51
|
Jiang Y, Tao Y, Chen Y, Xue X, Ding G, Wang S, Liu G, Li M, Su J. Role of Phosphorus-Containing Molecules on the Formation of Nano-Sized Calcium Phosphate for Bone Therapy. Front Bioeng Biotechnol 2022; 10:875531. [PMID: 35813995 PMCID: PMC9257216 DOI: 10.3389/fbioe.2022.875531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
Calcium phosphate (CaP) is the principal inorganic constituent of bone and teeth in vertebrates and has various applications in biomedical areas. Among various types of CaPs, amorphous calcium phosphate (ACP) is considered to have superior bioactivity and biodegradability. With regard to the instability of ACP, the phosphorus-containing molecules are usually adopted to solve this issue, but the specific roles of the molecules in the formation of nano-sized CaP have not been clearly clarified yet. Herein, alendronate, cyclophosphamide, zoledronate, and foscarnet are selected as the model molecules, and theoretical calculations were performed to elucidate the interaction between calcium ions and different model molecules. Subsequently, CaPs were prepared with the addition of the phosphorus-containing molecules. It is found that cyclophosphamide has limited influence on the generation of CaPs due to their weak interaction. During the co-precipitation process of Ca2+ and PO43-, the competitive relation among alendronate, zoledronate, and foscarnet plays critical roles in the produced inorganic-organic complex. Moreover, the biocompatibility of CaPs was also systematically evaluated. The DFT calculation provides a convincing strategy for predicting the structure of CaPs with various additives. This work is promising for designing CaP-based multifunctional drug delivery systems and tissue engineering materials.
Collapse
Affiliation(s)
- Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yali Tao
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yutong Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xu Xue
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Gangyi Ding
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai, China
| | - Guodong Liu
- Wound Care Center, Daping Hospital, Army Medical Center of PLA, Chongqing, China
- *Correspondence: Guodong Liu, ; Mengmeng Li, ; Jiacan Su,
| | - Mengmeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Guodong Liu, ; Mengmeng Li, ; Jiacan Su,
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Guodong Liu, ; Mengmeng Li, ; Jiacan Su,
| |
Collapse
|
52
|
Meng F, Yin Z, Ren X, Geng Z, Su J. Construction of Local Drug Delivery System on Titanium-Based Implants to Improve Osseointegration. Pharmaceutics 2022; 14:pharmaceutics14051069. [PMID: 35631656 PMCID: PMC9146791 DOI: 10.3390/pharmaceutics14051069] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Titanium and its alloys are the most widely applied orthopedic and dental implant materials due to their high biocompatibility, superior corrosion resistance, and outstanding mechanical properties. However, the lack of superior osseointegration remains the main obstacle to successful implantation. Previous traditional surface modification methods of titanium-based implants cannot fully meet the clinical needs of osseointegration. The construction of local drug delivery systems (e.g., antimicrobial drug delivery systems, anti-bone resorption drug delivery systems, etc.) on titanium-based implants has been proved to be an effective strategy to improve osseointegration. Meanwhile, these drug delivery systems can also be combined with traditional surface modification methods, such as anodic oxidation, acid etching, surface coating technology, etc., to achieve desirable and enhanced osseointegration. In this paper, we review the research progress of different local drug delivery systems using titanium-based implants and provide a theoretical basis for further research on drug delivery systems to promote bone–implant integration in the future.
Collapse
Affiliation(s)
- Fanying Meng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China;
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- Correspondence: (X.R.); (Z.G.); (J.S.)
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- Correspondence: (X.R.); (Z.G.); (J.S.)
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- Correspondence: (X.R.); (Z.G.); (J.S.)
