs are emerging as promising pharmaceutical approaches due to their versatility for biomolecular sensing and actuation. However, the implementation of DNA programs has been mainly limited to serum-deprived in vitro assays due to the fast deterioration of the DNA reaction networks by the nucleases present in the serum. Here, we show that DNA/enzyme programs are functional in serum for 24 h but are later disrupted by nucleases that give rise to parasitic amplification. To overcome this, we implement three-letter code networks that suppress autocatalytic parasites while still conserving the functionality of DNA/enzyme programs for at least 3 days in the presence of 10% serum. In addition, we define a new buffer that further increases the biocompatibility and conserves responsiveness to changes in molecular composition across time. Finally, we demonstrate how serum-supplemented extracellular DNA molecular programs remain responsive to molecular inputs in the presence of living cells, having responses 6-fold faster than the cellular division rate, and are sustainable for at least three cellular divisions. This demonstrates the possibility of implementing in situ biomolecular characterization tools for serum-demanding in vitro models. We foresee that the coupling of chemical reactivity to our DNA programs by aptamers or oligonucleotide conjugations will allow the implementation of extracellular synthetic biology tools, which will offer new biomolecular pharmaceutical approaches and the emergence of complex and autonomous in vitro models.
Collapse
Affiliation(s)
- Jean-Christophe Galas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France
| | - André Estevez-Torres
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France
| | - Marc Van Der Hofstadt
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France
| |
Collapse
|
72
|
Smith JM, Chowdhry R, Booth MJ. Controlling Synthetic Cell-Cell Communication. Front Mol Biosci 2022; 8:809945. [PMID: 35071327 PMCID: PMC8766733 DOI: 10.3389/fmolb.2021.809945] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022] Open
Abstract
Synthetic cells, which mimic cellular function within a minimal compartment, are finding wide application, for instance in studying cellular communication and as delivery devices to living cells. However, to fully realise the potential of synthetic cells, control of their function is vital. An array of tools has already been developed to control the communication of synthetic cells to neighbouring synthetic cells or living cells. These tools use either chemical inputs, such as small molecules, or physical inputs, such as light. Here, we examine these current methods of controlling synthetic cell communication and consider alternative mechanisms for future use.
Collapse
Affiliation(s)
| | | | - Michael J. Booth
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
73
|
Cazimoglu I, Booth MJ, Bayley H. A Lipid-Based Droplet Processor for Parallel Chemical Signals. ACS NANO 2021; 15:20214-20224. [PMID: 34788543 PMCID: PMC8717631 DOI: 10.1021/acsnano.1c08217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 05/19/2023]
Abstract
A key goal of bottom-up synthetic biology is to construct cell- and tissue-like structures. Underpinning cellular life is the ability to process several external chemical signals, often in parallel. Until now, cell- and tissue-like structures have been constructed with no more than one signaling pathway. Many pathways rely on signal transport across membranes using protein nanopores. However, such systems currently suffer from the slow transport of molecules. We have optimized the application of these nanopores to permit fast molecular transport, which has allowed us to construct a processor for parallel chemical signals from the bottom up in a modular fashion. The processor comprises three aqueous droplet compartments connected by lipid bilayers and operates in an aqueous environment. It can receive two chemical signals from the external environment, process them orthogonally, and then produce a distinct output for each signal. It is suitable for both sensing and enzymatic processing of environmental signals, with fluorescence and molecular outputs. In the future, such processors could serve as smart drug delivery vehicles or as modules within synthetic tissues to control their behavior in response to external chemical signals.
Collapse
|
74
|
Grimes PJ, Galanti A, Gobbo P. Bioinspired Networks of Communicating Synthetic Protocells. Front Mol Biosci 2021; 8:804717. [PMID: 35004855 PMCID: PMC8740067 DOI: 10.3389/fmolb.2021.804717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
The bottom-up synthesis of cell-like entities or protocells from inanimate molecules and materials is one of the grand challenges of our time. In the past decade, researchers in the emerging field of bottom-up synthetic biology have developed different protocell models and engineered them to mimic one or more abilities of biological cells, such as information transcription and translation, adhesion, and enzyme-mediated metabolism. Whilst thus far efforts have focused on increasing the biochemical complexity of individual protocells, an emerging challenge in bottom-up synthetic biology is the development of networks of communicating synthetic protocells. The possibility of engineering multi-protocellular systems capable of sending and receiving chemical signals to trigger individual or collective programmed cell-like behaviours or for communicating with living cells and tissues would lead to major scientific breakthroughs with important applications in biotechnology, tissue engineering and regenerative medicine. This mini-review will discuss this new, emerging area of bottom-up synthetic biology and will introduce three types of bioinspired networks of communicating synthetic protocells that have recently emerged.