| |
Collapse
|
53
|
Diterbutyl phthalate attenuates osteoarthritis in ACLT mice via suppressing ERK/c-fos/NFATc1 pathway, and subsequently inhibiting subchondral osteoclast fusion. Acta Pharmacol Sin 2022; 43:1299-1310. [PMID: 34381182 PMCID: PMC9061820 DOI: 10.1038/s41401-021-00747-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is the most common arthritis with a rapidly increasing prevalence. Disease progression is irreversible, and there is no curative therapy available. During OA onset, abnormal mechanical loading leads to excessive osteoclastogenesis and bone resorption in subchondral bone, causing a rapid subchondral bone turnover, cyst formation, sclerosis, and finally, articular cartilage degeneration. Moreover, osteoclast-mediated angiogenesis and sensory innervation in subchondral bone result in abnormal vascularization and OA pain. The traditional Chinese medicine Panax notoginseng (PN; Sanqi) has long been used in treatment of bone diseases including osteoporosis, bone fracture, and OA. In this study we established two-dimensional/bone marrow mononuclear cell/cell membrane chromatography/time of flight mass spectrometry (2D/BMMC/CMC/TOFMS) technique and discovered that diterbutyl phthalate (DP) was the active constituent in PN inhibiting osteoclastogenesis. Then we explored the therapeutic effect of DP in an OA mouse model with anterior cruciate ligament transaction (ACLT). After ACLT was conducted, the mice received DP (5 mg·kg-1·d-1, ip) for 8 weeks. Whole knee joint tissues of the right limb were harvested at weeks 2, 4, and 8 for analysis. We showed that DP administration impeded overactivated osteoclastogenesis in subchondral bone and ameliorated articular cartilage deterioration. DP administration blunted aberrant H-type vessel formation in subchondral bone marrow and alleviated OA pain assessed in Von Frey test and thermal plantar test. In RANKL-induced RAW264.7 cells in vitro, DP (20 μM) retarded osteoclastogenesis by suppressing osteoclast fusion through inhibition of the ERK/c-fos/NFATc1 pathway. DP treatment also downregulated the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and d2 isoform of the vacuolar (H+) ATPase V0 domain (Atp6v0d2) in the cells. In conclusion, we demonstrate that DP prevents OA progression by inhibiting abnormal osteoclastogenesis and associated angiogenesis and neurogenesis in subchondral bone.
Collapse
|
54
|
Lin X, Xu F, Zhang KW, Qiu WX, Zhang H, Hao Q, Li M, Deng XN, Tian Y, Chen ZH, Qian AR. Acacetin Prevents Bone Loss by Disrupting Osteoclast Formation and Promoting Type H Vessel Formation in Ovariectomy-Induced Osteoporosis. Front Cell Dev Biol 2022; 10:796227. [PMID: 35517504 PMCID: PMC9062130 DOI: 10.3389/fcell.2022.796227] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis, characterized by the destruction of bone resorption and bone formation, is a serious disease that endangers human health. Osteoporosis prevention and treatment has become one of the important research contents in the field of medicine. Acacetin, a natural flavonoid compound, could promote osteoblast differentiation, and inhibit osteoclast formation in vitro. However, the mechanisms of acacetin on osteoclast differentiation and type H vessel formation, as well as the effect of preventing bone loss, remain unclear. Here, we firstly used primary bone marrow derived macrophages (BMMs), endothelial progenitor cells (EPCs), and ovariectomized (OVX) mice to explore the function of acacetin on bone remodeling and H type vessel formation. In this study, we found that acacetin inhibits osteoclast formation and bone resorption of BMMs induced by the macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) in a concentration of 20 μM without exerting cytotoxic effects. It was accompanied by downregulation of osteoclast differentiation marker genes (Ctsk, Acp5, and Mmp9) and cell fusion genes (CD9, CD47, Atp6v0d2, Dc-stamp, and Oc-stamp). Moreover, acacetin disrupted actin ring formation and extracellular acidification in osteoclasts. Mechanistic analysis revealed that acacetin not only inhibits the expression of the major transcription factor NFATc1 and NF-κB during RANKL-induced osteoclast formation, but also suppresses RANKL-induced the phosphorylation of Akt, GSK3β, IκBα, and p65. Additionally, acacetin enhanced the ability of M-CSF and RANKL-stimulated BMMs to promote angiogenesis and migration of EPCs. We further established that, in vivo, acacetin increased trabecular bone mass, decreased the number of osteoclasts, and showed more type H vessels in OVX mice. These data demonstrate that acacetin prevents OVX-induced bone loss in mice through inhibition of osteoclast function and promotion of type H vessel formation via Akt/GSK3β and NF-κB signalling pathway, suggesting that acacetin may be a novel therapeutic agent for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Xiao Lin
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Fang Xu
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Ke-Wen Zhang
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Wu-Xia Qiu
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Hui Zhang
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Xiao-Ni Deng
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Ye Tian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Ye Tian, ; Zhi-Hao Chen, ; Ai-Rong Qian,
| | - Zhi-Hao Chen
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Ye Tian, ; Zhi-Hao Chen, ; Ai-Rong Qian,
| | - Ai-Rong Qian