Collapse
Affiliation(s)
- Patrick J. Grimes
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, United Kingdom
| | - Agostino Galanti
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, United Kingdom
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Pierangelo Gobbo
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, United Kingdom
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
75
|
Chen C, Wang X, Wang Y, Tian L, Cao J. Construction of protocell-based artificial signal transduction pathways. Chem Commun (Camb) 2021; 57:12754-12763. [PMID: 34755716 DOI: 10.1039/d1cc03775g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The maintenance of an orderly and controllable multicellular society depends on the communication and signal regulation between various types of biological cells. How to replicate complicated signal transduction pathways in synthetic protocellular communities remains a key challenge in bottom-up synthetic biology. Herein, we review recent advances in the design and construction of interactive protocell communities, or protocell communities and biological communities, and explore the ways of designing and constructing artificial paracrine-like signaling pathways and juxtacrine-like signaling pathways. Key molecules involved in the signaling pathways that can be used to connect two or more spatially separated communities, and diverse signal outputs generated by the communication are summarized. We also propose the limitations, challenges and opportunities in this field.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Xuejing Wang
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Ying Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China. .,Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Binjiang Institute of Zhejiang University, 66 Dongxin Road, Hangzhou, 310053, China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
76
|
Chemical communication at the synthetic cell/living cell interface. Commun Chem 2021; 4:161. [PMID: 36697795 PMCID: PMC9814394 DOI: 10.1038/s42004-021-00597-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 01/28/2023] Open
Abstract
Although the complexity of synthetic cells has continued to increase in recent years, chemical communication between protocell models and living organisms remains a key challenge in bottom-up synthetic biology and bioengineering. In this Review, we discuss how communication channels and modes of signal processing can be established between living cells and cytomimetic agents such as giant unilamellar lipid vesicles, proteinosomes, polysaccharidosomes, polymer-based giant vesicles and membrane-less coacervate micro-droplets. We describe three potential modes of chemical communication in consortia of synthetic and living cells based on mechanisms of distributed communication and signal processing, physical embodiment and nested communication, and network-based contact-dependent communication. We survey the potential for applying synthetic cell/living cell communication systems in biomedicine, including the in situ production of therapeutics and development of new bioreactors. Finally, we present a short summary of our findings.
Collapse
|
77
|
Sharma B, Moghimianavval H, Hwang SW, Liu AP. Synthetic Cell as a Platform for Understanding Membrane-Membrane Interactions. MEMBRANES 2021; 11:912. [PMID: 34940413 PMCID: PMC8706075 DOI: 10.3390/membranes11120912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/27/2023]
Abstract
In the pursuit of understanding life, model membranes made of phospholipids were envisaged decades ago as a platform for the bottom-up study of biological processes. Micron-sized lipid vesicles have gained great acceptance as their bilayer membrane resembles the natural cell membrane. Important biological events involving membranes, such as membrane protein insertion, membrane fusion, and intercellular communication, will be highlighted in this review with recent research updates. We will first review different lipid bilayer platforms used for incorporation of integral membrane proteins and challenges associated with their functional reconstitution. We next discuss different methods for reconstitution of membrane fusion and compare their fusion efficiency. Lastly, we will highlight the importance and challenges of intercellular communication between synthetic cells and synthetic cells-to-natural cells. We will summarize the review by highlighting the challenges and opportunities associated with studying membrane-membrane interactions and possible future research directions.
Collapse
Affiliation(s)
- Bineet Sharma
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
| | - Hossein Moghimianavval
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
| | - Sung-Won Hwang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
78
|
Liu G, Huang S, Liu X, Chen W, Ma X, Cao S, Wang L, Chen L, Yang H. DNA-Based Artificial Signaling System Mimicking the Dimerization of Receptors for Signal Transduction and Amplification. Anal Chem 2021; 93:13807-13814. [PMID: 34613712 DOI: 10.1021/acs.analchem.1c02405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transmembrane signal transduction is of profound significance in many biological processes. The dimerization of cell-surface receptors is one prominent mechanism by which signals are transmitted across the membrane and trigger intracellular cascade amplification reactions. Recreating such processes in artificial systems has potential applications in sensing, drug delivery, bioengineering, and providing a new route for a deep understanding of fundamental biological processes. However, it remains a challenge to design artificial signal transduction systems working by the receptor dimerization mechanism in a predictable and smart manner. Here, benefitting from DNA with features of programmability, controllability, and flexible design, we use DNA as a building material to construct an artificial system mimicking dimerization of receptors for signal transduction and cascade amplification. DNA-based membrane-spanning receptor analogues are designed to recognize external signals, which drives two receptors into close spatial proximity to activate DNAzymes inside the cell-mimicking system. The activation of the DNAzyme initiates the catalyzed cleavage of encapsulated substrates and leads to the release of fluorescent second messengers for signal amplification. Such an artificial signal transduction system extends the range of biomimetic DNA-based signaling systems, providing a new avenue to study natural cell signaling processes and artificially regulate biological processes.
Collapse
Affiliation(s)
- Guo Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Shan Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xiaochen Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Wanzhen Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xin Ma
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Shuang Cao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
79
|
Diltemiz SE, Tavafoghi PhD M, Roberto de Barros N, Kanada M, Heinamaki J, Contag C, Seidlits S, Ashammakhi N. USE OF ARTIFICIAL CELLS AS DRUG CARRIERS. MATERIALS CHEMISTRY FRONTIERS 2021; 5:6672-6692. [PMID: 38344270 PMCID: PMC10857888 DOI: 10.1039/d1qm00717c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cells are the fundamental functional units of biological systems and mimicking their size, function and complexity is a primary goal in the development of new therapeutic strategies. Recent advances in chemistry, synthetic biology and material science have enabled the development of cell membrane-based drug delivery systems (DDSs), often referred to as "artificial cells" or protocells. Artificial cells can be made by removing functions from natural systems in a top-down manner, or assembly from synthetic, organic or inorganic materials, through a bottom-up approach where simple units are integrated to form more complex structures. This review covers the latest advances in the development of artificial cells as DDSs, highlighting how their designs have been inspired by natural cells or cell membranes. Advancement of artificial cell technologies has led to a set of drug carriers with effective and controlled release of a variety of therapeutics for a range of diseases, and with increasing complexity they will have a greater impact on therapeutic designs.
Collapse
Affiliation(s)
- Sibel Emir Diltemiz
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
- Department of Chemistry, Eskisehir Technical University, Eskisehir, Turkey
| | - Maryam Tavafoghi PhD
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
| | - Natan Roberto de Barros
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
- Department of Bioprocess and Biotechnology Engineering, São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Masamitsu Kanada
- Institute for Quantitative Health Science and Engineering (IQ), Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jyrki Heinamaki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse Str. 1, EE-50411 Tartu, Estonia
| | - Christopher Contag
- Institute for Quantitative Health Science and Engineering (IQ) and Departments of Biomedical Engineering (BME), and Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Stephanie Seidlits
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
| | - Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
80
|
de Luis B, Llopis-Lorente A, Sancenón F, Martínez-Máñez R. Engineering chemical communication between micro/nanosystems. Chem Soc Rev 2021; 50:8829-8856. [PMID: 34109333 DOI: 10.1039/d0cs01048k] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical communication, based on the exchange of molecules as messengers, allows different entities to share information, cooperate and orchestrate collective behaviors. In recent years, the development of strategies of chemical communication between micro/nanosystems is becoming a key emergent topic in micro/nanotechnology, biomimicry and related areas. In this tutorial review, we provide a general perspective of the concepts used on the topic of chemical communication, and the advances made using different approaches that include nanomaterials, synthetic biology and information-processing tools. Although studies in this direction are very recent, they can be divided in two main categories: (i) communication between abiotic systems and (ii) communication between living and abiotic systems. Using illustrative examples, we give an overview of the ongoing progress, potential applications in different areas and current challenges. The engineering of chemical communication between micro/nanosystems represents a paradigm shift and may open a myriad of new concepts, applications and new technological possibilities in the near future in a number of research fields.