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Ye Tian, ; Zhi-Hao Chen, ; Ai-Rong Qian,
| |
Collapse
|
55
|
Liu H, Geng Z, Su J. Engineered mammalian and bacterial extracellular vesicles as promising nanocarriers for targeted therapy. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:63-86. [PMID: 39698442 PMCID: PMC11648430 DOI: 10.20517/evcna.2022.04] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs), which are nanocarriers with phospholipid bilayer structures released by most cells, play a key role in regulating physiological and pathological processes. EVs have been investigated due to their loading capacity, low toxicity, immunogenicity, and biofunctions. Although EVs have shown good potential as therapeutic vehicles, natural EVs have a poor targeting ability, which substantially reduces the therapeutic effect. Through the addition of a targeting unit into the membrane surface of EVs or inside EVs by engineering technology, the therapeutic agent can accumulate in specific cells and tissues. Here, we focus on mammalian EVs (MEVs) and bacterial EVs (BEVs), which are the two most common types of EVs in the biomedical field. In this review, we describe engineered MEVs and BEVs as promising nanocarriers for targeted therapy and summarize the biogenesis, isolation, and characterization of MEVs and BEVs. We then describe engineering techniques for enhancement of the targeting ability of EVs. Moreover, we focus on the applications of engineered MEVs and BEVs in targeted therapy, including the treatment of cancer and brain and bone disease. We believe that this review will help improve the understanding of engineered MEVs and BEVs, thereby promoting their application and clinical translation.
Collapse
Affiliation(s)
| | | | - Jiacan Su
- Correspondence to: Prof. Jiacan Su, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China. E-mail:
| |
Collapse
|
56
|
Meng F, Xue X, Yin Z, Gao F, Wang X, Geng Z. Research Progress of Exosomes in Bone Diseases: Mechanism, Diagnosis and Therapy. Front Bioeng Biotechnol 2022; 10:866627. [PMID: 35497358 PMCID: PMC9039039 DOI: 10.3389/fbioe.2022.866627] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
With the global escalation of the aging process, the number of patients with bone diseases is increasing year by year. Currently, there are limited effective treatments for bone diseases. Exosome, as a vital medium in cell-cell communication, can mediate tissue metabolism through the paracrine transmission of various cargos (proteins, nucleic acids, lipids, etc.) carried by itself. Recently, an increasing number of researchers have proven that exosomes play essential roles in the formation, metabolism, and pathological changes of bone and cartilage. Because exosomes have the advantages of small size, rich sources, and low immunogenicity, they can be used not only as substitutes for the traditional treatment of bone diseases, but also as biomarkers for the diagnosis of bone diseases. This paper reviews the research progress of several kinds of cells derived-exosomes in bone diseases and provides a theoretical basis for further research and clinical application of exosomes in bone diseases in the future.
Collapse
Affiliation(s)
- Fanying Meng
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xu Xue
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Fei Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, China,*Correspondence: Fei Gao, ; Xiuhui Wang, ; Zhen Geng,
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China,*Correspondence: Fei Gao, ; Xiuhui Wang, ; Zhen Geng,
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, China,*Correspondence: Fei Gao, ; Xiuhui Wang, ; Zhen Geng,
| |
Collapse
|
57
|
Polymeric coating on β-TCP scaffolds provides immobilization of small extracellular vesicles with surface-functionalization and ZEB1-Loading for bone defect repair in diabetes mellitus. Biomaterials 2022; 283:121465. [DOI: 10.1016/j.biomaterials.2022.121465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/17/2022] [Accepted: 03/06/2022] [Indexed: 12/21/2022]
|
58
|
Yu B, Xue X, Yin Z, Cao L, Li M, Huang J. Engineered Cell Membrane-Derived Nanocarriers: The Enhanced Delivery System for Therapeutic Applications. Front Cell Dev Biol 2022; 10:844050. [PMID: 35295856 PMCID: PMC8918578 DOI: 10.3389/fcell.2022.844050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
There has been a rapid development of biomimetic platforms using cell membranes as nanocarriers to camouflage nanoparticles for enhancing bio-interfacial capabilities. Various sources of cell membranes have been explored for natural functions such as circulation and targeting effect. Biomedical applications of cell membranes-based delivery systems are expanding from cancer to multiple diseases. However, the natural properties of cell membranes are still far from achieving desired functions and effects as a nanocarrier platform for various diseases. To obtain multi-functionality and multitasking in complex biological systems, various functionalized modifications of cell membranes are being developed based on physical, chemical, and biological methods. Notably, many research opportunities have been initiated at the interface of multi-technologies and cell membranes, opening a promising frontier in therapeutic applications. Herein, the current exploration of natural cell membrane functionality, the design principles for engineered cell membrane-based delivery systems, and the disease applications are reviewed, with a special focus on the emerging strategies in engineering approaches.
Collapse
Affiliation(s)
- Biao Yu
- The Second Affiliated Hospital, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Xu Xue
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Luodian Hospital, Shanghai, China
- Department of Orthopedics, Luodian Hospital, Shanghai University, Shanghai, China
| | - Mengmeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jianping Huang
- The Second Affiliated Hospital, Shanghai University, Shanghai, China
- Department of Neurology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
59
|
Moraes de Lima Perini M, Valuch CR, Dadwal UC, Awosanya OD, Mostardo SL, Blosser RJ, Knox AM, McGuire AC, Battina HL, Nazzal M, Kacena MA, Li J. Characterization and assessment of lung and bone marrow derived endothelial cells and their bone regenerative potential. Front Endocrinol (Lausanne) 2022; 13:935391. [PMID: 36120459 PMCID: PMC9470942 DOI: 10.3389/fendo.2022.935391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis is important for successful fracture repair. Aging negatively affects the number and activity of endothelial cells (ECs) and subsequently leads to impaired bone healing. We previously showed that implantation of lung-derived endothelial cells (LECs) improved fracture healing in rats. In this study, we characterized and compared neonatal lung and bone marrow-derived endothelial cells (neonatal LECs and neonatal BMECs) and further asses3sed if implantation of neonatal BMECs could enhance bone healing in both young and aged mice. We assessed neonatal EC tube formation, proliferation, and wound migration ability in vitro in ECs isolated from the bone marrow and lungs of neonatal mice. The in vitro studies demonstrated that both neonatal LECs and neonatal BMECs exhibited EC traits. To test the function of neonatal ECs in vivo, we created a femoral fracture in young and aged mice and implanted a collagen sponge to deliver neonatal BMECs at the fracture site. In the mouse fracture model, endochondral ossification was delayed in aged control mice compared to young controls. Neonatal BMECs significantly improved endochondral bone formation only in aged mice. These data suggest BMECs have potential to enhance aged bone healing. Compared to LECs, BMECs are more feasible for translational cell therapy and clinical applications in bone repair. Future studies are needed to examine the fate and function of BMECs implanted into the fracture sites.
Collapse
Affiliation(s)
| | - Conner R. Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Olatundun D. Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sarah L. Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Adam M. Knox
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anthony C. McGuire
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hanisha L. Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Murad Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush Veterans Affairs (VA) Medical Center, Indianapolis, IN, United States
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
- *Correspondence: Jiliang Li,
| |
Collapse
|
60
|
Chen X, Hu Y, Geng Z, Su J. The "Three in One" Bone Repair Strategy for Osteoporotic Fractures. Front Endocrinol (Lausanne) 2022; 13:910602. [PMID: 35757437 PMCID: PMC9218483 DOI: 10.3389/fendo.2022.910602] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
In aging society, osteoporotic fractures have become one major social problem threatening the health of the elderly population in China. Compared with conventional fractures, low bone mass, bone defect and retarded healing issues of osteoporotic fractures lead to great difficulties in treatment and rehabilitation. Addressing major concerns in clinical settings, we proposed the "three in one" bone repair strategy focusing on anti-osteoporosis therapies, appropriate bone grafting and fracture healing accelerating. We summarize misconceptions and repair strategies for osteoporotic fracture management, expecting improvement of prognosis and clinical outcomes for osteoporotic fractures, to further improve therapeutic effect and living quality of patients.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Traumatic Orthopedics, First Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiacan Su
- Department of Traumatic Orthopedics, First Affiliated Hospital of Navy Medical University, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Jiacan Su,
| |
Collapse
|
61
|
Zhang H, Hu Y, Chen X, Wang S, Cao L, Dong S, Shi Z, Chen Y, Xiong L, Zhang Y, Zhang D, Yu B, Chen W, Wang Q, Tong P, Liu X, Zhang J, Zhou Q, Niu F, Yang W, Zhang W, Wang Y, Chen S, Jia J, Yang Q, Zhang P, Zhang Y, Miao J, Sun K, Shen T, Yu B, Yang L, Zhang L, Wang D, Liu G, Zhang Y, Su J. Expert consensus on the bone repair strategy for osteoporotic fractures in China. Front Endocrinol (Lausanne) 2022; 13:989648. [PMID: 36387842 PMCID: PMC9643410 DOI: 10.3389/fendo.2022.989648] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporotic fractures, also known as fragility fractures, are prevalent in the elderly and bring tremendous social burdens. Poor bone quality, weak repair capacity, instability, and high failure rate of internal fixation are main characteristics of osteoporotic fractures. Osteoporotic bone defects are common and need to be repaired by appropriate materials. Proximal humerus, distal radius, tibia plateau, calcaneus, and spine are common osteoporotic fractures with bone defect. Here, the consensus from the Osteoporosis Group of Chinese Orthopaedic Association concentrates on the epidemiology, characters, and management strategies of common osteoporotic fractures with bone defect to standardize clinical practice in bone repair of osteoporotic fractures.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xiao Chen