Collapse
Affiliation(s)
- Beatriz de Luis
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain.
| | | | | | | |
Collapse
|
81
|
Yao Y, Zhang Y, Li L, Huang Y, Yang X, Peng Z, Wang K, Liu J. Photothermally Activated Coacervate Model Protocells as Signal Transducers Endow Mammalian Cells with Light Sensitivity. Adv Biol (Weinh) 2021; 5:e2100695. [PMID: 34160910 DOI: 10.1002/adbi.202100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Indexed: 11/08/2022]
Abstract
The development of a novel photothermally activated coacervate model protocell is reported as a signal transducer to endow mammalian cells with light sensitivity. In this system, near-infrared light irradiation triggers H2 S release in coacervate model protocells, leading to modulation of the behavior of living cells. The functional coacervate model protocells are prepared by loading metal-alloyed plasmonic nanoparticles and an H2 S donor into the liquid coacervate microdroplets. Upon light irradiation, the H2 S signal messenger is released through the photothermal effect of plasmonic nanoparticles and photothermal mediated pyrolysis of the H2 S donor. The H2 S signal is delivered to the mammalian cell community to trigger depletion of reactive oxygen species, reduce the activity of lactate dehydrogenase and improve cell viability. This study provides a new approach to the implementation of chemical signaling in artificial cell colonies and protocell/living cell consortia. The photothermal protocell system offers a powerful platform for light modulation of the behavior of mammalian cells and shows great promise for biomedical applications.
Collapse
Affiliation(s)
- Yu Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yanwen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Li Li
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530000, P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Zhihong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
82
|
Stevendaal MHME, Hest JCM, Mason AF. Functional Interactions Between Bottom‐Up Synthetic Cells and Living Matter for Biomedical Applications. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marleen H. M. E. Stevendaal
- Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 (STO 3.41) 5600MB Eindhoven (The Netherlands
| | - Jan C. M. Hest
- Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 (STO 3.41) 5600MB Eindhoven (The Netherlands
| | - Alexander F. Mason
- Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 (STO 3.41) 5600MB Eindhoven (The Netherlands
| |
Collapse
|
83
|
Mu W, Ji Z, Zhou M, Wu J, Lin Y, Qiao Y. Membrane-confined liquid-liquid phase separation toward artificial organelles. SCIENCE ADVANCES 2021; 7:eabf9000. [PMID: 34049872 PMCID: PMC8163073 DOI: 10.1126/sciadv.abf9000] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/14/2021] [Indexed: 05/04/2023]
Abstract
As the basic unit of life, cells are compartmentalized microreactors with molecularly crowded microenvironments. The quest to understand the cell origin inspires the design of synthetic analogs to mimic their functionality and structural complexity. In this work, we integrate membraneless coacervate microdroplets, a prototype of artificial organelles, into a proteinosome to build hierarchical protocells that may serve as a more realistic model of cellular organization. The protocell subcompartments can sense extracellular signals, take actions in response to these stimuli, and adapt their physicochemical behaviors. The tiered protocells are also capable of enriching biomolecular reactants within the confined organelles, thereby accelerating enzymatic reactions. The ability of signal processing inside protocells allows us to design the Boolean logic gates (NOR and NAND) using biochemical inputs. Our results highlight possible exploration of protocell-community signaling and render a flexible synthetic platform to study complex metabolic reaction networks and embodied chemical computation.
Collapse
Affiliation(s)
- Wenjing Mu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Musen Zhou
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
84
|
Kruyer NS, Sugianto W, Tickman BI, Alba Burbano D, Noireaux V, Carothers JM, Peralta-Yahya P. Membrane Augmented Cell-Free Systems: A New Frontier in Biotechnology. ACS Synth Biol 2021; 10:670-681. [PMID: 33749249 DOI: 10.1021/acssynbio.0c00625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins are present in a wide array of cellular processes from primary and secondary metabolite synthesis to electron transport and single carbon metabolism. A key barrier to applying membrane proteins industrially is their difficult functional production. Beyond expression, folding, and membrane insertion, membrane protein activity is influenced by the physicochemical properties of the associated membrane, making it difficult to achieve optimal membrane protein performance outside the endogenous host. In this review, we highlight recent work on production of membrane proteins in membrane augmented cell-free systems (CFSs) and applications thereof. CFSs lack membranes and can thus be augmented with user-specified, tunable, mimetic membranes to generate customized environments for production of functional membrane proteins of interest. Membrane augmented CFSs would enable the synthesis of more complex plant secondary metabolites, the growth and division of synthetic cells for drug delivery and cell therapeutic applications, as well as enable green energy applications including methane capture and artificial photosynthesis.