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sicheng Wang
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Army Medical University, Chongqing, China
| | - Zhongmin Shi
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yanxi Chen
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liming Xiong
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfei Zhang
- Tangdu Hospital, Air Force Medical University, Xi'an, China
| | | | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong Hospital, Shanghai, China
| | - Wenming Chen
- Institute of Biomedical Engineering, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Qining Wang
- Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, China
| | - Peijian Tong
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ximing Liu
- Department of Orthopedics, General Hospital of Central Theater Command, Wuhan, China
| | - Jianzheng Zhang
- Department of Orthopedic Surgery, People's Liberation Army (PLA), Army General Hospital, Beijing, China
| | - Qiang Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Niu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Weiguo Yang
- Li Ka Shing Faculty of Medicine, Hongkong University, Hong Kong, Hong Kong SAR, China
| | - Wencai Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese medicine (TCM), Guangzhou, China
| | - Yong Wang
- Department of Orthopedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Shijie Chen
- Department of Orthopedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinpeng Jia
- Department of Orthopedics, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Qiang Yang
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Peng Zhang
- Department of Orthopedics, Shandong Province Hospital, Jinan, China
| | - Yong Zhang
- Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jun Miao
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Kuo Sun
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Shen
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Yu
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, China
| | - Lei Yang
- Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Zhang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongliang Wang
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Dongliang Wang, ; Guohui Liu, ; Yingze Zhang, ; Jiacan Su,
| | - Guohui Liu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongliang Wang, ; Guohui Liu, ; Yingze Zhang, ; Jiacan Su,
| | - Yingze Zhang
- Department of Orthopedics, Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Dongliang Wang, ; Guohui Liu, ; Yingze Zhang, ; Jiacan Su,
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Dongliang Wang, ; Guohui Liu, ; Yingze Zhang, ; Jiacan Su,
| |
Collapse
|
62
|
Yajun W, Jin C, Zhengrong G, Chao F, Yan H, Weizong W, Xiaoqun L, Qirong Z, Huiwen C, Hao Z, Jiawei G, Xinchen Z, Shihao S, Sicheng W, Xiao C, Jiacan S. Betaine Attenuates Osteoarthritis by Inhibiting Osteoclastogenesis and Angiogenesis in Subchondral Bone. Front Pharmacol 2021; 12:723988. [PMID: 34658862 PMCID: PMC8511433 DOI: 10.3389/fphar.2021.723988] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/13/2021] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis with no effective therapy. Subchondral bone and overlying articular cartilage are closely associated and function as “osteo-chondral unit” in the joint. Abnormal mechanical load leads to activated osteoclast activity and increased bone resorption in the subchondral bone, which is implicated in the onset of OA pathogenesis. Thus, inhibiting subchondral bone osteoclast activation could prevent OA onset. Betaine, isolated from the Lycii Radicis Cortex (LRC), has been demonstrated to exert anti-inflammatory, antifibrotic and antiangiogenic properties. Here, we evaluated the effects of betaine on anterior cruciate ligament transection (ACLT)-induced OA mice. We observed that betaine decreased the number of matrix metalloproteinase 13 (MMP-13)-positive and collagen X (Col X)-positive cells, prevented articular cartilage proteoglycan loss and lowered the OARSI score. Betaine decreased the thickness of calcified cartilage and increased the expression level of lubricin. Moreover, betaine normalized uncoupled subchondral bone remodeling as defined by lowered trabecular pattern factor (Tb.pf) and increased subchondral bone plate thickness (SBP). Additionally, aberrant angiogenesis in subchondral bone was blunted by betaine treatment. Mechanistically, we demonstrated that betaine suppressed osteoclastogenesis in vitro by inhibiting reactive oxygen species (ROS) production and subsequent mitogen-activated protein kinase (MAPK) signaling. These data demonstrated that betaine attenuated OA progression by inhibiting hyperactivated osteoclastogenesis and maintaining microarchitecture in subchondral bone.