Collapse
Affiliation(s)
- Nicholas S. Kruyer
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Widianti Sugianto
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin I. Tickman
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
| | - Diego Alba Burbano
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James M. Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Pamela Peralta-Yahya
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
85
|
Van Der Hofstadt M, Galas JC, Estevez-Torres A. Spatiotemporal Patterning of Living Cells with Extracellular DNA Programs. ACS NANO 2021; 15:1741-1752. [PMID: 33356142 DOI: 10.1021/acsnano.0c09422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reactive extracellular media focus on engineering reaction networks outside the cell to control intracellular chemical composition across time and space. However, current implementations lack the feedback loops and out-of-equilibrium molecular dynamics for encoding spatiotemporal control. Here, we demonstrate that enzyme-DNA molecular programs combining these qualities are functional in an extracellular medium where human cells can grow. With this approach, we construct an internalization program that delivers fluorescent DNA inside living cells and remains functional for at least 48 h. Its nonequilibrium dynamics allows us to control both the time and position of cell internalization. In particular, a spatially inhomogeneous version of this program generates a tunable reaction-diffusion two-band pattern of cell internalization. This demonstrates that a synthetic extracellular program can provide temporal and positional information to living cells, emulating archetypal mechanisms observed during embryo development. We foresee that nonequilibrium reactive extracellular media could be advantageously applied to in vitro biomolecular tracking, tissue engineering, or smart bandages.
Collapse
Affiliation(s)
- Marc Van Der Hofstadt
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France
| | - Jean-Christophe Galas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France
| | - André Estevez-Torres
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France
| |
Collapse
|
86
|
Boyd MA, Kamat NP. Designing Artificial Cells towards a New Generation of Biosensors. Trends Biotechnol 2020; 39:927-939. [PMID: 33388162 DOI: 10.1016/j.tibtech.2020.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023]
Abstract
The combination of biological and synthetic materials has great potential to generate new types of biosensors. Toward this goal, recent advances in artificial cell development have demonstrated the capacity to detect a variety of analytes and environmental changes by encapsulating genetically encoded sensors within bilayer membranes, expanding the contexts within which biologically based sensing can operate. This chassis not only acts as a container for cell-free sensors, but can also play an active role in artificial cell sensing by serving as an additional gate mediating the transfer of environmental information. Here, we focus on recent progress toward stimuli-responsive artificial cells and discuss strategies for membrane functionalization in order to expand cell-free biosensing capabilities and applications.
Collapse
Affiliation(s)
- Margrethe A Boyd
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Neha P Kamat
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
87
|
Groaz A, Galvan S, Valer L, Rossetto D, Benedetti F, Guella G, Toparlak ÖD, Mansy SS. Cell-Free Synthesis of Dopamine and Serotonin in Two Steps with Purified Enzymes. ACTA ACUST UNITED AC 2020; 4:e2000118. [PMID: 33107224 DOI: 10.1002/adbi.202000118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/14/2020] [Indexed: 01/05/2023]
Abstract
The synthesis of serotonin and dopamine with purified enzymes is described. Both pathways start from an amino acid substrate and synthesize the monoamine neurotransmitter in two enzymatic steps. The enzymes human tryptophan hydroxylase isoform 2, Rattus norvegicus tyrosine hydroxylase, Chlamydia pneumoniae Cpn1046, and aromatic amino acid decarboxylase from Drosophila melanogaster are recombinantly expressed, purified, and shown to be functional in vitro. The hydroxylases efficiently convert L-DOPA (L-dihydroxy-phenylalanine) and 5-HTP (5-hydroxytryptophan) from L-tyrosine and L-tryptophan, respectively. A single aromatic amino acid decarboxylase is capable of converting both hydroxylated intermediates into the final neurotransmitter. The platform described here may facilitate future efforts to generate medically useful artificial cells and nanofactories.
Collapse
Affiliation(s)
- Alessandro Groaz
- CIBIO, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | - Silvia Galvan
- CIBIO, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | - Luca Valer
- CIBIO, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | - Daniele Rossetto
- CIBIO, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | | | - Graziano Guella
- Department of Physics, University of Trento, Via Sommarive 14, Trento, 38123, Italy
| | | | - Sheref S Mansy
- CIBIO, University of Trento, Via Sommarive 9, Trento, 38123, Italy.,Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, AB, T6G 2G2, Canada
| |
Collapse
|