Collapse
Affiliation(s)
- Wang Yajun
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Cui Jin
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Gu Zhengrong
- Department of Orthopedics, Luodian Hospital, Shanghai, China
| | - Fang Chao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hu Yan
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Weng Weizong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Xiaoqun
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhou Qirong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen Huiwen
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhang Hao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guo Jiawei
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhuang Xinchen
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng Shihao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wang Sicheng
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics, Zhongye Hospital, Shanghai, China
| | - Chen Xiao
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Su Jiacan
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China.,Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China
| |
Collapse
|
63
|
Hu Y, Li X, Zhang Q, Gu Z, Luo Y, Guo J, Wang X, Jing Y, Chen X, Su J. Exosome-guided bone targeted delivery of Antagomir-188 as an anabolic therapy for bone loss. Bioact Mater 2021; 6:2905-2913. [PMID: 33718671 PMCID: PMC7917458 DOI: 10.1016/j.bioactmat.2021.02.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
The differentiation shift from osteogenesis to adipogenesis of bone marrow mesenchymal stem cells (BMSCs) characterizes many pathological bone loss conditions. Stromal cell-derived factor-1 (SDF1) is highly enriched in the bone marrow for C-X-C motif chemokine receptor 4 (CXCR4)-positive hematopoietic stem cell (HSC) homing and tumor bone metastasis. In this study, we displayed CXCR4 on the surface of exosomes derived from genetically engineered NIH-3T3 cells. CXCR4+ exosomes selectively accumulated in the bone marrow. Then, we fused CXCR4+ exosomes with liposomes carrying antagomir-188 to produce hybrid nanoparticles (NPs). The hybrid NPs specifically gathered in the bone marrow and released antagomir-188, which promoted osteogenesis and inhibited adipogenesis of BMSCs and thereby reversed age-related trabecular bone loss and decreased cortical bone porosity in mice. Taken together, this study presents a novel way to obtain bone-targeted exosomes via surface display of CXCR4 and a promising anabolic therapeutic approach for age-related bone loss. Surface display of CXCR4 grants exosomes bone targeting properties. Exosome-liposome hybrid nanoparticles carrying nucleic acid target bone. Antagomir-188 loaded hybrid nanoparticles regulate MSC differentiation in aged mice.
Collapse
Affiliation(s)
- Yan Hu
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiaoqun Li
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhengrong Gu
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
| | - Ying Luo
- Centre Laboratory, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiawei Guo
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiao Chen
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.,Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jiacan Su
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
64
|
Schwebach CL, Kudryashova E, Kudryashov DS. Plastin 3 in X-Linked Osteoporosis: Imbalance of Ca 2+-Dependent Regulation Is Equivalent to Protein Loss. Front Cell Dev Biol 2021; 8:635783. [PMID: 33553175 PMCID: PMC7859272 DOI: 10.3389/fcell.2020.635783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Osteogenesis imperfecta is a genetic disorder disrupting bone development and remodeling. The primary causes of osteogenesis imperfecta are pathogenic variants of collagen and collagen processing genes. However, recently variants of the actin bundling protein plastin 3 have been identified as another source of osteogenesis imperfecta. Plastin 3 is a highly conserved protein involved in several important cellular structures and processes and is controlled by intracellular Ca2+ which potently inhibits its actin-bundling activity. The precise mechanisms by which plastin 3 causes osteogenesis imperfecta remain unclear, but recent advances have contributed to our understanding of bone development and the actin cytoskeleton. Here, we review the link between plastin 3 and osteogenesis imperfecta highlighting in vitro studies and emphasizing the importance of Ca2+ regulation in the localization and functionality of plastin 3.
Collapse
Affiliation(s)
- Christopher L Schwebach
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| |
Collapse
|